• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例

彭自栋, 申俊峰, 曹卫东, 李金春, 刘廷

彭自栋, 申俊峰, 曹卫东, 李金春, 刘廷. 2016: 蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例. 地质通报, 35(5): 822-831.
引用本文: 彭自栋, 申俊峰, 曹卫东, 李金春, 刘廷. 2016: 蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例. 地质通报, 35(5): 822-831.
PENG Zidong, SHEN Junfeng, CAO Weidong, LI Jinchun, LIU Ting. 2016: The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province. Geological Bulletin of China, 35(5): 822-831.
Citation: PENG Zidong, SHEN Junfeng, CAO Weidong, LI Jinchun, LIU Ting. 2016: The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province. Geological Bulletin of China, 35(5): 822-831.

蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例

基金项目: 

国家自然科学基金项目 批准号:41072070

详细信息
    作者简介:

    彭自栋(1988-),男,在读硕士生,从事成因矿物学与找矿矿物学研究。E-mail:pengzidong2007@126.com

    通讯作者:

    申俊峰(1962-),男,教授,博士生导师,从事成因矿物学与找矿矿物学研究。E-mail: :shenjf@cugb.edu.cn

  • 中图分类号: P575.4

The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province

  • 摘要:

    甘肃岗岔金矿位于秦岭造山带之碌曲-成县逆冲推覆构造带的西段北侧,是典型的构造蚀变岩型金矿床,目前储量可达中型。在矿区地质填图的基础上,采用BJKF-1型近红外矿物分析仪对矿区7号勘探线ZK07-4钻孔、8号勘探线ZK08-6钻孔及27号勘探线的ZK27-1、ZK27-3、ZK27-4钻孔岩心进行蚀变特征研究,识别出的主要蚀变矿物为伊利石、云母类、地开石、高岭石等。蚀变矿物分布及含量变化特点表明,与矿化有关的蚀变主要是绢英岩化,其中已探明矿体多位于采用近红外分析技术圈出的绢英岩化带内。此外,伊利石反射光谱特征参数计算结果表明,伊利石结晶度和Al-OH特征吸收峰形态呈现有规律的变化,即含矿段和近矿段伊利石结晶度大(SWIR-IC值5.5~5.7),Al-OH吸收峰尖锐;远矿段和无矿段伊利石结晶度小(SWIR-IC值1.3~1.5),Al-OH吸收峰平缓,显示含矿段伊利石形成温度较高。上述结果表明,矿区内绢英岩化蚀变及伊利石结晶度、Al-OH峰形是有利找矿标志,对找矿具有实际指导意义。

    Abstract:

    Located on the northwestern side of Luqu-Chengxian thrust nappe zone in Qinling orogenic zone, the Gangcha gold deposit is a classical fractural alteration type gold deposit, in which the reserves of metal gold is up to medium scale. On the basis of geological mapping of the mining area, a BJKF-1 near-infrared mineral analyzer was used for drill hole ZK07-4 along No. 7 exploration line, drill hole ZK08-6 along No. 8 exploration line, and drill holes ZK27-1, ZK27-3, ZK27-4 along No. 27 exploration line to study the alteration characteristics. Some major alteration minerals were identified by the analyzer, which included illite, mica, dickite, kaolinite etc. According to the distribution and content changes of alteration minerals, phyllic alteration is related to mineralization, and the proven orebodies are mainly located in the phyllic alteration zone. Besides, a study of illite spectral reflectance parameters shows that illite crystallinity and Al-OH characteristic absorption peak patterns change regularly, that is to say that the ore part's illite crystallinity is large (5.5~5.7), the absorption peak of Al-OH is sharp, the surrounding rock's illite crystallinity is small (1.3~1.5), and the absorption peak of Al-OH is flat, suggesting that the ore-bearing part's illite was formed at high temperature. These results suggest that phyllic alteration, illite crystallinity and Al-OH profile can be taken as the indicator of mineralization during mineral exploration.

