LA-ICP-MS zircon U-Pb age and geochemical characteristics of Jiada potas-sic volcanic rocks in Zhongba terrane, Tibet
-
摘要:
新生代青藏高原钾质火山岩发育, 主要集中于藏北地区和拉萨地块内, 仲巴地块中鲜见报道。对仲巴地块中发现的加达钾质火山岩进行研究, 其岩石类型以粗面质为主, 岩浆以溢流相-喷发相不间断喷发。样品普遍显示高钾高铝, 低碱, 偏酸性, 富集轻稀土元素和大离子亲石元素, 亏损高场强元素, 具弱负Eu异常, 贫Y和Yb, Sr含量较高, 类似于典型的埃达克质岩的地球化学特征。粗面玄武安山岩样品LA-ICP-MS锆石U-Pb年龄为17.03±0.32Ma, 形成时代为中新世。加达钾质火山岩浆来源于挤压增厚的下地壳部分熔融, 其产出的构造背景是后碰撞伸展环境。
-
关键词:
- 钾质火山岩 /
- 埃达克岩 /
- 地球化学特征 /
- LA-ICP-MS锆石U-Pb年龄 /
- 仲巴地块
Abstract:Cenozoic potassic volcanic rocks are widely distributed in the Tibetan Plateau, mainly in northern Tibet and Lhasa block with a few reports in Zhongba terrane. The study of Jiada potassic volcanic rocks found in Zhongba terrane shows that the rocks are almost exclusively trachyte, and the magma erupted incessantly by overflowing and erupting. These rocks are also characterized by high potassium and high aluminum, rich LILE, LREE and Sr, and poor HFSE, Y and Yb, with Eu negative anomaly. Their geochemi-cal characteristicss are similar to those of typical adkite rocks. The LA-ICP-MS zircon U-Pb age of trachyandesites is 17.03±0.32Ma, which means that these volcanic rocks were formed in Miocene. The Jiada potassic magma was derived from partial melting of thickened crust. The rocks represent post-collisional tectonic setting and extension environment.
-
蒙阴金伯利岩是大部分侵入到晚太古代变质变形的侵入岩,部分侵入早古生代沉积盖层,蒙阴金伯利岩侵位最高层位为奥陶纪马家沟群土峪组[1-4]。朱源等①对蒙阴地区金伯利岩采用Sm-Nd法测得年龄值在450~480Ma之间;1988年有学者用采自胜利Ⅰ号岩管的钙钛矿进行U-Pb法高灵敏度离子探针分析测定的年龄值为457±7Ma[5];李秋立等[6-7]采用钙钛矿、斜锆石进行二次离子质谱分析,获得年龄数据为478.9~480.6Ma;王瑛等[8]用采自胜利Ⅰ号岩管的金云母、蛇纹石和石榴子石及全岩采用Rb-Sr法确定蒙阴金伯利岩岩浆侵位年龄为560±10Ma。有学者根据常马矿带金伯利岩与辉绿岩脉(全岩KKr法,113Ma)的切割关系认为,金伯利岩体侵入时间应为下白垩世[9];杨斌等[10]根据金伯利岩带受构造控制,认为蒙阴金伯利岩带形成于中生代后期。
对于蒙阴金伯利岩带的形成时代,许多学者提出了不同的意见,通过不同同位素测年方法测得蒙阴金伯利岩侵位年龄最大为15.84亿年,最小为0.77亿年,测年数据差别较大,且与通过地质、控矿特征得出的侵位年龄差别也较大,到底是测年数据的误差所致,还是确有金伯利岩形成于中生代,从而显示金伯利岩是一个多期喷发而出现的年龄差异,现仍没有得出确切结论[11]。
坡里岩带岩浆活动可分为2期,早期为强碳酸盐化斑状富金云母金伯利岩,晚期为斑状金伯利岩(强烈蛇纹石化),岩带以早期岩性为主,晚期岩性较少。K24号岩脉岩性为强碳酸盐化斑状富金云母金伯利岩,为早期岩浆活动的产物,具有较好的代表性。在金伯利岩直接测年数据不能确定其形成时代的情况下,本文以蒙阴地区坡里岩带K24号脉侵入的辉绿岩为测年对象,通过测得辉绿岩侵位时代的年龄数据,获得坡里金伯利岩带的形成时代上限,结合蒙阴盆地白垩纪—古近纪官庄群底砾岩中含有已知岩带供给的金刚石及含铬镁铝榴石,确定其形成时代下限,从而确定坡里金伯利岩的形成时代。
1. 矿区地质概况
矿区大地构造位置处于华北板块(Ⅰ)、鲁西隆起区(Ⅱ)、鲁中隆起(Ⅲ)、马牧池-沂源断隆(Ⅳ)、马牧池凸起(Ⅴ)的中部[12]。
矿区内出露的地层主要为寒武纪馒头组、张夏组及第四系。矿区内构造以断裂为主,主要为北北西向、北东向断裂。坡里金伯利岩带严格受北东向断裂控制,金伯利岩多赋存于北东向断裂中,构成明显的赋矿断裂。矿区内岩浆岩主要出露有新太古代二长花岗岩、中元古代牛岚单元辉绿岩和古生代常马庄单元金伯利岩。
2. 坡里金伯利岩带特征
坡里岩带位于蒙阴县城东北约30km的岱崮镇野店—坡里―金星头一带,由25组岩脉组成,未发现有岩管,总走向北东35°~40°,长约18km,宽约0.6km。岩脉走向基本与岩带一致,多呈断续或侧列式排列(图 1)。岩脉明显受构造控制,主要是北东35°~45°的压扭性断裂,在成矿前为张扭性,成矿时为压扭性。金伯利岩脉规模也随断裂规模大小而变化,当侵位在较大的张扭性断裂时,岩体相应形成较宽而长的岩脉,宽可达1~2m,长数百米;若侵位在张扭性节理时,岩体则为细小岩脉,宽几厘米至十几厘米。岩性主要为斑状富金云母金伯利岩(碳酸盐化)、斑状金伯利岩(蛇纹石化强烈)。坡里金伯利岩带中只有10条岩脉(K2、K4、K5、K8、K10、K11、K12、K13、K17、K23)含有金刚石,且均达不到工业品位,其余岩脉不含金刚石,品位最大的为K23号岩脉,平均品位为4.86mg/m3。
图 1 坡里金伯利岩带分布[13]βμ—牛岚单元辉绿岩?;δμ—中生代闪长玢岩;Ar3—新太古代花岗岩;Q—第四系;∈2—中寒武统;∈1—下寒武统Figure 1. Distribution of kimberlite belt in Poli3. 辉绿岩与金伯利岩的关系
蒙阴地区辉绿岩走向大部分为北东向,与金伯利岩带方向总体一致,金伯利岩与辉绿岩均受牛岚构造体系控制[14],少数为北西向。与金伯利岩有穿切关系的仅为常马矿带红旗1号岩脉切穿了辉绿岩脉[15]、坡里岩带K24号岩脉侵入辉绿岩脉(图 2)。坡里岩带K24号岩脉走向与辉绿岩脉走向完全一致,为350°。新鲜辉绿岩呈暗绿色、灰绿色,风化后呈深褐黄色,辉绿结构,具球状构造。近矿辉绿岩受金伯利岩的烘烤作用发生褪色现象,呈黄褐色,褪色带20~50cm,同时辉石发生重结晶现象,结晶比原岩粗大,呈中粒。从穿切关系看,金伯利岩形成时代晚于其所切穿或侵入的辉绿岩形成时代。本区辉绿岩划分为2期,一期为中生代燕山期辉绿岩,因在其中可见中生代苍山序列花岗斑岩捕虏体,辉绿岩全岩K-Ar法测得的年龄值为100.8~116.4Ma[16];另一期为中元古代牛岚单元辉绿岩。K24号岩脉侵入的为中生代还是中元古代的辉绿岩?若为中生代燕山期辉绿岩,则金伯利岩带形成时代应为燕山期或更晚。
4. 锆石年龄测定结果
