The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province
-
摘要:
甘肃岗岔金矿位于秦岭造山带之碌曲-成县逆冲推覆构造带的西段北侧,是典型的构造蚀变岩型金矿床,目前储量可达中型。在矿区地质填图的基础上,采用BJKF-1型近红外矿物分析仪对矿区7号勘探线ZK07-4钻孔、8号勘探线ZK08-6钻孔及27号勘探线的ZK27-1、ZK27-3、ZK27-4钻孔岩心进行蚀变特征研究,识别出的主要蚀变矿物为伊利石、云母类、地开石、高岭石等。蚀变矿物分布及含量变化特点表明,与矿化有关的蚀变主要是绢英岩化,其中已探明矿体多位于采用近红外分析技术圈出的绢英岩化带内。此外,伊利石反射光谱特征参数计算结果表明,伊利石结晶度和Al-OH特征吸收峰形态呈现有规律的变化,即含矿段和近矿段伊利石结晶度大(SWIR-IC值5.5~5.7),Al-OH吸收峰尖锐;远矿段和无矿段伊利石结晶度小(SWIR-IC值1.3~1.5),Al-OH吸收峰平缓,显示含矿段伊利石形成温度较高。上述结果表明,矿区内绢英岩化蚀变及伊利石结晶度、Al-OH峰形是有利找矿标志,对找矿具有实际指导意义。
Abstract:Located on the northwestern side of Luqu-Chengxian thrust nappe zone in Qinling orogenic zone, the Gangcha gold deposit is a classical fractural alteration type gold deposit, in which the reserves of metal gold is up to medium scale. On the basis of geological mapping of the mining area, a BJKF-1 near-infrared mineral analyzer was used for drill hole ZK07-4 along No. 7 exploration line, drill hole ZK08-6 along No. 8 exploration line, and drill holes ZK27-1, ZK27-3, ZK27-4 along No. 27 exploration line to study the alteration characteristics. Some major alteration minerals were identified by the analyzer, which included illite, mica, dickite, kaolinite etc. According to the distribution and content changes of alteration minerals, phyllic alteration is related to mineralization, and the proven orebodies are mainly located in the phyllic alteration zone. Besides, a study of illite spectral reflectance parameters shows that illite crystallinity and Al-OH characteristic absorption peak patterns change regularly, that is to say that the ore part's illite crystallinity is large (5.5~5.7), the absorption peak of Al-OH is sharp, the surrounding rock's illite crystallinity is small (1.3~1.5), and the absorption peak of Al-OH is flat, suggesting that the ore-bearing part's illite was formed at high temperature. These results suggest that phyllic alteration, illite crystallinity and Al-OH profile can be taken as the indicator of mineralization during mineral exploration.
-
甘肃惠天然矿业公司在野外工作过程中给予热心帮助,中国地质大学(北京)董国臣教授对本文进行修改,修连存研究员、薄海军硕士、鲍林硕士在论文撰写过程中给予帮助,在此一并表示感谢。
-
表 1 伊利石Al-OH 特征峰分析取样位置
Table 1 List of the locations of illite Al-OH characteristic peak analysis
钻孔 ZK08-6 ZK07-4 ZK07-4 ZK27-1 ZK27-3 ZK27-4 矿脉 2 号脉 2 号脉 3 号脉 5 号脉 5 号脉 5 号脉 海拔高度/m 3191.6 3154.9 2948.9 2970 2699.7 2925.4 3189.6 3148.9 2936.9 2961 2697.7 2921.4 3183.6 3142.9 2931.9 2936 2695.7 2919.4 3181.6 3136.9 2920.9 2926 2691.7 2911.4 3179.6 3130.9 2913.9 2914 2689.7 2899.4 3177.6 3124.9 2909.9 2912 2687.7 2897.4 3176.6 3116.9 2907 3174.6 3110.9 2903 3172.6 2975.9 2902 3169.6 2956.9 2897 表 2 ZK07-4 Au-2号脉样品伊利石SWIR-IC 及A 值计算结果
Table 2 Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-2
编号 海拔高度/m 金品位/10-6 SWIR-IC A值(峰高/半峰宽) 1 3154.9 0.05 1.4036 5.0746 2 3148.9 0.05 1.4036 5.1105 3 3142.9 0.4 1.4042 5.1183 4 3136.9 3.3 5.5370 11.6783 5 3130.9 0.05 1.4046 5.0824 6 3124.9 0.05 1.4047 5.1157 7 3116.9 0.3 5.5296 11.4945 8 3110.9 0.05 1.4044 5.1156 表 3 ZK08-6 Au-2 号脉样品伊利石SWIR-IC 及A 值计算结果