  • 甘肃惠天然矿业公司在野外工作过程中给予热心帮助,中国地质大学(北京)董国臣教授对本文进行修改,修连存研究员、薄海军硕士、鲍林硕士在论文撰写过程中给予帮助,在此一并表示感谢。
  • 图  1   西秦岭构造单元简图(据参考文献[11-12]修改)

    1—新近系;2—下三叠统隆务河组;3—下二叠统大关山组;4—下石炭统下加岭组;5—下石炭统巴都组;6—印支期花岗岩类;7—地层界线;8—工作区。Ⅰ—临夏-天水逆冲推覆构造带;Ⅱ—夏河-礼县逆冲推覆构造带;Ⅲ—碌曲-成县逆冲推覆构造带;Ⅳ—迭部-武都逆冲推覆构造带;Ⅴ—郎木寺-南坪逆冲推覆构造带

    Figure  1.   Simplified tectonic unit map of West Qinling

    图  2   岗岔矿区地质图

    1—第四系冲洪积层;2—下二叠统大关山组;3—下三叠统隆务河组;4—印支期岩体;5—金矿脉及编号;6—实测断层;7—勘探线及钻孔

    Figure  2.   Geological map of the Gangcha mining area

    图  3   BJKF-1 识别主要蚀变矿物相对含量

    Figure  3.   The relative content table of major alteration minerals identified by BJKF-1

    图  4   第27 勘探线云母类矿物相对含量等值线图

    Figure  4.   Distribution isograms of mica group along No. 27 exploration line

    图  5   第7 勘探线ZK07-4 蚀变矿物分布

    Figure  5.   Distribution of alteration minerals in drill hole ZK07-4 along No. 7 exploration line

    图  6   第8 勘探线ZK08-6 蚀变矿物分布

    Figure  6.   Distribution of alteration minerals in drill hole ZK08-6 along No. 8 exploration line

    图  7   第27 勘探线伊利石相对含量等值线图

    Figure  7.   Distribution isograms of illite along No. 27 exploration line

    图  8   第27 勘探线地开石相对含量等值线图

    Figure  8.   Distribution isograms of dickite along No. 27 exploration line

    图  9   第27 勘探线高岭石相对含量等值线图

    中文注解

    Figure  9.   Distribution isograms of kaolinite along No. 27 exploration line

    英文注解

    图  10   第27 号勘探线蚀变矿物分带

    1—高岭石-地开石化带;2—绢英岩化带;3—矿体

    Figure  10.   Zoning map of the alteration minerals along No. 27 exploration line

    图  11   伊利石特征峰参数计算图

    Figure  11.   Calculations of illite characteristic peak parameter

    表  1   伊利石Al-OH 特征峰分析取样位置

    Table  1   List of the locations of illite Al-OH characteristic peak analysis

    钻孔ZK08-6ZK07-4ZK07-4ZK27-1ZK27-3ZK27-4
    矿脉2 号脉2 号脉3 号脉5 号脉5 号脉5 号脉
    海拔高度/m3191.63154.92948.929702699.72925.4
    3189.63148.92936.929612697.72921.4
    3183.63142.92931.929362695.72919.4
    3181.63136.92920.929262691.72911.4
    3179.63130.92913.929142689.72899.4
    3177.63124.92909.929122687.72897.4
    3176.63116.92907
    3174.63110.92903
    3172.62975.92902
    3169.62956.92897
    下载: 导出CSV

    表  2   ZK07-4 Au-2号脉样品伊利石SWIR-IC 及A 值计算结果

    Table  2   Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-2

    编号海拔高度/m金品位/10-6SWIR-ICA值(峰高/半峰宽)
    13154.90.051.40365.0746
    23148.90.051.40365.1105
    33142.90.41.40425.1183
    43136.93.35.537011.6783
    53130.90.051.40465.0824
    63124.90.051.40475.1157
    73116.90.35.529611.4945
    83110.90.051.40445.1156
    下载: 导出CSV

    表  3   ZK08-6 Au-2 号脉样品伊利石SWIR-IC 及A 值计算结果

    Table  3   Calculations of illite’s SWIR-IC & A from drill hole ZK08-6 gold vein Au-2