重砂样品取自坡里K24号岩脉赋存的辉绿岩脉,该处辉绿岩岩脉与金伯利岩脉有明显的穿切关系。本次采用刻槽法进行取样,样品为半风化辉绿岩。辉绿岩重砂样品在山东省第七地质矿产勘查院采用常规方法进行粉碎,并用重选和电磁选方法进行分选,处理完的样品由河北省区域地质矿产调查所实验室在双目镜下进行挑选。本次在30kg重砂样品中人工选出14粒锆石,分离出的锆石颗粒细小,粒径小于0.2mm,白色,透明-半透明,大部分呈柱状或针状。锆石阴极发光显微照相由中国冶金地质总局山东测试中心的JXA8230电子探针显微分析仪的阴极发光系统(CL)图像分析,阴极发光图像如图 3所示。多数锆石具较宽的振荡结晶环带,晶形较好,颗粒较完整,为典型的岩浆成因锆石[17];8、10、12号锆石不具振荡环带,显示无分带、弱分带、面形分带等特征,暗示锆石经过后期变质作用的改造[18]。
锆石的U-Pb年代学测试工作在中国冶金地质总局山东测试中心电感耦合等离子体质谱仪(LA-ICP-MS)上完成,根据锆石样品的透射光、反射光和阴极发光图像,离子探针测点选择颗粒表面光洁、无裂痕的位置。LA-ICP-MS激光剥蚀系统为美国Conherent公司生产的GeoLasPro 193nm ArF准分子系统,ICP-MS型号为ThermoFisher公司生产的iCAPQ。激光剥蚀采样过程以氦气作为载气,氮气为辅助气。测试条件见表 1。未知样品测试时采样方式为单点剥蚀、跳峰采集;单点采集时间模式为:20s气体空白+55s样品剥蚀+25s冲洗;每7个未知样品点插入1组标样(锆石标样91500/PL/GJ-1和成分标样NIST610)。采用GJ-1标准锆石(TIMS获得谐和年龄为600±5Ma[19])为外标进行基体校正;成分标样采用NIST SRM 610,其中Zr为内标元素。同位素比值采用标准锆石91500进行校正。样品的同位素比值及元素含量计算采用ICPMSDATACAL数据处理程序,普通铅校正采用Anderson[20]提出的ComPbCorr#3.17校正程序,U-Pb谐和图、年龄分布频率图绘制和年龄加权平均值计算采用Isoplot/ Ex_ver3[21]程序完成。分析结果见图 4和表 2。
表 1 测试条件Table 1. Summary of test conditions技术指标 参数 激光电压/kV 23~29 激光能量/J·cm2) 10.2 载气流速(ml·min-1) 745 剥蚀次数/次 500 激光频率/Hz 9 束斑直径/μm 30/20 激光能量透过率/% 75 截取透镜(V) 140 雾化器(l/min) 0.760 U(cps) > 3×105 Th/U ≈1.0 表 2 蒙阴坡里辉绿岩锆石U-Th-Pb测年分析结果Table 2. The results of the zircon U-Th-Pb dating analysis of the diabase in Poli of Mengyin样号 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 谐和度 10-6 10-6 10-6 比值 1 σ 比值 1 σ 比值 1 σ 比值 1 σ 年龄/Ma 1 σ 年龄/Ma 1 σ 年龄/Ma 1 σ 年龄/Ma 1 σ 1 76.079 38.057 83.811 0.226 0.012 16.467 0.728 0.519 0.009 0.579 0.0393 3021 81 2904 42 2696 39 9238 503 92% 2 53.504 28.869 90.2661 0.163 0.004 10.896 0.282 0.484 0.0078 0.179 0.0079 2483 42 2514 24 2547 34 3332 136 98% 3 194.438 194.369 387.736 0.168 0.004 9.221 0.327 0.394 0.0114 0.122 0.0044 2543 37 2360 33 2142 53 2332 79 90% 4 268.238 309.890 531.286 0.163 0.017 8.227 0.408 0.363 0.0089 0.267 0.0429 2487 176 2256 45 1998 42 4791 685 87% 5 204.267 193.460 540.218 0.160 0.003 7.109 0.161 0.320 0.0058 0.108 0.0033 2461 35 2125 20 1791 28 2072 60 82% 6 167.254 183.344 517.917 0.174 0.003 6.323 0.135 0.262 0.0032 0.079 0.0022 2594 32 2022 19 1502 16 1536 41 70% 7 222.876 591.128 653.885 0.147 0.003 5.482 0.125 0.268 0.0034 0.058 0.0016 2314 35 1898 20 1532 17 1118 30 78% 8 442.952 1002.751 960.304 0.344 0.015 10.632 0.396 0.225 0.0047 0.189 0.0070 3670 69 2492 35 1308 25 3496 119 37% 10 74.758 146.663 280.781 0.091 0.002 2.892 0.081 0.231 0.0042 0.067 0.0020 1439 46 1380 21 1337 22 1303 39 96% 11 79.646 79.047 112.431 0.136 0.008 9.196 0.250 0.498 0.0072 0.212 0.0131 2176 98 2358 25 2604 31 3888 219 90% 12 363.162 154.543 279.508 0.377 0.009 32.198 0.927 0.614 0.0099 0.849 0.0286 3820 37 3556 28 3087 39 12420 312 85% 14 237.477 1733.793 2191.428 0.154 0.005 1.780 0.066 0.083 0.0022 0.028 0.0016 2395 52 1038 24 515 13 549 27 32% 9 1.853 68.147 81.843 0.058 0.011 0.131 0.019 0.018 0.0009 0.005 0.0005 522 411 125 18 117 6 106 9 92% 13 7.779 225.29 325.240 0.051 0.003 0.129 0.007 0.019 0.0004 0.007 0.0003 256 142 123 6 121 3 132 6 98% 由表 2可知,8号、14号样品谐和度较低,本次分析不予采用;6号、7号样品谐和度低于80%,207Pb/ 206Pb>207Pb/235U>206Pb/238U,其结果仍可采用。1~7、10~12号样品206Pb/238U年龄大于1000Ma,因此选择207Pb/206Pb年龄值(分析过程中Pb同位素之间分馏小),其样品中Pb丢失,导致在谐和曲线图上偏离谐和曲线。9号、13号样品206Pb/238U年龄小于1000Ma,235U衰变呈207Pb的含量低,207Pb/206Pb值远低于其他样品,因此年龄值选择206Pb/238U年龄值。
由图 4可知,可采用的12件样品锆石年龄值很分散,2件样品位于117~121Ma,1件样品为1439Ma,7件样品位于2176~2594Ma,2件样品大于3000Ma。
基性火成岩作为锆石U-Pb定年已经得到较广泛的研究,但基性岩中的锆石成因仍较复杂。大多数学者认为,辉绿岩岩浆属于贫硅硅酸盐体系,大多数锆石捕获自岩浆上侵过程中的围岩,只有少数锆石是基性岩浆原生结晶的[22]。样品中年龄值大于2600Ma的锆石,是辉绿岩侵位过程中捕虏深部太古宙老变质岩的反映。测定年龄大于1439Ma的锆石为辉绿岩捕虏的元古宙侵入岩中的锆石。117~ 121Ma代表了辉绿岩的侵位年龄,形成于中生代燕山晚期。