Table 3 Calculations of illite’s SWIR-IC & A from drill hole ZK08-6 gold vein Au-2
编号 海拔高度/m 金品位/10-6 SWIR-IC A值(峰高/半峰宽) 1 3191.6 0.05 1.4040 5.1107 2 3189.6 0.05 1.3476 3.2559 3 3183.6 1.78 5.5619 11.5318 4 3181.6 0.05 1.4038 5.3288 5 3179.6 0.05 1.4047 4.7813 6 3177.6 0.05 6.8503 3.1588 7 3176.6 1.30 5.5420 11.6148 8 3174.6 0.89 5.5393 11.4752 9 3172.6 0.78 5.5406 11.4132 10 3169.6 0.05 1.4041 5.1209 表 4 ZK07-4 Au-3 号脉样品伊利石 SWIR-IC 及A 值计算结果
Table 4 Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-3
编号 海拔高度/m 金品位/10-6 SWIR-IC A值(峰高/半峰宽) 1 2948.9 0.78 5.5441 11.5766 2 2936.9 0.86 5.5414 11.5482 3 2931.9 0.05 5.5319 11.5107 4 2920.9 3.18 5.5399 11.4767 5 2913.9 0.05 1.4041 5.3590 6 2909.9 0.05 1.4042 5.0905 7 2948.9 0.35 5.5461 11.5277 8 2936.9 0.55 5.5509 11.4524 9 2931.9 0.73 5.5411 11.6234 表 5 ZK27-4 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果
Table 5 Calculations of illite’s SWIR-IC & A from drill hole ZK07-4 gold vein Au-5
编号 海拔高度/m 金品位/10-6 SWIR-IC A值(峰高/半峰宽) 2925.4 0.05 1.4029 5.1060 2 2921.4 0.05 1.4037 4.9854 3 2919.4 0.05 1.4035 5.0521 4 2911.4 1.07 5.5529 11.3363 5 2899.4 0.05 1.4042 5.0272 6 2897.4 0.05 1.4040 5.0545 表 6 ZK27-3 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果
Table 6 Calculations of illite’s SWIR-IC & A from drill hole ZK27-3 gold vein Au-5
编号 海拔高度/m 金品位/10-6 SWIR-IC 均值 A值(峰高/半峰宽) 均值 1 2699.7 0.05 1.4048 1.40478 5.0746 5.0746 2-1 2697.7 5.5378 11.2295 2-2 2697.7 0.05 5.5354 4.1593 11.8795 9.3424 2-3 2697.7 1.4047 4.9182 3 2695.7 1.33 5.5432 5.5433 11.5401 11.540 4-1 2691.7 5.5545 11.2570 4-2 2691.7 0.05 1.4049 4.1689 5.1774 9.2743 4-3 2691.7 5.5474 11.3886 5 2689.7 0.05 1.4043 1.4043 5.0602 5.0602 6 2687.7 0.05 1.4048 1.4048 5.0394 5.0394 表 7 ZK27-3 Au-5 号脉样品伊利石SWIR-IC 及A 值计算结果
Table 7 Calculations of illite’s SWIR-IC & A from drill hole ZK27-3 gold vein Au-5
编号 海拔高度/m 金品位/10-6 SWIR-IC 均值 A值(峰高/半峰宽) 均值 1 2699.7 0.05 1.4048 1.40478 5.0746 5.0746 2-1 2697.7 5.5378 11.2295 2-2 2697.7 0.05 5.5354 4.1593 11.8795 9.3424 2-3 2697.7 1.4047 4.9182 3 2695.7 1.33 5.5432 5.5433 11.5401 11.5401 4-1 2691.7 5.5545 11.2570 4-2 2691.7 0.05 1.4049 4.1689 5.1774 9.2743 4-3 2691.7 5.5474 11.3886 5 2689.7 0.05 1.4043 1.4043 5.0602 5.0602 6 2687.7 0.05 1.4048 1.4048 5.0394 5.0394 -
浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社, 2000. Crowley J K, Williams D E, Hammarstrom J M, et al. Spectral reflectance properties (0.4-2.5 Am) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphidebearing mine wastes[J]. Geochemistry:Exploration Environment Analysis, 2003, 3:219-228. Crowley J K, Williams D E, Hammarstrom J M, et al. Spectral reflectance properties (0.4-2.5 Am) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphidebearing mine wastes[J]. Geochemistry:Exploration Environment Analysis, 2003, 3:219-228.