    编号海拔高度/m金品位/10-6SWIR-ICA值(峰高/半峰宽)
    13191.60.051.40405.1107
    23189.60.051.34763.2559
    33183.61.785.561911.5318
    43181.60.051.40385.3288
    53179.60.051.40474.7813
    63177.60.056.85033.1588
    73176.61.305.542011.6148
    83174.60.895.539311.4752
    93172.60.785.540611.4132
    103169.60.051.40415.1209
    下载: 导出CSV

    表  4   ZK07-4 Au-3 号脉样品伊利石 SWIR-IC 及A 值计算结果

    Table  4   Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-3

    编号海拔高度/m金品位/10-6SWIR-ICA值(峰高/半峰宽)
    12948.90.785.544111.5766
    22936.90.865.541411.5482
    32931.90.055.531911.5107
    42920.93.185.539911.4767
    52913.90.051.40415.3590
    62909.90.051.40425.0905
    72948.90.355.546111.5277
    82936.90.555.550911.4524
    92931.90.735.541111.6234
    下载: 导出CSV

    表  5   ZK27-4 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果

    Table  5   Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-5

    编号海拔高度/m金品位/10-6SWIR-ICA值(峰高/半峰宽)
    2925.40.051.40295.1060
    22921.40.051.40374.9854
    32919.40.051.40355.0521
    42911.41.075.552911.3363
    52899.40.051.40425.0272
    62897.40.051.40405.0545
    下载: 导出CSV

    表  6   ZK27-3 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果

    Table  6   Calculations of illite’s SWIR-IC & A from drill hole ZK27-3 gold vein Au-5

    编号海拔高度/m金品位/10-6SWIR-IC均值A值(峰高/半峰宽)均值
    12699.70.051.40481.404785.07465.0746
    2-12697.75.537811.2295
    2-22697.70.055.53544.159311.87959.3424
    2-32697.71.40474.9182
    32695.71.335.54325.543311.540111.540
    4-12691.75.554511.2570
    4-22691.70.051.40494.16895.17749.2743
    4-32691.75.547411.3886
    52689.70.051.40431.40435.06025.0602
    62687.70.051.40481.40485.03945.0394
    下载: 导出CSV

    表  7   ZK27-3 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果

    Table  7   Calculations of illite’s SWIR-IC & A from drill hole ZK27-3 gold vein Au-5

    编号海拔高度/m金品位/10-6SWIR-IC均值A值(峰高/半峰宽)均值
    12699.70.051.40481.404785.07465.0746
    2-12697.75.537811.2295
    2-22697.70.055.53544.159311.87959.3424
    2-32697.71.40474.9182
    32695.71.335.54325.543311.540111.5401
    4-12691.75.554511.2570
    4-22691.70.051.40494.16895.17749.2743
    4-32691.75.547411.3886
    52689.70.051.40431.40435.06025.0602
    62687.70.051.40481.40485.03945.0394
    下载: 导出CSV
  • 浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社, 2000.
    Crowley J K, Williams D E, Hammarstrom J M, et al. Spectral reflectance properties (0.4-2.5 Am) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphidebearing mine wastes[J]. Geochemistry:Exploration Environment Analysis, 2003, 3:219-228.

    Crowley J K, Williams D E, Hammarstrom J M, et al. Spectral reflectance properties (0.4-2.5 Am) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphidebearing mine wastes[J]. Geochemistry:Exploration Environment Analysis, 2003, 3:219-228.

    Denniss A M, Colman T B, Cooper D C, et al. The combined use of PIMA and VULCAN technology for mineral deposit evaluation at the Parys Mountain mine, Anglesey, UK[C]//International Conference on Applied Geologic Remote Sensing, 13th, Vancouver, BC, Canada, Ann Arbor, Environmental Research Institute of Michigan, Proceedings, 1999:25-32.

    Denniss A M, Colman T B, Cooper D C, et al. The combined use of PIMA and VULCAN technology for mineral deposit evaluation at the Parys Mountain mine, Anglesey, UK[C]//International Conference on Applied Geologic Remote Sensing, 13th, Vancouver, BC, Canada, Ann Arbor, Environmental Research Institute of Michigan, Proceedings, 1999:25-32.

    Yang K, Huntinton J F, Browne P R L, et al. An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand[J]. Geothermics, 2000, 29:377-392.