5. 讨论
关于蒙阴金伯利岩的侵位时代,目前存在较大的争议,主要为古生代奥陶纪还是中生代白垩纪。就坡里金伯利岩带而言,本次从金伯利岩的直接测年数据及地质事实进行分析。
5.1 金伯利岩直接测年数据
由表 3可以看出,坡里岩带采用全岩K-Ar法获得的测年数据在233.8~379Ma之间,测年最大差值为145.2Ma,差别较大,因金伯利岩是多源混杂岩(包括捕虏晶、斑晶、基质矿物和蚀变矿物),其全岩测年结果是多源矿物年龄的平均值,带有混合特点,不宜代表金伯利岩的侵位年龄[23]。斑状金伯利岩中锆石U-Pb同位素年龄值为1452.8Ma,而坡里金伯利岩侵入并穿插了寒武纪馒头组砂页岩、寒武纪张夏组灰岩,说明金伯利岩的侵位时代应晚于早寒武世,锆石U-Pb同位素年龄值比实际情况至少老1000Ma,故其锆石测年结果与地质事实不符,锆石应来源于捕虏晶,不能代表金伯利岩的侵位年龄。
表 3 测年结果Table 3. Summary of dating results岩性 方法 年龄/Ma 测试单位 测年时间 斑状富金云母金伯利岩 企岩K-Ar 371.8 屮科院地球化学研究所 1968年 斑状富金云母金伯利岩 企岩K-Ar 233.8 成都地质学院 1988年 富金云母金伯利岩 企岩K-Ar 379 地矿部宜昌地研所 1988年 斑状富金云母金伯利岩 Sm-Nd法 479±32 地矿部宜昌地研所 1988年 斑状金伯利岩 锆石U-Pb 1452.8 地矿部宜昌地研所 1989年 5.2 侵入接触关系
坡里岩带K24号岩脉侵入于北西向辉绿岩中。该区辉绿岩大都从寒武纪—奥陶纪沉积盖层下穿过,但不穿入沉积盖层中,因此大多数学者[24-26]推测,该区辉绿岩为中元古代牛岚单元辉绿岩。本次对K24号金伯利岩脉及其侵入的辉绿岩进行野外调查,K24号金伯利岩脉赋存的辉绿岩脉北部自寒武纪馒头组下穿过,馒头组石店段灰岩与辉绿岩接触带上见有明显的大理石化,说明辉绿岩侵位于馒头组石店段以后,而非中元古代牛岚单元辉绿岩。本次辉绿岩锆石U-Pb年龄大于509Ma(馒头组石店段时代)的数据与地质事实不符,辉绿岩与馒头组石店段侵入接触关系从侧面印证了辉绿岩锆石U-Pb测年数据117~ 121Ma为辉绿岩的侵位年龄。而坡里岩带K24号岩脉侵入于中生代燕山晚期辉绿岩,因此K24号岩脉形成时代应为中生代燕山晚期或更晚。
5.3 构造、金伯利岩、闪长玢岩先后顺序
坡里金伯利岩带严格受断裂构造控制,除K24号岩脉外(走向350°),其他金伯利岩脉均呈40°左右展布。在桑树峪村西有一条走向40°~45°的断层,K1金伯利岩脉赋存在该断裂中,且金伯利岩脉未见后期构造对其破坏现象,说明北东向断裂形成时代早于金伯利岩的侵位时代。该断裂在北端切入燕山中期闪长玢岩岩体中,说明该控矿断裂晚于燕山中期的闪长玢岩。构造、金伯利岩、闪长玢岩的先后顺序说明,金伯利岩应侵位于燕山中期之后。
5.4 金刚石砂矿储集层
山东省第七地质矿产勘查院在山东金刚石找矿工作中共发现了6个金刚石含矿层位,寒武纪李官组砾岩、石炭纪本溪组砾岩、晚侏罗世三台组砾岩、白垩纪—古近纪官庄群底砾岩、古近纪—新近纪白彦组砾岩、第四纪中更新世郯城砂矿及东汶河中下游地区含矿层。从砂矿储集层所含金刚石的颜色、晶体形态、粒级等特征与蒙阴已知金刚石原生矿中金刚石对比分析,前3个储集层中的金刚石与已知矿带金刚石差别较大,后3个储集层中的金刚石与已知矿带金刚石具有较高的一致性[27]。同时,在蒙阴盆地官庄群底砾岩中含有大量的已知矿带供给含铬镁铝榴石等金刚石指示矿物,因此蒙阴地区的金伯利岩形成于白垩纪—古近纪官庄群之前。
6. 结论
(1)本文从坡里K24号金伯利岩与辉绿岩侵入关系、辉绿岩锆石U-Pb定年及辉绿岩、灰岩接触蚀变及K1金伯利岩脉与控矿构造、闪长玢岩的先后顺序分析,坡里金伯利岩带形成时代晚于辉绿岩的形成时代(121Ma)。
(2)从金刚石砂矿储集层中的金刚石与已知矿带中金刚石对比分析,以及官庄群底砾岩中含有大量的已知矿带供给含铬镁铝榴石等金刚石指示矿物可知,蒙阴坡里金伯利岩形成于白垩纪—古近纪官庄群之前,坡里金伯利岩带侵位于121~79.1Ma之间,应为中生代燕山晚期。
致谢: 论文写作过程中,中国地质大学(武汉)刘强副教授及朱耀生高级工程师对本文提出了宝贵的意见和建议,野外工作中得到万俊和杨辉师兄的照顾和关心,在此一并表示感谢。 -
图 1 藏南喜马拉雅构造分区图(据参考文献[13]修改)
1—新近纪-第四纪沉积物;2—日喀则弧前盆地;3—冈底斯岩浆弧;4—林子宗群火山岩;5—仲巴地块;6—浅色花岗岩;7—逆断层;8—正断层;9—地名;10—山峰。IYS—雅江缝合带;STDS—藏南拆离系;MCT—主中央断裂;MBT—主边界断裂;THS—特提斯喜马拉雅;LHS—低喜马拉雅;HHM—高喜马拉雅
Figure 1. Himalaya tectonic zoning map of southern Tibet
图 2 研究区地质简图及剖面位置(据参考文献④修改)
1—加达钾质火山岩;2—蛇绿混杂岩;3—冈底斯弧;4—不整合接触;5—断层;6—褶皱;7—剖面位置;8—地名;9—国道;Q—第四纪沉积物;E-N—古近纪-新近纪磨拉石;J-K—侏罗纪-白垩纪碎屑岩;P—二叠纪生物碎屑灰岩;C—石炭纪变质碎屑岩;S-D—志留纪-泥盆纪变质碳酸岩
Figure 2. Simplified geological map of the study area and the location of the section
图 5 加达钾质火山岩TAS图解[17]
F—副长石岩;Pc—苦橄玄武岩;U1—碱玄岩+碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;S1—粗面玄武岩;S2—玄武粗安岩;S3—粗安岩;T—粗面岩+粗面英安岩;B—玄武岩;01—玄安武岩;02—安山岩;03—英安岩;R—流纹岩;Ir-lrvine—分界线,上方为碱性,下方为亚碱性
Figure 5. TAS diagram of Jiada potassic volcanic rocks
图 6 加达钾质火山岩Na2O-K2O图解[18]
Figure 6. K2O-Na2O diagram of Jiada potassic volcanic rocks
图 7 加达钾质火山岩SiO2-K2O图解[19]
Figure 7. SiO2-K2O diagram of Jiada potassic volcanic rocks
图 8 加达钾质火山岩A/CNK-A/NK图解[20]
Figure 8. A/CNK-A/NK diagram of Jiada potassic volcanic rocks
图 9 加达钾质火山岩稀土元素分配模式图[21]
Figure 9. Rare earth element patterns of Jiada potassic volcanic rocks
图 10 加达钾质火山岩微量元素蛛网图[22]
Figure 10. Primitive mantle-normalized trace element spidegrams of Jiada potassic volcanic rocks
图 14 埃达克岩(La/Yb)N-YbN判别图解[43]
Figure 14. (La/Yb)N versus YbN diagram for adakite
图 15 加达钾质火山岩TiO2/Al2O3-Zr/Al2O3(a)和Zr×3-Nb×50-Ce/P2O5(b)构造判别图[44]
distribution diagram for Jiada potassic volcanic rocks WI—板内;CA—陆弧;PA—后碰撞弧;IO—初期洋弧;LO—晚期洋弧
Figure 15. TiO2/Al2O3 versus Zr/Al2O3 (a) and Zr×3-Nb×50-Ce/P2O5(b)
