• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

冀东金宝沟花岗斑岩地球化学特征、LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义

李曼, 柴凤梅, 叶会寿, 苏慧敏, 路东宇, 张丽颖, 张海滨

李曼, 柴凤梅, 叶会寿, 苏慧敏, 路东宇, 张丽颖, 张海滨. 2016: 冀东金宝沟花岗斑岩地球化学特征、LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 35(5): 790-806. DOI: 10.12097/gbc.dztb-35-05-790
引用本文: 李曼, 柴凤梅, 叶会寿, 苏慧敏, 路东宇, 张丽颖, 张海滨. 2016: 冀东金宝沟花岗斑岩地球化学特征、LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 35(5): 790-806. DOI: 10.12097/gbc.dztb-35-05-790
LI Man, CHAI Fengmei, YE Huishou, SU Huimin, LU Dongyu, ZHANG Liying, ZHANG Haibin. 2016: LA-ICP-MS zircon U-Pb ages, geochemistry and Hf isotopic composition of Jinbaogou granite porphyry in eastern Hebei and their geological implications. Geological Bulletin of China, 35(5): 790-806. DOI: 10.12097/gbc.dztb-35-05-790
Citation: LI Man, CHAI Fengmei, YE Huishou, SU Huimin, LU Dongyu, ZHANG Liying, ZHANG Haibin. 2016: LA-ICP-MS zircon U-Pb ages, geochemistry and Hf isotopic composition of Jinbaogou granite porphyry in eastern Hebei and their geological implications. Geological Bulletin of China, 35(5): 790-806. DOI: 10.12097/gbc.dztb-35-05-790

冀东金宝沟花岗斑岩地球化学特征、LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义

基金项目: 

中国地质调查局项目 编号:1212011220492

详细信息
    作者简介:

    李曼(1991-),女,在读硕士生,矿物学、岩石学、矿床学专业。E-mail:339842391@qq.com

    通讯作者:

    柴凤梅(1971-),女,博士,教授,从事岩石学、矿床学的教学与研究工作。E-mail:chaifengmei@163.com

  • 中图分类号: P534.52;P597

LA-ICP-MS zircon U-Pb ages, geochemistry and Hf isotopic composition of Jinbaogou granite porphyry in eastern Hebei and their geological implications

  • 摘要:

    金宝沟金矿床是冀东地区近年查明的一个大型斑岩型金矿床,金矿体主要赋存于金宝沟花岗斑岩体及岩体与太古宙迁西群黑云角闪斜长片麻岩接触带中。为查明金宝沟含矿花岗斑岩体的成岩时代、岩石地球化学特征、岩浆源区特征及其与区域上峪耳崖、牛心山等成矿花岗岩体的关系,采用LA-ICP-MS锆石U-Pb定年方法,测得金宝沟2件花岗斑岩的成岩年龄分别为169.9±1.0Ma和170.4±2.0Ma,表明其形成于中侏罗世。金宝沟花岗斑岩属于过铝质钾玄岩系列岩石,ΣREE含量为38.17×10-6~136.51×10-6,岩石富集Rb、K等大离子亲石元素和Ba、Th、U,亏损Ta、Nb、Ti等高场强元素和P、Sr,显示出典型岛弧或活动大陆边缘岩浆岩的特征。锆石Hf同位素研究显示,2件花岗斑岩样品的锆石εHf(t)分别为-12.8~-7.4和-14.4~-8.8,两阶段模式年龄分别为1685~2028Ma和1773~2130Ma,暗示岩浆可能来源于古元古代地壳物质的部分熔融。金宝沟花岗斑岩岩浆形成的温度为788~834℃,岩浆形成压力为0.8~1.6GPa。结合区域地质资料认为,包括金宝沟花岗斑岩在内的冀东中侏罗世花岗岩及同时代的髫髻山组火山岩是在陆内收缩、地壳增厚、古太平洋板块向欧亚大陆俯冲的构造背景下,在挤压应力松弛的间隙环境侵位的。

    Abstract:

    The Jinbaogou gold deposit in eastern Hebei has been recently identified as a large porphyry gold deposit. The orebodies mainly occur in Jinbaogou granite porphyry and the contact zone between the granite porphyry and the biotite-hornblende plagiogneiss of Archean Qian'xi Group. In order to confirm the age, geochemistry,magma source characteristics of Jinbaogou granite porphyry and its relationship with Yu'erya and Niuxinshan granites, the authors conducted LA-ICP-MS zircon U-Pb dating of the two granite porphyries, which yielded ages of 169.9±1.0Ma and 170.4±2.0Ma, suggesting the products of Middle Jurassic. Jinbaogou granite porphyry falls into the peraluminous and shoshonite series, its total values of REE are 38.17×10-6~136.51×10-6; and the rock is characterized by enrichment of large lithophile elements (Rb, K) and Ba, Th, U but depletion of high-field strength elements (Ta, Nb, Ti) and P, Sr, displaying the characteristics of typical island arc or magmatic rocks of active continental margin. Zircon Hf isotope studies show that the εHf(t) values and TDM2 ages of two granite porphyry samples are -12.8~-7.4 and -14.4~-8.8, 1685~2028Ma and 1773~2130Ma, respectively, implying representatives of the Paleoproterozoic crustal reservoir. Integrated with the regional geological materials, it is considered that the Middle Jurassic granites in the eastern Hebei, including the Jinbaogou granite porphyry and volcanics of Tiaojishan, were under the tectonic settingsof crustal thickening and the subduction of ancient Pacific plate towards Eurasian plate, and were emplaced during the relaxation after extrusion stress.