    Yang K, Huntinton J F, Browne P R L, et al. An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand[J]. Geothermics, 2000, 29:377-392.

    Yang K, Browne P R L, Huntington J F, et al. Characterizing the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infra-red spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001, 106:53-65.

    Yang K, Browne P R L, Huntington J F, et al. Characterizing the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infra-red spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001, 106:53-65.

    连长云, 章革, 元春华. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6):621-637.
    连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 2005, 32(3):483-495.
    章革, 连长云, 元春华. PIMA在云南普朗斑岩铜矿矿物识别中的应用[J]. 地学前缘, 2004, 12(40):460.
    章革, 连长云, 王润生. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J]. 地质通报, 2005, 24(5):480-484.
    赵利清, 邓军, 原海涛, 等. 台上金矿床蚀变带短波红外光谱研究[J]. 地质与勘探, 2008, 44(5):58-63.
    曹烨, 李胜荣, 申俊峰, 等. 便携式短波红外光谱矿物测量仪(PIMA)在河南前河金矿热液蚀变研究中的应用[J]. 地质与勘探, 2008, 44(2):82-86.
    孟恺, 申俊峰, 卿敏, 等. 近红外光谱分析在毕力赫金矿预测中的应用[J]. 矿物岩石地球化学通报, 2009, 28(2):148-156.
    张篷, 许虹, 孙雨沁. PIMA在金矿床热液蚀变矿物分带中的应用[J]. 中国矿业, 2011, 20(zk):155-187.
    周俊烈, 随风春, 张世新. 甘肃省合作市德乌鲁岩体及外围金多金属成矿区成矿地质特[J]. 地质与勘探, 2010, 45(5):779-786.
    骆必继, 张宏飞, 肖尊奇. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 2012, 19(3):201-211.
    修连存, 修铁军, 陆帅, 等. 便携式矿物分析仪研制[C]//当代中国近红外光谱技术——全国第一届近红外光谱学术会议论文集. 北京, 2006:193-202.
    高庆柱, 修联存. 近红外矿物分析仪研制与应用[J]. 现代科学仪器, 2009, 1:30-33.
    修连存, 郑志忠, 俞正奎, 等. 近红外分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(1):584-459.
    修连存, 郑志忠, 俞正奎, 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009, 28(6):519-523.
    王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京:地质出版社, 1987.
    Duba D, Williams-Jones A E. The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration:A case study in southwestern Gaspe, Québec[J]. Economic Geology, 1983, 78:1350-1363.

    Duba D, Williams-Jones A E. The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration:A case study in southwestern Gaspe, Québec[J]. Economic Geology, 1983, 78:1350-1363.

    Frey M. Very low-grade metamorphism of clastic sedimentary rocks[C]//Frey M. Low Temperature Metamorphism, Blackie and Son Ltd., Glasgow, 1987:9-58.
    王河锦, 陶晓风, Rahn M. 伊利石结晶度及其在低温变质研究中若干问题的讨论[J]. 地学前缘, 2007, 14(1):151-156.
    Tang Y, Sang L K, Yuan Y M, et al. Illite crystallinity mapping of very low grade metamorphism of Triassic metapelites in the Zoige Area, Western China[J]. Acta Geologica Science, 2012, 86:96-105.

    Tang Y, Sang L K, Yuan Y M, et al. Illite crystallinity mapping of very low grade metamorphism of Triassic metapelites in the Zoige Area, Western China[J]. Acta Geologica Science, 2012, 86:96-105.

    Chang Z S, Hedenquist J W, White N C, et al. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106:1365-1398.

    Chang Z S, Hedenquist J W, White N C, et al. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106:1365-1398.

    徐庆生, 郭建, 刘阳, 等. 近红外光谱分析技术在帕南铜-钼-钨矿区蚀变矿物填图中的应用[J]. 地质与勘探, 2011, 47(10):107-112.
    杨志明, 侯增谦, 杨竹森, 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012, 31(4):699-717.
图(11)  /  表(7)
计量
  • 文章访问数:  1792
  • HTML全文浏览量:  334
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02
  • 修回日期:  2015-12-19
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回