Denniss A M, Colman T B, Cooper D C, et al. The combined use of PIMA and VULCAN technology for mineral deposit evaluation at the Parys Mountain mine, Anglesey, UK[C]//International Conference on Applied Geologic Remote Sensing, 13th, Vancouver, BC, Canada, Ann Arbor, Environmental Research Institute of Michigan, Proceedings, 1999:25-32. Denniss A M, Colman T B, Cooper D C, et al. The combined use of PIMA and VULCAN technology for mineral deposit evaluation at the Parys Mountain mine, Anglesey, UK[C]//International Conference on Applied Geologic Remote Sensing, 13th, Vancouver, BC, Canada, Ann Arbor, Environmental Research Institute of Michigan, Proceedings, 1999:25-32.
Yang K, Huntinton J F, Browne P R L, et al. An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand[J]. Geothermics, 2000, 29:377-392. Yang K, Huntinton J F, Browne P R L, et al. An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand[J]. Geothermics, 2000, 29:377-392.
Yang K, Browne P R L, Huntington J F, et al. Characterizing the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infra-red spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001, 106:53-65. Yang K, Browne P R L, Huntington J F, et al. Characterizing the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infra-red spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001, 106:53-65.
连长云, 章革, 元春华. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6):621-637. 连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 2005, 32(3):483-495. 章革, 连长云, 元春华. PIMA在云南普朗斑岩铜矿矿物识别中的应用[J]. 地学前缘, 2004, 12(40):460. 章革, 连长云, 王润生. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J]. 地质通报, 2005, 24(5):480-484. 赵利清, 邓军, 原海涛, 等. 台上金矿床蚀变带短波红外光谱研究[J]. 地质与勘探, 2008, 44(5):58-63. 曹烨, 李胜荣, 申俊峰, 等. 便携式短波红外光谱矿物测量仪(PIMA)在河南前河金矿热液蚀变研究中的应用[J]. 地质与勘探, 2008, 44(2):82-86. 孟恺, 申俊峰, 卿敏, 等. 近红外光谱分析在毕力赫金矿预测中的应用[J]. 矿物岩石地球化学通报, 2009, 28(2):148-156. 张篷, 许虹, 孙雨沁. PIMA在金矿床热液蚀变矿物分带中的应用[J]. 中国矿业, 2011, 20(zk):155-187. 周俊烈, 随风春, 张世新. 甘肃省合作市德乌鲁岩体及外围金多金属成矿区成矿地质特[J]. 地质与勘探, 2010, 45(5):779-786. 骆必继, 张宏飞, 肖尊奇. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 2012, 19(3):201-211. 修连存, 修铁军, 陆帅, 等. 便携式矿物分析仪研制[C]//当代中国近红外光谱技术——全国第一届近红外光谱学术会议论文集. 北京, 2006:193-202. 高庆柱, 修联存. 近红外矿物分析仪研制与应用[J]. 现代科学仪器, 2009, 1:30-33. 修连存, 郑志忠, 俞正奎, 等. 近红外分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(1):584-459. 修连存, 郑志忠, 俞正奎, 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009, 28(6):519-523. 王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京:地质出版社, 1987. Duba D, Williams-Jones A E. The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration:A case study in southwestern Gaspe, Québec[J]. Economic Geology, 1983, 78:1350-1363. Duba D, Williams-Jones A E. The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration:A case study in southwestern Gaspe, Québec[J]. Economic Geology, 1983, 78:1350-1363.
Frey M. Very low-grade metamorphism of clastic sedimentary rocks[C]//Frey M. Low Temperature Metamorphism, Blackie and Son Ltd., Glasgow, 1987:9-58. 王河锦, 陶晓风, Rahn M. 伊利石结晶度及其在低温变质研究中若干问题的讨论[J]. 地学前缘, 2007, 14(1):151-156. Tang Y, Sang L K, Yuan Y M, et al. Illite crystallinity mapping of very low grade metamorphism of Triassic metapelites in the Zoige Area, Western China[J]. Acta Geologica Science, 2012, 86:96-105. Tang Y, Sang L K, Yuan Y M, et al. Illite crystallinity mapping of very low grade metamorphism of Triassic metapelites in the Zoige Area, Western China[J]. Acta Geologica Science, 2012, 86:96-105.
Chang Z S, Hedenquist J W, White N C, et al. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106:1365-1398. Chang Z S, Hedenquist J W, White N C, et al. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106:1365-1398.
徐庆生, 郭建, 刘阳, 等. 近红外光谱分析技术在帕南铜-钼-钨矿区蚀变矿物填图中的应用[J]. 地质与勘探, 2011, 47(10):107-112. 杨志明, 侯增谦, 杨竹森, 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012, 31(4):699-717.