  • 沙麦钨矿床位于内蒙古锡林郭勒盟东乌旗沙麦苏木,大地构造位置为贺根山断裂带以北的兴蒙造山系二连-东乌旗弧盆带[1-2],属大兴安岭成矿省二连-东乌旗铜-钼-铅-锌-钨-锡-铬-铁成矿带奥尤特-朝不愣-阿尔山铁-铜-铅-锌-银-钼多金属矿成矿亚带[3-4]。矿区内主要出露中细粒黑云母花岗岩,仅在矿区南东部零星出露中下侏罗统,大部分被第四系覆盖,据钻孔资料,深部见有泥盆系。晚期脉岩有花岗伟晶岩、花岗细晶岩等。矿区可见NW、NE两组交叉断裂,其中NW向断裂与矿化关系密切,沿断裂一般充填有脉岩、石英脉及云英岩、含钨石英脉等。沙麦钨矿是华北地区最大的脉型黑钨矿床,钨矿化与燕山晚期花岗岩体演化晚期边缘相的中粒似斑状黑云母花岗岩关系密切,矿体受控于矿区内由花岗岩节理发育而来的NW向张扭性断裂。前人对该矿区的地质勘查和科学研究积累了较多资料[5-7],但缺乏精确的成矿年龄资料。为此,本文采用Sm-Nd同位素法对黑钨矿进行了定年,采用TIMS锆石U-Pb法对黑云母花岗岩进行了定年,以精确厘定其成矿年龄。

    沙麦钨矿体为含黑钨矿石英脉,集中分布在东乌旗乌苏达因乌拉一带。共圈定钨矿体550余条,其中具工业品位的矿体有77条,呈平行排列,方向120°,长几米到数百米,宽数米到几厘米。矿体总体分布形态复杂,但具体矿脉形态较简单,呈石英大脉型和云英岩细脉型。规模较大,含矿较好的有3条脉带(图 1),其中1号矿脉带由24个脉体组成,矿脉带控制长约800m,深约400m,宽度30~130m。代表性矿脉为1-1、1-2、1-17、1-24。矿脉具右向斜列的特点。1-1含钨石英大脉分布于矿区中部,矿脉长约645m,平均厚度1.58m,最大倾斜延深约265m。总体走向NW305°,倾向SW,倾角84°~87°。矿体呈脉状产出,总体形态呈舒缓波状弱折线形,自然延伸尖灭,矿脉厚度变化不大,地表厚度变化系数为37%,沿脉坑道厚度变化系数为36%。平均品位2.75%。矿脉局部地段具有分支复合现象,分支细脉一般长30~90m,与主矿体呈锐角相交。石英脉型黑钨矿矿石的主要成分为黑钨矿及石英,伴生有白云母、黄玉、萤石、伊利石等。石英约占90%,呈白色致密块状或粗砾状,偶尔在晶洞内见有完好的晶形(小水晶),石英块体因受构造影响,局部异常破碎,破碎面常有褐黑色铁锰氧化物渲染。黑钨矿分布很不均匀,多数嵌布于石英块体及白云母之间,大小变化很大,最大长达0.5m以上,最小在几毫米以下。黑钨矿呈黑色、棕黑色(钨锰铁矿),半金属光泽、宝石光泽(劈开面),板状晶体,常以纺锤状或厚板状集合体出现。1-17云英岩型大脉基本被钻孔控制圈定,产状与1-1相同。矿脉为扁豆状,长约145m,平均厚11.06m,倾向延深推测为215m,平均品位0.24%。

    图  1  沙麦钨矿床地质简图
    1—第四纪;2—燕山期中细粒黑云母花岗岩;3—含钨矿石英脉;4—闪长玢岩脉;5—地质界线;6—安格尔音乌拉组;7—性质不明断层;8—石英脉;9—取样位置:1为用于测年的黑钨矿石英脉;2为编号DD52TW7的黑云母花岗岩
    Figure  1.  Geological sketch map of the Shamai wolframite deposit

    2号矿脉带总计有34个矿体,控制长约1000m,深约400m,宽度24~55m。代表性矿脉为2-1、2-2。矿脉具左向斜列的特点。2-1含钨石英脉分布于1-1矿脉南西155m,矿脉控制长约475m,平均厚度0.92m,最大倾斜延深240m,平均品位0.90%,矿体走向NW295°,倾向NE,倾角82°~89°。矿体形态与1-1类似,脉体一侧见锐角分支细脉,厚度变化系数为35%。

    3号矿脉带有8个矿体,控制长约600m,深约400m,宽度30~56m。矿体主要以尖灭再现及平行右向斜列排布为特点。代表性矿脉为3-1、3-5。3-1含钨石英大脉分布于1号矿脉北东134m处。矿脉长约290m,平均厚度0.33m,最大倾斜延深123m,WO3含量变化很大,仅局部达到工业要求,1010m标高矿体平均品位3.64%,总体走向NW307°,倾向SW,倾角84°。石英脉除规模较小外,矿体形态也较复杂,整个矿体由3种形态组成:①渐次尖灭形态,矿脉由大到小逐渐尖灭;②尖灭侧现形态,仅在局部发育;③分支尖灭再现形态。3-5云英岩型大脉产状与3-1含钨石英脉相同,脉体形态为扁豆状,长约112m,平均厚度10.76m,延深约175m,平均品位0.17%。脉体为弱云英岩化花岗岩,属云英岩型大脉。

    沙麦钨矿床在剖面上的垂直分带自下而上可概括为:根部细脉带→大脉带→大脉细脉混合带→顶部细脉带。伴随矿脉带垂直结构变化、围岩岩性不同、成矿差异,矿脉带围岩蚀变及其工业价值亦出现垂直变化。

    沙麦钨矿共伴生矿物有20余种,金属矿物以黑钨矿为主,其次为白钨矿、黄铁矿、黄铜矿,另见少量斑铜矿、方铅矿,偶见辉钼矿、毒砂、闪锌矿、孔雀石、蓝铜矿、褐铁矿;非金属矿物以石英、白云母、铁白云母、黑云母为主,钾长石、钠长石、黄玉次之,萤石少量,电气石、伊利石微量。矿石结构主要为伟晶、粗粒、中粗粒、细粒结晶结构,块状、交错脉状及网脉状、浸染状、梳状、晶洞构造。按有用元素组合划分为钨矿石、富钨矿石和贫钨矿石;按矿石构造可分为块状矿石、脉状矿石、网脉状矿石、浸染状矿石、角砾状矿石;按赋矿岩石分为含钨石英脉型矿石、云英岩型矿石、云英岩化花岗岩型矿石等。

    主要围岩蚀变为铁白云母化、云英岩化、角岩化,其次为黄铁矿化、萤石化、电气石化。

    矿石中WO3在各脉带同种及不同类别矿脉中分布不同。各矿带石英脉型矿石的WO3平均含量2.237%;云英岩型WO3平均含量0.325%,各带的石英脉型矿石的WO3含量变化大,云英岩型WO3含量较稳定。矿石中伴生有益组分除Ag及TR2O3外,其他均无工业意义。Ag平均含量为4.08g/t;TR2O3为0.042%。