表 1 仲巴地块加达钾质火山岩主量、微量和稀土元素组成
Table 1 Compositions of major, trace and rare earth elements from Jiada potassic volcanic rocks
样品号 P13G1-1 P13G3-1 P13G6-1 P13G9-1 P13G11-1 岩性 粗面安山岩 熔结火山角砾岩 粗面英安岩 英安岩 SiO2 56.27 58.14 68.15 65.30 66.19 TiO2 0.84 0.87 0.75 0.82 0.75 Al2O3 13.45 14.24 13.69 15.71 14.83 Fe2O3 4.31 6.40 3.06 3.93 4.22 FeO 2.53 2.03 0.93 0.47 0.58 MnO 0.17 0.23 0.04 0.02 0.05 MgO 3.49 2.76 1.52 0.87 1.25 CaO 7.65 5.34 3.69 3.86 4.18 Na2O 2.91 3.18 3.34 3.85 3.40 K2O 4.38 4.25 3.20 3.58 3.18 P2O3 0.76 0.67 0.34 0.37 0.36 烧失量 3.00 1.40 0.90 0.72 0.63 合计 99.76 99.51 99.61 99.50 99.62 A/NK 1.84 1.92 2.09 2.11 2.25 A/CNK 0.90 1.12 1.34 1.39 1.38 Rb 185.3 209.0 110.4 134.1 112.9 Sr 970.5 941.4 885.7 1018 931.5 Ba 2084 1765 1502 1415 1301 Th 32.42 35.50 8.59 9.49 9.09 U 6.35 6.50 2.38 2.54 2.02 Nb 11.61 10.71 7.00 7.51 6.92 Ta 0.84 0.79 0.54 0.62 0.58 Zr 212.1 210.9 157.2 174.8 163.5 Hf 6.08 6.20 5.06 5.72 5.35 Ti 5036 5216 4496 4916 4496 V 137.74 125.23 99.04 97.49 75.31 La 30.14 36.80 27.85 33.12 29.12 Ce 70.56 82.83 57.09 63.98 59.70 Pr 9.91 11.61 7.62 8.07 7.67 Nd 44.04 51.15 31.39 31.82 30.90 Sm 9.42 10.78 5.70 5.50 5.46 Eu 1.93 2.15 1.37 1.49 1.30 Gd 6.72 7.37 4.25 3.87 3.96 Tb 0.88 0.92 0.57 0.50 0.51 Dy 4.20 4.36 2.72 2.28 2.49 Ho 0.75 0.73 0.47 0.39 0.42 Er 1.86 1.90 1.22 0.94 1.07 Tm 0.29 0.31 0.19 0.15 0.16 Yb 1.77 1.84 1.17 0.90 0.99 Lu 0.26 0.27 0.16 0.12 0.13 Y 18.98 19.08 12.36 9.923 10.71 ∑REE 201.72 232.10 154.13 163.06 154.58 LR/HR 4.65 5.31 5.67 7.55 6.57 (La/Yb)N 18.22 21.47 25.54 39.27 31.58 δEu 0.71 0.70 0.82 0.94 0.82 Rb/Sr 0.05 0.08 0.03 0.02 0.04 Nb/Ta 0.19 0.22 0.12 0.13 0.12 Zr/Hf 64.28 49.71 174.86 149.17 143.11 注:主量元素含量单位为%; 微量和稀土元素含量为10-6 表 2 加达钾质火山岩(P13U-Pb1-1)LA-ICP-MS锆石U-Th-Pb同位素数据
Table 2 Data of LA-ICP-MS U-Th-Pb dating of zircons from Jiada potassic volcanic rock
测点号 含量/10-6 同位素比值 年龄/Ma Pb U Th 232Th/238U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 1.1 9.23 1198 1637 1.37 0.0025 0.0001 0.0214 0.0023 0.0653 0.0075 16.17 0.36 2.1 7.50 923 1314 1.42 0.0026 0.0001 0.0262 0.0024 0.0781 0.0067 16.45 0.41 3.1 6.32 678 1109 1.64 0.0028 0.0001 0.0286 0.0028 0.0760 0.0080 17.90 0.51 4.1 14.20 1989 2187 1.10 0.0025 0.0001 0.0215 0.0021 0.0654 0.0064 16.08 0.34 5.1 11.27 1522 1550 1.02 0.0027 0.0001 0.0228 0.0024 0.0654 0.0070 17.22 0.39 6.1 7.40 742 1338 1.80 0.0027 0.0001 0.0289 0.0024 0.0789 0.0065 17.21 0.37 7.1 10.59 1180 1748 1.48 0.0026 0.0001 0.0274 0.0023 0.0807 0.0065 16.43 0.37 8.1 20.84 2227 3963 1.78 0.0027 0.0001 0.0187 0.0012 0.0527 0.0035 17.15 0.32 9.1 7.86 955 1363 1.43 0.0027 0.0001 0.0222 0.0024 0.0618 0.0073 17.53 0.38 10.1 10.28 1205 1689 1.40 0.0027 0.0001 0.0262 0.0022 0.0798 0.0076 17.14 0.41 11.1 8.60 1094 1562 1.43 0.0027 0.0001 0.0190 0.0018 0.0539 0.0055 17.35 0.38 12.1 8.56 780 1563 2.01 0.0028 0.0001 0.0304 0.0024 0.0841 0.0069 17.80 0.41 13.1 12.22 1661 1869 1.13 0.0027 0.0001 0.0247 0.0022 0.0669 0.0060 17.65 0.40 14.1 27.00 1174 1662 1.42 0.0091 0.0005 0.0768 0.0056 0.0655 0.0040 58.29 3.50 15.1 5.67 518 1077 2.08 0.0026 0.0001 0.0289 0.0023 0.0859 0.0073 16.86 0.48 16.1 6.41 700 1169 1.67 0.0027 0.0001 0.0322 0.0028 0.0902 0.0081 17.40 0.40 17.1 6.76 751 1249 1.66 0.0026 0.0001 0.0321 0.0026 0.1000 0.0100 16.63 0.46 -
Turner S, Amaud N, Liu J, et al. Post-collision, shoshonitic volca-nism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71. doi: 10.1093/petrology/37.1.45 Turner S, Amaud N, Liu J, et al. Post-collision, shoshonitic volca-nism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71. doi: 10.1093/petrology/37.1.45
Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental colli-sion zones:Melting of thickened lower crust beneanth southern Ti-bet[J]. Geology, 2003, 31:1021-1024. doi: 10.1130/G19796.1 Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental colli-sion zones:Melting of thickened lower crust beneanth southern Ti-bet[J]. Geology, 2003, 31:1021-1024. doi: 10.1130/G19796.1
Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-maatism in S W Tibet:Petrogenesis and implication for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113:190-212. doi: 10.1016/j.lithos.2009.02.004 Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-maatism in S W Tibet:Petrogenesis and implication for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113:190-212. doi: 10.1016/j.lithos.2009.02.004
谭建政.藏北布若错地区新生代火山岩及其成因探讨[J].桂林理工大学学报, 2013, 33(3):383-393. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201303001.htm 陈建林, 许继峰, 康志强, 等.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J].岩石学报, 2006, 22(3):585-595. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603007.htm 胡文洁, 田世洪, 杨竹森, 等.拉萨地块西段中新世查加寺钾质火山岩岩石成因——岩石地球化学、年代学和Sr-Nd同位素约束[J].矿床地质, 2012, 31(4):813-830. http://www.cnki.com.cn/article/cjfdtotal-kcdz201204012.htm Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenzo-ic and esite-dacite association from the Hoh Xil Region, Tibetan Plateau[J]. International Geology Reviews, 2003, 45(11):998-1019. doi: 10.2747/0020-6814.45.11.998 Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenzo-ic and esite-dacite association from the Hoh Xil Region, Tibetan Plateau[J]. International Geology Reviews, 2003, 45(11):998-1019. doi: 10.2747/0020-6814.45.11.998
刘栋, 赵志丹, 朱第成, 等.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J].岩石学报, 2011, 27(7):2045-2059. http://mall.cnki.net/magazine/article/ysxb201107014.htm 李才, 朱志勇, 迟效国.藏北改则地区鱼鳞山组火山岩同位素年代学[J].地质通报, 2002, 21(11):732-734. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200211006.htm 李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学, 2000, 28(2):38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002005.htm 黄勇, 牟世勇, 卢定彪, 等.藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨[J].贵州地质, 2004, 21(3):148-151. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200403002.htm 西藏地矿局.西藏自治区区域地质志[M].北京:地质出版社, 1993. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibet-an orogen[J]. Annual Review of Earth and Planetary Sciences. 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibet-an orogen[J]. Annual Review of Earth and Planetary Sciences. 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
潘桂棠, 李兴振.青藏高原及邻区大地构造单元初步划分[J].地质通报, 2002, 21(11):701-707. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200211001.htm 郭铁鹰.西藏阿里地质[M].武汉:中国地质大学出版社, 1991. 张振利, 专少鹏, 李广栋, 等.藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J].地质通报, 2007, 26(4):410-416. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704005.htm Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classi-fication of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745 Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classi-fication of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745