    黑钨矿Sm-Nd法:自Fryer等[8]1984年首次利用Sm-Nd同位素法对热液矿床进行定年以来,该同位素体系被广泛应用于金属矿床的同位素定年中,如萤石[8-14]、电气石[15-16]、黑钨矿[12-13, 17]、白钨矿[18]、方解石[17, 19]等热液矿物都成为测年的对象。本文黑钨矿的Sm、Nd同位素分析在天津地质矿产研究所同位素实验室完成,Sm、Nd含量采用同位素稀释法,Nd同位素比值是对提纯的样品直接测定。黑钨矿样品的溶解先采用HF+HCLO4法,将样品置于可密封的Teflon溶样器中,加入适量HF+HCLO4,在低温(约70℃)电热板上加热72h。然后打开盖子,缓慢蒸干,直至不冒白烟为止,加入5mol/L HCL溶样,清液吸出,保存备用。对溶样器中未溶解的样品又加入适量5mol/L HCL,密封后在电热板上缓慢溶样24h,冷却,将清液吸出。再加入适量5mol/L HCL将剩余残渣再次缓慢溶样(低温),再次吸出清液。如此反复3~4次,直至样品完全溶解为止。各次吸出的清液合并后,蒸干,再加入适量2mol/L HCL。Sm和Nd的分离采用HDEHP反相比色层法。

    Sm、Nd的同位素稀释法定量测定和Nd同位素比值测定均在MAT-261型热电离质谱仪上进行,所有数据均以146Nd/144Nd=0.7219作为同位素校正因子进行校正。国家一级Sm-Nd法标准岩石样GBS04419的测定结果为Sm=3.02×10-6,Nd=10.07×10-6143Nd/144Nd=0.512739(±5)(2σ);国际标准岩石样BCR-1的测定结果为Sm=6.57×10-6,Nd=28.75×10-6143Nd/144Nd=0.512644(±5)(2σ)。JMCNd标准质谱样的测试结果为143Nd/144Nd=0.511132(±5)(2σ)。全流程标Sm、Nd的本底空白分别为3.0×10-11g和5.4×10-11g。Sm、Nd含量的分析误差优于0.5%,147Sm/144Nd的分析误差(2σ)为±0.5%。本文采用的衰变系数为6.54×10-12a-1,球粒陨石均一储集库147Nd/144Nd和143Nd/144Nd的现代值分别为0.1967和0.512636。

    TIMS颗粒锆石U-Pb样品定年在天津地质矿产研究所同位素实验室完成,由李惠民等进行颗粒锆石U-Pb同位素稀释法测定。其溶解和U、Pb提取程序按照Krogh提出的方法[20],锆石在0.25ml容积的氟塑料容器内溶解,使用205Pb/235U混合稀释剂。将铀和铅用硅胶-磷酸溶液加在同一单铼带灯丝上,在VG354型质谱仪上用高灵敏度Daly检测器进行U-Pb同位素测定。所有U-Pb同位素数据均对质量歧视效应进行校正,误差以2σ表示。其中全流程的Pb空白为0.03~0.05ng,U空白为0.002~0.004ng。数据处理及普通Pb的扣除利用美国地质调查所Ludwig编写的PBDAT(1989.8版)和Isoplot软件[21]进行。野外采集需测年的新鲜黑云母花岗岩样品约20kg,进行人工重砂单矿物分离,分离锆石的样品粉碎至60~80目。挑选出晶体表面无熔蚀痕迹、较为自形的锆石作为测年对象。

    为准确测定沙麦钨矿的形成时代,笔者在沙麦矿区1号含钨石英脉的采坑中采集了含钨石英脉样品(图 1)。此处主体矿石类型为含黑钨矿石英脉(图 2-a)。黑钨矿的分布很不均匀,多数嵌布于石英块体及白云母之间,大小变化很大,多数为0.5~2cm。黑钨矿呈黑色,半金属光泽,板状晶体。从6件样品中分选出的黑钨矿单矿物质纯、无污染,纯度达到99%以上,用于Sm-Nd同位素测年。测定的黑钨矿样品Sm、Nd含量及其同位素组成见表 1。所有黑钨矿样品Sm含量均大于Nd,Sm/Nd值较大,同位素分馏明显,有利于Sm-Nd同位素定年。在147Sm/144Nd-143Nd/144Nd图解(图 3)上,所有样品点均表现出良好的线性关系。利用Isoplot程序,求得黑钨矿的Sm-Nd等时线年龄为137.9±1.7Ma(2σ),MSWD为0.58,(143Nd/144Nd)i为0.512633,对应的εNdT)值为+3.4。考虑到6个黑钨矿样品均采自1号含钨石英脉,属同源、同期热液活动的产物,且未受到后期热液蚀变作用的影响,不同样品根据等时线年龄计算的εNdT)值变化范围也较窄(表 1),因此本次测定的年龄数据可代表黑钨矿的形成时代。黑钨矿的初始εNd值为正值,与中亚造山带内大量花岗岩的εNd值均为正值的特点一致[22-23],表明其来源于亏损地幔源。

    表  1  沙麦钨矿床黑钨矿的Sm、Nd同位素组成
    Table  1.  Sm, Nd isotopic data of wolframite from the Shamai wolframite deposit
    样品号 Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd(2σ)
    DD52TW1 7.0173 3.2594 1.3014 0.513809(7)
    DD52-1TW1 7.8551 3.3064 1.4463 0.513926(5)
    DD52-2TW1 7.2157 3.1797 1.3719 0.513872(4)
    DD52-3TW1 8.1179 4.3708 1.1228 0.513646(9)
    DD52-4TW1 7.2237 2.2399 1.9497 0.514397(7)
    DD52-5TW1 7.0354 2.1391 1.9884 0.514423(5)
    下载: 导出CSV 
    | 显示表格
    图  2  沙麦钨矿床围岩和黑钨矿矿石标本
    a—黑钨矿石英脉;b—似斑状黑云母花岗岩
    Figure  2.  Host rock and wolframite specimens in Shamai wolfram deposit
    图  3  黑钨矿的Sm-Nd等时线年龄
    Figure  3.  Sm-Nd isochron age of the wolframite

    本文研究的样品黑云母花岗岩编号为DD52TW7(图 1)。采集的中粒似斑状黑云母花岗岩样品为沙麦矿区1号矿脉的赋矿围岩(图 2-b),在矿区内分布广泛,与钨矿化关系十分密切。黑云母花岗岩为肉红色,块状构造。野外采集了新鲜的黑云母花岗岩样品20kg,经人工重砂分选出的锆石呈浅黄色、透明,长柱状和短柱状自形晶体。在VG354质谱仪上用U-Pb同位素稀释法进行了年龄测定,选4个试样点为一组,其中浅黄色透明长柱状自形晶体3个,浅黄色透明短柱状自形晶体1个。测定结果表明(表 2图 4),4个试样点均落在U-Pb谐和曲线上,其206Pb/238U表面年龄统计权重平均值为139.1±0.93Ma,代表了黑云母花岗岩的形成时代。

    图  4  黑云母花岗岩TIMS颗粒锆石(DD52TW7)U-Pb年龄
    Figure  4.  U-Pb concordia age of TIMS single zircon grains from biotite
    表  2  黑云母花岗岩的TIMS颗粒锆石U-Pb同位素分析
    Table  2.  TIMS U-Pb isotopic data of single zircon grains from biotite granite
    样品情况 浓度/10-6 样品中普通铅含量/ng 同位素原子比率 表面年龄/Ma
    点号 锆石特征 重量/pg U Pb 206Pb/204Pb 208Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 浅黄色透明细长柱状 45 311 9 0.059 236 0.09956 0.02225
    (22)
    0.1460
    (174)
    0.04760
    (533)
    141.8 138.4 79.5
    2 浅黄色透明长柱状 40 346 10 0.053 210 0.09126 0.02208
    (16)
    0.1501
    (173)
    0.04929
    (537)
    140.8 142.0 161.9
    3 浅黄色透明长柱状 35 219 8 0.057 126 0.12210 0.02191
    (74)
    0.1950
    (792)
    0.06455
    (2421)
    139.7 180.9 760
    4 浅黄色透明短柱状 35 392 14 0.130 103 0.06182 0.02085
    (21)
    0.1416
    (236)
    0.04927
    (778)
    133.0 134.5 160.8
          注:206Pb/204Pb已对实验空白(Pb=0.050ng, U=0.002ng)及稀释剂作了校正。其他比率中的Pb同位素均为放射成因Pb同位素。括号内的数字为2σ绝对误差,例如:0.02225 (22)表示0.02225±0.00022 (2σ)
    下载: 导出CSV 
    | 显示表格

    沙麦钨矿床是华北地区规模最大的中型黑钨矿矿床,初步研究表明,该矿床与燕山晚期花岗岩体演化晚期边缘相的中粒黑云母花岗岩关系密切,矿体受控于矿区内由花岗岩节理发育而来的NW向张扭性断裂,但缺乏同位素年代学证据。本文采用TIMS颗粒锆石U-Pb同位素稀释法,测定的黑云母花岗岩形成时代为139.1±0.93Ma,为燕山晚期。根据黑钨矿石英脉矿石中黑钨矿Sm-Nd法,测定的黑钨矿形成年龄为137.9±1.7Ma,代表了沙麦钨矿床的成矿时代。显然,该矿床的成矿时代稍晚于黑云母花岗岩的形成时代,存在1.2Ma的时差。Cathles等[24]认为,单一的岩浆侵入事件仅可保持热液系统达0.8Ma的时段或更短[25],结合沙麦钨矿床的情况,成矿显然与黑云母花岗岩的侵入有关,一种可能的解释是,黑云母花岗岩侵入体凝结时释放出的晚期含矿热液充填于黑云母花岗岩内的NW向张性断裂破碎带,在断裂破碎带中沉淀富集,形成了现在出露的石英脉型钨矿体,其矿床类型属于岩浆期后高温热液型矿床。

    沙麦钨矿床及其东部朝不楞矽卡岩型铁多金属矿[26]及迪延庆阿木斑岩型钼矿的成矿时代均为燕山晚期,与更东部大兴安岭地区以中生代燕山期为主要成矿期相同,表明位于大兴安岭西坡的该区(距大兴安岭主脊约200km)亦主体受到中生代燕山期构造-岩浆-成矿作用的影响。

    沙麦钨矿床钨矿化与燕山晚期花岗岩体演化晚期边缘相的中粒黑云母花岗岩关系密切,矿体受控于矿区内由花岗岩节理发育而来的NW向张扭性断裂,以黑钨矿石英脉及蚀变云英岩的方式产出,这些特征与中国华南和花岗岩有关的石英脉型钨矿床的地质特征一致[27-29]。花岗质岩浆不仅从深部带来了大量的成矿物质,并在自身的分异演化中往岩体顶部和边部富集[30-32],而且往往扮演了“热能机”的作用,导致成矿热液的对流循环[33-34]。随着花岗质岩浆在地壳浅部侵位与冷凝,在岩体的隆起部位常形成一系列断裂系统,此时体系处于开放状态。沿这些开放的断裂系统,花岗质岩浆自身演化形成的岩浆热液与地表较冷的大气降水发生混合,引起流体体系的温度骤然冷却及物理化学条件的改变,导致钨快速沉淀,形成含钨石英脉型矿床。

    (1)本文利用黑钨矿石英脉矿石中的黑钨矿对沙麦钨矿进行Sm-Nd同位素定年,测得沙麦钨矿床的成矿年龄为137.9±1.7Ma。

    (2)对沙麦钨矿矿区赋矿围岩黑云母花岗岩的TIMS锆石U-Pb同位素定年结果表明,其形成年龄为139.1±0.93Ma。本次测定的黑钨矿年龄和赋矿黑云母花岗岩年龄值表明,该矿床形成于燕山晚期,与区域上大兴安岭西坡主要金属矿床的形成年龄数据吻合。

    致谢: 锆石Hf 同位素分析过程中得到中国地质科学院国土资源部成矿作用与资源评价重点实验室郭春丽副研究员的指导,成文过程中得到中国地质大学(北京)曹晶博士和王赛硕士的帮助与指导,在此一并表示衷心的感谢。
  • 图  1   冀东地区区域地质及金矿床分布简图(据参考文献[2]修改)

    1—中侏罗统;2—古生界;3—中、新元古界;4—太古宙遵化-青龙变质杂岩;5—燕山期花岗岩;6—印支期花岗岩;7—断裂;8、9、10、11—金矿床规模(大、中、小、矿点)

    Figure  1.   Simplified regional geological map showing distribution of gold deposits in eastern Hebei

    图  2   金宝沟金矿矿区地质略图(据参考文献①( ① 高军辉,甘先平,张宝琛,等. 河北省平泉县下营坊矿区金矿详查 报告.2012.)修改)