Turner S, A maud N, Liu J, et al.Post-collision shoshonitic volca-nism on the Tibetan plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Petrolo-gy, 1996, 37(1):45-71. doi: 10.1093/petrology/37.1.45 Turner S, A maud N, Liu J, et al.Post-collision shoshonitic volca-nism on the Tibetan plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Petrolo-gy, 1996, 37(1):45-71. doi: 10.1093/petrology/37.1.45
Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Con-tributions to Mineralogy & Petrology, 1976, 58(1):63-81. http://cn.bing.com/academic/profile?id=2081673195&encoded=0&v=paper_preview&mkt=zh-cn Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Con-tributions to Mineralogy & Petrology, 1976, 58(1):63-81. http://cn.bing.com/academic/profile?id=2081673195&encoded=0&v=paper_preview&mkt=zh-cn
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Boynton, W V. Geochemistry of the rare earth elements:meteorite studies[J]. Rare Earth Element Geochemistry, 1984. http://cn.bing.com/academic/profile?id=2242332711&encoded=0&v=paper_preview&mkt=zh-cn Boynton, W V. Geochemistry of the rare earth elements:meteorite studies[J]. Rare Earth Element Geochemistry, 1984. http://cn.bing.com/academic/profile?id=2242332711&encoded=0&v=paper_preview&mkt=zh-cn
Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubid-ium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica Et Cosmochimica Acta, 1992, 56(3):1001-1012. doi: 10.1016/0016-7037(92)90043-I Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubid-ium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica Et Cosmochimica Acta, 1992, 56(3):1001-1012. doi: 10.1016/0016-7037(92)90043-I
Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zir-cons:Geochronology of the ivrea zone (Southern Alps)[J]. Contri-butions to Mineralogy and Petrology, 1999, 134(4):380-404 doi: 10.1007/s004100050492 Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zir-cons:Geochronology of the ivrea zone (Southern Alps)[J]. Contri-butions to Mineralogy and Petrology, 1999, 134(4):380-404 doi: 10.1007/s004100050492
Wu Y B, Zheng Y F. Genesis of zircon and its constraints on inter-pretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569. doi: 10.1007/BF03184122 Wu Y B, Zheng Y F. Genesis of zircon and its constraints on inter-pretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569. doi: 10.1007/BF03184122
李再会, 郑来林, 李军敏, 等.冈底斯中段林子宗火山岩岩石地球化学特征[J].矿物岩石地球化学通报, 2008, 27(1):20-27. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801003.htm 陈德潜, 陈刚.实用稀土地球化学[M].北京:冶金工业出版社, 1990. Taylor S R, McLennan S M. The continental crust:its composition and evolution[J]. Physics of the Earth and Planetary Interiors, 1986, 42:196-197. doi: 10.1016/0031-9201(86)90093-2 Taylor S R, McLennan S M. The continental crust:its composition and evolution[J]. Physics of the Earth and Planetary Interiors, 1986, 42:196-197. doi: 10.1016/0031-9201(86)90093-2
Sun S S, Mc Donough W F. Chemical and isotopic systematic of oce-anic basalts:Implication for mantle composition and processes[C]//Saunders A D, Norry M J (Magmatism in the Ocean Basins. Geologi-cal Society, London, Special Publication, 1989, 42(1):313-345. Sun S S, Mc Donough W F. Chemical and isotopic systematic of oce-anic basalts:Implication for mantle composition and processes[C]//Saunders A D, Norry M J (Magmatism in the Ocean Basins. Geologi-cal Society, London, Special Publication, 1989, 42(1):313-345.