    1—第四系;2、3、4—长城系高于庄组白云质灰岩、大红峪组砂质白云岩、常州沟组石英砂岩;5—太古宇变质岩;6—花岗斑岩;7—流纹斑岩脉;8—石英二长斑岩脉;9—闪长岩脉;10—石英正长斑岩脉;11—构造角砾岩;12—金矿体;13—地层产状;14—正断层;15—逆断层;16—采样位置

    Figure  2.   Geological sketch map of the Jinbaogou gold deposit

    图版Ⅰ   a.花岗斑岩野外露头;b、c.花岗斑岩手标本;d.花岗斑岩中石英、钾长石斑晶(正交偏光);e、f.花岗斑岩中的石英、钾长石、黑云斑晶(正交偏光)。Qtz—石英;Kfs—钾长石;Bt—黑云母

    图  3   金宝沟花岗斑岩锆石阴极发光图像

    (图中两排数据分别为锆石206Pb/238U 年龄值和相应的εHf (t)值)

    Figure  3.   Zircon CL images of granite porphyry in the Jinbaogou gold deposit

    图  4   金宝沟花岗斑岩锆石U-Pb 谐和图

    Figure  4.   U-Pb concordia diagram of zircon in Jinbaogou granite porphyry

    图  5   金宝沟花岗斑岩的SiO2-K2O 图解[23]

    Figure  5.   SiO2 versus K2O diagram of Jinbaogou granite porphyry

    图  6   金宝沟花岗斑岩A/CNK-A/NK 图解[24]

    Figure  6.   A/CNK versus A/NK diagram of Jinbaogou granite porphyry

    图  7   金宝沟花岗斑岩体稀土元素球粒陨石标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)(标准值据参考文献[22])

    Figure  7.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergram (b) of Jinbaogou granite porphyry

    图  8   金宝沟花岗斑岩锆石Hf 同位素组成εHf (t) 和两阶段模式年龄TDM2柱状图

    Figure  8.   Zircon Hf isotopic compositions and TDM2 of Jinbaogou granite porphyry

    图  9   金宝沟花岗斑岩SiO2-Ce 和Zr-TiO2判别图

    Figure  9.   SiO2 versus Ce and Zr versus TiO2 diagrams of Jinbaogou granite porphyry

    图  10   金宝沟花岗斑岩t-176Hf/177Hf 和tHf (t) 图解[38]

    Figure  10.   176Hf/177Hf versus t and εHf versus t diagrams of Jinbaogou granite porphyry

    图  11   金宝沟花岗斑岩岩浆形成压力判别图解[47]

    Figure  11.   Discrimination diagram of pressure of Jinbaogou granite porphyry

    图  12   金宝沟花岗斑岩构造环境判别图及Rb/30-Hf-3Ta 图解[71]

    VAG—火山弧花岗岩;ORG—洋中脊花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩;

    Figure  12.   Tectonic setting discrimination diagram and Rb/30- Hf-3Ta diagram of Jinbaogou granite porphyry

    表  1   金宝沟花岗斑岩LA-ICP-MS 锆石U-Th-Pb 同位素定年结果

    Table  1   LA-ICP-MS zircon U-Th-Pb dating of Jinbaogou granite porphyry

    点号元素含量/10-6Th/U同位素比值同位素年龄/Ma
    ThPbU206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U207Pb/206Pb
    样品B107-JBG
    111272700.410.0263±0.00010.1827±0.00600.0505±0.0016167±1170±6216±75
    211272340.480.0266±0.00020.1854±0.00630.0506±0.0017169±1173±6222±77
    3158103490.450.0262±0.00010.1798±0.00380.0497±0.001167±1168±4180±49
    4120182200.540.0428±0.0012.3059±0.12670.3906±0.0103270±61214±673873±40
    510962200.500.0267±0.00020.1847±0.00690.0502±0.0018170±1172±6202±85
    6244163610.670.0318±000020.8190±0.02220.1865±0.0041201±1608±162712±36
    712062200.550.0267±0.00020.1858±0.00860.0505±0.0021170±1173±8218±97
    8200103440.580.0271±0.00010.1840±0.00440.0492±0.0012172±1171±4157±56
    925893220.800.0270±0.00020.1831±0.00460.0491±0.0012172±1171±4153±55
    107081750.400.0324±0.00030.9383±0.03940.2098±0.0071206±2672±282904±55
    1195101760.540.0369±0.00051.4153±0.05860.2784±0.0082233±3895±373354±46
    12159422040.750.0844±0.00177.5229±0.21550.6461±0.0086523±112176±624615±19
    1318972700.700.0271±0.00020.1845±0.00570.0494±0.0015172±1172±5168±70
    147871640.470.0317±0.00020.8144±0.02300.1865±0.0046201±1605±72712±41
    1517282930.590.0270±0.00030.3926±0.01760.1054±0.0035172±2336±151721±60
    1613672450.550.0268±0.00020.1864±0.00700.0504±0.0019171±1174±7213±87
    17165692940.560.0918±0.00158.3788±0.21240.6618±0.0082566±92273±584650±18
    1810752020.530.0268±0.00020.1818±0.01030.0491±0.0027171±1170±10154±131
    1911872420.490.0267±0.00020.1829±0.00700497±0.0018170±1171±6180±85
    2012361990.620.0267±0.00020.1838±0.00910.0499±0.0024170±1171±8188±113
    219451750.540.0265±000020.2473±0.00950.0678±0.0025168±1224±9862±76
    2211762310.510.0266±0.00010.1803±0.00660.0491±0.0018169±1168±6154±84
    237241250.570.0266±0.00020.2951±0.01210.0803±0.029169±12263±111206±71
    2416451471.120.0265±0.00030.1857±0.02360.0508±0.0065169±2173±22231±195
    样品B115-JBG
    18241490.550.0263±0.00020.3305±0.01340.0913±0.0035167±1290±121452±73
    213651770.770.0251±0.00020.1725±0.00910.0499±0.0025160±1162±8189±117
    313261940.680.0263±0.00020.3247±0.01240.0894±0.0032168±1286±111413±69
    410461990.520.0265±0.00020.3393±0.01170.0930±0.0030168±1297±101488±60
    511682360.490.0268±0.00020.4237±0.02650.1147±0.0059171±1359±221874±93
    610772190.490.0268±0.00020.3807±0.01060.1029±0.0026171±1328±91676±46
    77041550.450.0258±0.00020.1836±0.01070.0516±0.0029164±1171±10269±128
    814062250.620.0268±0.00020.1832±0.00810.0496±0.0020170±1171±8178±92
    911451930.590.0265±0.00020.1842±0.00400.0505±0.0010168±1172±4217±47
    1012251820.670.0267±0.00020.1824±0.00750.0495±0.0017170±1170±7170±82
    1112562370.530.0261±0.00020.1850±0.01090.0514±0.0024166±2172±10258±105
    1220793270.630.0263±0.00010.1834±0.00520.0506±0.0013167±1171±5225±61
    138041620.490.0270±0.00020.1828±0.00480.0491±0.0011172±1170±5152±54
    14372760.490.0267±0.00020.1829±0.01750.0496±0.0048170±1171±16177±224
    159351790.520.0266±0.00020.1875±0.00620.0511±0.0015169±1174±6245±66
    16368112291.610.0329±0.00030.6904±0.02520.1520±0.0045209±2533±192369±50
    178041500.530.0268±0.00020.1827±0.00600.0495±0.0016170±1170±6170±75
    188541570.540.0264±0.00020.1834±0.00890.0503±0.0024168±1171±8209±110
    196831150.600.0265±0.00020.1821±0.01230.0499±0.0034168±1170±11189±158
    2011351620.700.0274±0.00020.1808±0.00830.0478±0.0022175±1169±889±107
    214831030.460.0276±0.00030.1842±0.01470.0484±0.0029176±2172±14117±140
    2217472250.770.0279±0.00020.1826±0.00620.0474±0.0016177±1170±671±80
    2311081730.640.0316±0.00020.7218±0.01360.1656±0.0028201±1552±102514±28
    2415472080.740.0277±0.00020.1834±0.00720.0480±0.0017176±1171±7100±86
    下载: 导出CSV

    表  2   金宝沟花岗斑岩主量、微量和稀土元素分析结果

    Table  2   Major, trace and rare earth elements analyses of Jinbaogou granite porphyry

    样品号B3-JBGB5-JBGB9-JBGB106-JBGB107-JBGB110-JBGB115-JBG
    SiO270.2576.8874.9272.0867.3370.0465.4
    Al2O314.913.2313.9513.7414.1414.2415.05
    CaO0.870.070.271.060.960.381.33
    Fe2O30.450.150.521.272.691.673.15
    MgO0.470.180.190.450.480.470.97
    MnO0.060.030.050.060.230.050.42
    K2O6.235.654.535.797.075.455.15
    Na2O1.791.374.071.650.022.530.01
    P2O50.070.010.020.070.070.070.16
    TiO20.20.070.10.190.210.210.34
    LOI2.451.080.722.984.493.315.82
    Total97.7498.7299.3499.3497.6998.4297.8
    K2O/Na2O2.292.710.730.010.010.010.03
    K2O+Na2O8.027.028.67.447.097.985.16
    A/CNK1.321.561.151.221.121.091.33
    La33.39.1512.326.923.529.312.8
    Ce60.515.324.852.649.455.837.5
    Pr6.422.122.695.174.785.555.01
    Nd22.406.958.4318.116.71920.5
    Sm4.021.011.342.822.772.873.74
    Eu0.770.190.230.650.70.690.73
    Gd2.510.870.991.972.372.233.06
    Tb0.370.130.150.330.310.310.4
    Dy2.390.780.811.751.711.842.29
    Ho0.440.170.160.360.370.380.48
    Er1.290.520.481.0111.011.28
    Tm0.220.110.090.150.160.160.2
    Yb1.630.730.631.131.241.231.39
    Lu0.250.140.090.190.210.20.23
    Y15.88.138.039.889.4610.314
    Rb153187131140206137193
    Ba97772.8140102212391033255
    Th9.9710.25.777.86.88.644.57
    U4.722.941.351.581.812.642.3
    Ta0.961.21.010.620.570.630.56
    Nb11.614.214.510.39.191012.5
    La33.39.1512.326.923.529.312.8
    Ce60.515.324.852.649.455.837.5
    Sr16311.237.27488.1138106
    Nd22.46.958.4318.116.71920.5
    Zr266197288152167158214
    Hf8.716.728.714.54.654.665.25
    Sm4.021.011.342.822.772.873.74
    ΣREE136.5138.1753.19113.13105.22120.5789.61
    LREE/HREE1410.0614.6415.4213.2815.388.6
    (La/Yb)N14.658.991417.0813.5917.096.61
    δEu0.690.600.580.80.810.80.64
    δCe0.950.821.011.021.0811.15
    注:LOI 为烧失量;Total 为主量元素总和;A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔分数比; 里特曼指数δ=(K2O+Na2O)2/(SiO2-43);球粒陨石、原始地幔数据据参考文献[22];主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV

    表  3   金宝沟花岗斑岩锆石Hf 同位素分析结果

    Table  3   Zircon Hf isotopic composition of Jinbaogou granite porphyry

    点号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf176Hf/177Hf (t)εHf(0)εHf(t)TDM1/MaTDM2/MafLu/Hf
    样品B107-JBG
    11670.0378430.0014010.2824630.0000190.282459-3938.3-7.411271685-0.96
    21690.0393390.0014440.2823420.0000200.282337-3936.6-11.713011956-0.96
    31670.0381440.0013850.2823980.0000190.282394-3937.4-9.712191831-0.96
    51700.0359370.0012830.2824130.0000210.282409-3937.6-9.111951796-0.96
    71700.0272970.0010080.2823470.0000190.282344-3936.6-11.412771940-0.97
    81720.0347160.0012610.2823680.0000200.282364-3936.9-10.612571894-0.96
    91720.0343330.0012730.2823080.0000190.282304-3936.1-12.813422028-0.96
    131720.0298540.0011160.2823440.0000170.282341-3936.6-11.512861946-0.97
    161710.0379940.0014250.2824440.0000190.282439-3938.0-8.011551727-0.96
    181710.0272750.0010360.2823390.0000190.282335-3936.5-11.712911959-0.97
    191700.0332280.0012360.2823490.0000200.282345-3936.7-11.412831938-0.96
    201700.0346340.0012800.2824040.0000180.282400-3937.4-9.412061814-0.96
    221690.0277900.0010550.2823410.0000190.282338-3936.6-11.612881955-0.97
    241690.0457910.0016520.2823720.0000210.282367-3937.0-10.612641889-0.95
    B115-JBG
    71640.0305010.0011630.2823520.0000230.282348-3936.7-11.412771935-0.96
    81700.0344510.0013300.2823370.0000210.282333-3936.5-11.813031964-0.96
    91680.0318580.0012360.2824200.0000240.282416-3937.7-8.911831780-0.96
    101700.0407540.0016320.2822640.0000260.282259-3935.5-14.414172130-0.95
    111660.0378770.0014430.2823420.0000210.282338-3936.6-11.713001957-0.96
    121670.0377390.0014280.2823220.0000200.282318-3936.3-12.413272000-0.96
    131720.0245070.0010040.2823890.0000180.282386-3937.2-9.912191846-0.97
    141700.0284990.0011750.2824220.0000200.282419-3937.7-8.811781773-0.96
    151690.0310580.0012820.2824150.0000190.282411-3937.6-9.011911790-0.96
    171700.0313010.0012750.2823400.0000180.282336-3936.5-11.712971958-0.96
    181680.0214090.0008620.2823180.0000190.282315-3936.2-12.513142006-0.97
    191680.0316100.0012820.2823640.0000210.282360-3936.9-10.912631905-0.96
    201750.0336580.0013840.2823360.0000190.282332-3936.5-11.713061964-0.96
    211760.0258310.0010520.2823680.0000210.282364-3936.9-10.612511891-0.97
    221770.0276720.0011350.2823110.0000190.282307-3936.1-12.513332017-0.97
    241760.0317110.0012920.2823260.0000190.282322-3936.3-12.113181986-0.96
    注:εHf (t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM1=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/ 177Hf)s-(176Lu/177Hf)DM];TDM2=1/λ×ln{1+[(176Hf/177Hf)s,t-(176Hf/177Hf)DM,t]/[(176Lu/177Hf)C-(176Lu/ 177Hf)DM]}+t;(176Lu/177Hf)s和(176Hf/177Hf)s为样品测定值;(176Hf/177Hf)CHUR,0=0.282772,(176Lu/177Hf)CHUR =0.0332,(176Hf/177Hf)DM=0.28325,(176Lu/177Hf)DM=0.0384;λ=1.867×10-11a-1,(176Lu/177Hf)C=0.015,t=锆石结晶年龄
    下载: 导出CSV
  • 赵海玲,邓晋福,徐立权,等.冀东地区中生代花岗岩、深部过程与金矿[J].桂林工学院学报,2001,21(1):20-26.
    李俊健,沈保丰,翟安民,等.冀东地区金矿床类型及其地质特征[J]. 前寒武纪研究进展,2002,25(2):73-79.
    康显桂,陈克荣,陈小明.河北峪耳崖花岗岩地球化学特征与成因[J].中山大学学报(自然科学版), 1996,35(2):137-141.
    Davis G A, Zheng Y, Wang C, et al. Geometry and geochronology of Yanshan Belt tectonics[C]//International Symposium on Geological Science,100thAnniversary Celebration of Peking University:Beijing, Peking University Department of Geology, 1998:275-292.

    Davis G A, Zheng Y, Wang C, et al. Geometry and geochronology of Yanshan Belt tectonics[C]//International Symposium on Geological Science,100thAnniversary Celebration of Peking University:Beijing, Peking University Department of Geology, 1998:275-292.

    Deng J, Mo X, Zhao H, et al. Yanshanian magma-tectonic-metallogenic belt in east China of circum-Pacific domain (I):Igneous rocks and orogenic processes[J]. China University of Geosciences Journal, 1999, 10:21-24.

    Deng J, Mo X, Zhao H, et al. Yanshanian magma-tectonic-metallogenic belt in east China of circum-Pacific domain (I):Igneous rocks and orogenic processes[J]. China University of Geosciences Journal, 1999, 10:21-24.

    罗镇宽,裘有守,关康,等.冀东峪耳崖和牛心山花岗岩SHRIMP锆石U-Pb定年及其意义[J].矿物岩石地球化学通报,2001,20(4):278-285.
    毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    郭少丰,汤中立,罗照华,等. 冀东唐杖子、牛心山花岗岩体SHRIMP锆石U-Pb定年及其地质意义[J].地质通报,2009,28(10):1458-1464.
    陆继龙,石厚礼,赵玉岩,等.冀东罗文峪花岗岩体LA-MC-ICPMS锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版),2012,42(3):179-188.
    肖振,魏峰,刘铁侠,等.河北峪耳崖金矿成矿预测及找矿方向[J]. 地质找矿论丛,2010,25(3):217-222.
    李伍平,路风香,李献华,等.北京西山署髻山组火山岩的地球化学特征与岩浆起源[J].岩石矿物学杂志,2001,20(2):123-133.
    Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, norther China[C]//Hendrix M S, Davis G A. Paleozoic and Mesozoic Tectonic Evolution of Central Asia:From Continental Assembly to Intra-continental Deformation. Boulder, Colorado:Geological Society of America Memoir, 2001:171-197.

    Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, norther China[C]//Hendrix M S, Davis G A. Paleozoic and Mesozoic Tectonic Evolution of Central Asia:From Continental Assembly to Intra-continental Deformation. Boulder, Colorado:Geological Society of America Memoir, 2001:171-197.

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010,51(1/2):537-571.

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010,51(1/2):537-571.

    Ludwig K R. User's manual for Isoplot/Ex, version 3.00:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2003, 4:1-70.

    Ludwig K R. User's manual for Isoplot/Ex, version 3.00:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2003, 4:1-70.

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192(1/2):59-79.

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192(1/2):59-79.

    李怀坤,朱士兴,相振群,等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报,2010,26(7):2131-2140.
    侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004,211(1/2):47-6.

    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004,211(1/2):47-6.

    Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by Laser ablation[J]. Geochimica et Cosmochimica Acta, 2006, 70(19):A158.

    Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by Laser ablation[J]. Geochimica et Cosmochimica Acta, 2006, 70(19):A158.

    Connely J N. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology[J]. Chemical Geology, 2000,172(1):25-39.

    Connely J N. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology[J]. Chemical Geology, 2000,172(1):25-39.

    Wu Y B and Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004,49(15):1554-1569.

    Wu Y B and Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004,49(15):1554-1569.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1989,22:247-263.

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1989,22:247-263.

    Peccerillo R, Taylor S R. Geochemistry of Eocene calakaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Mineral. Petrol, 1976,58:63-81.

    Peccerillo R, Taylor S R. Geochemistry of Eocene calakaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Mineral. Petrol, 1976,58:63-81.

    Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004,131(3/4):231-282.

    Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004,131(3/4):231-282.

    Zheng Y F, Zhang S B, Zhao Z F, et al. Constrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 2007,96:127-150.