Zhao Z, Mo X, Zhang S. Post-collisional magmatism in Wuyu ba-sin, central Tibet:evidence for recycling of subducted Tethyan oce-anic crust[J]. Science in China (series D), 2001, 44(supp.):27-34. Zhao Z, Mo X, Zhang S. Post-collisional magmatism in Wuyu ba-sin, central Tibet:evidence for recycling of subducted Tethyan oce-anic crust[J]. Science in China (series D), 2001, 44(supp.):27-34.
Ding L, Paul K, Zhong D L, et al. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. J. Petrol., 2003, 44(10):1833-1865. doi: 10.1093/petrology/egg061 Ding L, Paul K, Zhong D L, et al. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. J. Petrol., 2003, 44(10):1833-1865. doi: 10.1093/petrology/egg061
Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424. doi: 10.1093/petroj/40.9.1399 Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424. doi: 10.1093/petroj/40.9.1399
Rollison H R.杨学明, 杨晓勇, 等, 译.岩石地球化学[M].合肥:中国科技大学出版社, 2000. Ding L, Kapp P, Yue Y H, et al. Postcollisional calc-alka-line la-vas and xenoliths from the southern Qiangtang terrane, central Ti-bet[J]. Earth and Planetary Science Letters, 2007, 254:28-38. doi: 10.1016/j.epsl.2006.11.019 Ding L, Kapp P, Yue Y H, et al. Postcollisional calc-alka-line la-vas and xenoliths from the southern Qiangtang terrane, central Ti-bet[J]. Earth and Planetary Science Letters, 2007, 254:28-38. doi: 10.1016/j.epsl.2006.11.019
Hacker B R, Edwin G, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 2000, 287:2463-2466. doi: 10.1126/science.287.5462.2463 Hacker B R, Edwin G, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 2000, 287:2463-2466. doi: 10.1126/science.287.5462.2463
Wyllie P J. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Geological Society, 1977, 134:215-234. doi: 10.1144/gsjgs.134.2.0215 Wyllie P J. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Geological Society, 1977, 134:215-234. doi: 10.1144/gsjgs.134.2.0215
候增谦, 高永丰, 孟祥金, 等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报, 2004, 20(2):239-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. http://www.cnki.com.cn/article/cjfdtotal-dxqy200606007.htm Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area,northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468. doi: 10.1130/G21522.1 Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468. doi: 10.1130/G21522.1
Defant M J, Drumond M S. Derivation of some modem arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665. doi: 10.1038/347662a0 Defant M J, Drumond M S. Derivation of some modem arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665. doi: 10.1038/347662a0
王焰, 张旗, 钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学, 2000, 35(2):251-256. http://mall.cnki.net/magazine/article/dzkx200002017.htm 张旗, 王焰.埃达克岩的特征及其意义[J].地质通报, 2002, 21(7):431-435. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001258.htm Castillo P R. An overview of adakite petrogenesis[J]. Chinese Bulle-tin, 2006, 51(3):257-268 doi: 10.1007/s11434-006-0257-7 Castillo P R. An overview of adakite petrogenesis[J]. Chinese Bulle-tin, 2006, 51(3):257-268 doi: 10.1007/s11434-006-0257-7
Drummond M S, Defant M J. A model for Trondhjemite-Tonal-ite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503 Drummond M S, Defant M J. A model for Trondhjemite-Tonal-ite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503