    Zheng Y F, Zhang S B, Zhao Z F, et al. Constrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 2007,96:127-150.

    罗镇宽,关康,裘有守,等.冀东金厂峪金矿区钠长岩脉及青山口花岗岩体SHRIMP锆石U-Pb定年及其意义[J].地质找矿论丛, 2001,16(4):226-231.
    董传万,李武显.高钾钙碱性I型花岗岩类的成因[J].世界地质, 1994,13(4):8-11,73.
    Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987,95:407-419

    Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987,95:407-419

    Watson E B,Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295-304.

    Watson E B,Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295-304.

    Miller C F, McDowell S M,Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003,31:529-532.

    Miller C F, McDowell S M,Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003,31:529-532.

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, Southeastern Australia[J]. Journal of Petrology, 1997,38(3):371-391.

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, Southeastern Australia[J]. Journal of Petrology, 1997,38(3):371-391.

    Scherer E E, Cameron K L,Blichert-Toft J. Lu-Hf garnet geochronology:closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000,64:3413-3432.

    Scherer E E, Cameron K L,Blichert-Toft J. Lu-Hf garnet geochronology:closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000,64:3413-3432.

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000,64:133-147

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000,64:133-147

    徐平,吴福元,谢烈文,等.U-Pb同位素定年标准锆石的Hf同位素[J].科学通报,2004,49:1403-1410.
    Belousova E A, Griffin W L,O'Reilly S Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:examples from eastern Australian granitoids[J]. Petrol.,2006,47:329-353.

    Belousova E A, Griffin W L,O'Reilly S Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:examples from eastern Australian granitoids[J]. Petrol.,2006,47:329-353.

    Patchett P J, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity:Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982,78(3):279-297.

    Patchett P J, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity:Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982,78(3):279-297.

    孙立新,任邦方,赵凤清,等.内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征[J].地质通报,2013, Z1:327-340.
    吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,2007,23(2):185-220.
    任荣,韩宝福,张志诚,等.北京昌平地区基底片麻岩和中-新元古代盖层锆石U-Pb年龄和Hf同位素研究及其地质意义[J].岩石学报,2011,27(6):1721-1745.
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295-304.

    Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295-304.

    张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269.
    张旗,金惟俊,李承东,等.再论花岗岩按照Sr-Yb的分类:标志[J]. 岩石学报,2010,26(4):985-1015.
    张旗,金惟俊,李承东,等.三论花岗岩按照Sr-Yb的分类:应用[J]. 岩石学报,2010,26(12):3431-3455.
    殷勇,殷先明.西秦岭北缘与埃达克岩和喜马拉雅型花岗岩有关的斑岩型铜-钼-金成矿作用[J].岩石学报,2009,25(5):1239-1252.
    熊小林,刘星成,朱志敏,等.华北埃达克质岩与克拉通破坏:实验岩石学和地球化学依据[J].科学通报,2011,41(5):654-667.
    李承东,张旗,苗来成,等.冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系[J].岩石学报,2004, 20(2):269-284.
    邓晋福,刘厚祥,赵海玲,等.燕辽地区燕山期火成岩与造山模型[J].现代地质,1996,2:137-148.
    李俊健,沈保丰,翟安民,等.冀东地区金矿地质[M].北京:地质出版社,2004:1-133.
    孙金凤,杨进辉.华北中生代岩浆作用与去克拉通化[J].岩石矿物学杂志,2013,5:577-592.
    吴福元,徐义刚,朱日祥,等.克拉通岩石圈减薄与破坏[J].中国科学(D辑),2014,11:2358-2372.
    邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学(D辑),1997,27(5):390-394.
    葛肖虹.华北板内造山带的形成史[J].地质评论,1989,35(2):254-261.
    邓晋福,赵国春,苏尚国,等.燕山造山带燕山期构造叠加及其大地构造背景[J].大地构造与成矿学,2005,29(2):157-165.
    郑伟,陈懋弘,徐林刚,等.广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义[J].矿床地质,2013,2:259-272.
    毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,2004,11(1):45-55.
    毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329-2338.
    毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008,14:510-526.
    舒良树,周新民,邓平,等.南岭构造带的基本地质特征[J].地质论评,2006,52(2):251-265.
    董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1449-1461.
    杨宗永,何斌.华南侏罗纪构造体制转换:碎屑锆石U-Pb年代学证据[J].大地构造与成矿学,2013,4:580-591.
    Zhang Z M, Liou J G, Coleman R G. The Mesozoic and Cenozoic tectonism in eastern China[C]//Ben-Avraham Z. The evolution of the Pacific Ocean:Oxford Monographs on Geology and Geophysics No. 8:New York, Oxford University Press, 1989:124-139.

    Zhang Z M, Liou J G, Coleman R G. The Mesozoic and Cenozoic tectonism in eastern China[C]//Ben-Avraham Z. The evolution of the Pacific Ocean:Oxford Monographs on Geology and Geophysics No. 8:New York, Oxford University Press, 1989:124-139.

    张旗.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志,2013,1:113-128.
    Xu Z. Mesozoic volcanism and volcanogenic iron-ore deposits in eastern China[J]. Geological Society of America Special Paper, 1990,237:46.

    Xu Z. Mesozoic volcanism and volcanogenic iron-ore deposits in eastern China[J]. Geological Society of America Special Paper, 1990,237:46.

    孙卫东,凌明星,汪方跃,等.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报,2008,3:218-225.
    肖庆辉,刘勇,冯艳芳,等.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论[J].中国地质,2010,4:1092-1101.
    郭锋.俯冲陆壳和洋壳对华北克拉通中生代岩石圈地幔改造的氧同位素记录[J].岩石矿物学杂志,2013,5:593-603.
    张宏,王明新,柳小明.LA-ICP-MS测年对辽西-冀北地区髫髻山组火山岩上限年龄的限定[J].科学通报,2008,15:1815-1824.
    陈义贤,陈文寄,等.辽西及邻区中生代火山岩-年代学地球化学和构造背景[M].北京:地震出版社,1997:1-279.
    Sylvester P J. Post-collision strongly peraluminous granites[J]. Lithos, 1998,45:29-44.

    Sylvester P J. Post-collision strongly peraluminous granites[J]. Lithos, 1998,45:29-44.

图(13)  /  表(3)
计量
  • 文章访问数:  1901
  • HTML全文浏览量:  258
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-16
  • 修回日期:  2016-02-24
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-04-30

目录

/

返回文章
返回