Müller D, Groves D I. Direct and indirect associations between po-tassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 5:383-406. http://cn.bing.com/academic/profile?id=1965085626&encoded=0&v=paper_preview&mkt=zh-cn Müller D, Groves D I. Direct and indirect associations between po-tassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 5:383-406. http://cn.bing.com/academic/profile?id=1965085626&encoded=0&v=paper_preview&mkt=zh-cn
Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3 Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3
Harris N B W, Pearce J B, Tindle A G. Geochemicalcharacteristics of collision-zone magmatism[C]//Coward M P, Ries A C. Colli-sion tectonics. Geo. Soc. Spec.Publ., 1986, 19:67-81 Harris N B W, Pearce J B, Tindle A G. Geochemicalcharacteristics of collision-zone magmatism[C]//Coward M P, Ries A C. Colli-sion tectonics. Geo. Soc. Spec.Publ., 1986, 19:67-81
Philip E, Le F P, Peter M, et al. Heat sources for the Teriary meta-morphism and anatexis in the Annapurna-Manaslu region, Central Nepal[J]. Journal of Geophysical Research Solid Earth, 1992, 97:2107-2128. doi: 10.1029/91JB02272 Philip E, Le F P, Peter M, et al. Heat sources for the Teriary meta-morphism and anatexis in the Annapurna-Manaslu region, Central Nepal[J]. Journal of Geophysical Research Solid Earth, 1992, 97:2107-2128. doi: 10.1029/91JB02272
Bellieni G, Cavazzini G, Fioretti A M, et al. The Cima di Vila (Zin-snock) intrusion, eastern alps:Evidence for crustal melting, acidmafic magma mingling and wall-rock fluid effects[J]. Mineralogy and Petrology, 1996, 56(1/2):125-146. Bellieni G, Cavazzini G, Fioretti A M, et al. The Cima di Vila (Zin-snock) intrusion, eastern alps:Evidence for crustal melting, acidmafic magma mingling and wall-rock fluid effects[J]. Mineralogy and Petrology, 1996, 56(1/2):125-146.
Guillot S, Le Fort P. Geochemical constraints on the bimodal ori-gin of High Himalayan leucogranites[J]. Lithos, 1995, 35:221-234. doi: 10.1016/0024-4937(94)00052-4 Guillot S, Le Fort P. Geochemical constraints on the bimodal ori-gin of High Himalayan leucogranites[J]. Lithos, 1995, 35:221-234. doi: 10.1016/0024-4937(94)00052-4
Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 1986, 91:13803-13872. doi: 10.1029/JB091iB14p13803 Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 1986, 91:13803-13872. doi: 10.1029/JB091iB14p13803
Colem M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimumage for east-west extension[J]. Na-ture, 1995, 374:49-52. Colem M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimumage for east-west extension[J]. Na-ture, 1995, 374:49-52.
Hou Z Q, Gao Y F, Qu X M,et al. Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155. doi: 10.1016/S0012-821X(04)00007-X Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155. doi: 10.1016/S0012-821X(04)00007-X
河北省地质调查院区域地质调查所.西藏1: 25万霍尔巴幅区域地质调查报告. 2006. 河北省地质调查院区域地质调查所.西藏1: 25万亚热幅区域地质调查报告. 2004. 成都理工大学地质调查院.西藏1:25万措勤幅区域地质调查报告. 2003. 中国地质大学(武汉).西藏公珠错东地区1:5万四幅区域地质调查报告. 2014. -
期刊类型引用(7)
1. 李积山,张军杰,刘伟,余翠. 豫南史庄一带金伯利岩中石榴子石矿物学特征及其形成条件的约束. 地质通报. 2022(05): 824-835 . 本站查看
2. 张琪,周琦忠,王博,王国强,冯学知,罗跃. 苏北原生金刚石找矿现存问题探讨. 中国地质调查. 2022(05): 79-88 . 百度学术
3. 王玉峰,蔡逸涛,肖丙建,周军,陈军. 郯庐断裂西侧大井头钾镁煌斑岩中金刚石激光拉曼和红外光谱特征研究. 西北地质. 2020(01): 35-48 . 百度学术
4. 周琦忠,张琪,冯学知,王博,邱磊,王国强. 苏北柳泉地区煌斑岩地球化学特征及岩石成因. 华东地质. 2020(03): 246-255 . 百度学术
5. 宋明春,余西顺,宋英昕,肖丙建,周登诗,高存山,冯爱平. 山东省鲁西金刚石的类型、源区及区域壳幔演化背景. 地质学报. 2020(09): 2606-2625 . 百度学术
6. 李积山,唐相伟,郭跃闪,张洋,刘伟. 豫南史庄一带金伯利岩中尖晶石矿物化学特征及其对金刚石找矿的启示. 地质通报. 2020(10): 1639-1649 . 本站查看
7. 周琦忠,张琪,冯学知,王博,邱磊,王国强. 徐州睢宁白露山岩体中的铬铁矿化学成分及金刚石的含矿性研究. 中国地质调查. 2020(06): 35-42 . 百度学术
其他类型引用(0)