The ages and petrogenesis of granite porphyry in Tarqi area, Inner Mongolia
-
摘要:
通过对内蒙古塔尔气地区花岗斑岩的野外地质特征、LA-ICP-MS锆石U-Pb年龄及地球化学特征的研究,讨论了该地区花岗斑岩的形成时代和成因机制。锆石U-Pb年龄及地球化学结果表明,塔尔气地区花岗斑岩形成于早白垩世136.5~126.4Ma;花岗斑岩具有高硅、富碱,弱过铝质(A/CNK=1.0~1.29),分异程度高的特点,属于高钾钙碱性系列,相对富集轻稀土元素和部分大离子亲石元素(Rb、Th、U、K),亏损高场强元素(Nb、Ta、Ti、P)。锆石Hf同位素组成表明,花岗斑岩具有较高的εHf(t)值(+7.19~+7.29),二阶段模式年龄为851~569Ma,暗示其可能起源于新元古代-早古生代期间从亏损地幔增生的地壳物质的部分熔融。结合区域地质资料分析,塔尔气花岗斑岩与研究区白音高老组火山岩可能为同期岩浆活动的产物,形成于伸展的构造环境。
-
关键词:
- 塔尔气 /
- 花岗斑岩 /
- LA-ICP-MS锆石U-Pb年龄 /
- 早白垩世
Abstract:Based on geological characteristics, zircon U-Pb ages and geochemical features, the authors studied the ages and petrogenesis of granite porphyry in Tarqi area. The zircon U-Pb ages (136.5~126.4Ma) indicate that the granite porphyry was formed in Early Cretaceous. An analysis of geochemical data shows that the granite porphyry is characterized by high silica, rich alkali, weakly peraluminous attribute (A/CNK=1.0~1.29) and high differential degree, suggesting high-kcalc-alkaline series. It is also enriched in LILE (Rb, Th, U, K) and LREE, and depleted in HFSE (Nb, Ta, Ti, P). The zircon Hf isotope data indicate that the granite porphyry has εHf(t) values of +7.19~+7.29, and the model ages (TDM2) of two stages are from 851Ma to 569Ma, which implies that the granite porphyry might be derived from the partial melting of the crustal substance from depleted mantle during Neoproterozoic-Early Palaeozoic. According to the regional geological data, Taerqi granite porphyry and Baiyingaolao volcanic rocks in the study area may be the products of contemporaneous magmatism, and were probably formed in an extensional environment.
-
Keywords:
- Taerqi /
- granite porphyry /
- LA-ICP-MS zircon U-Pb age /
- Early Cretaceous
-
研究区位于兴蒙造山带东段,由北向南依次为额尔古纳地块、兴安地块和松嫩地块,经历了古生代多块体拼合作用过程和中生代陆内演化过程的叠加,地壳结构、构造相对复杂[1-2]。大兴安岭北段发育大面积的晚中生代火山岩,由于研究区内火山岩研究对象不同,众多学者对火山岩期次的划分与厘定存在分歧。关于火山岩形成的构造环境问题存在争议,先后有地幔柱成因[3-4]、板内成因[5]、蒙古-鄂霍茨克洋俯冲成因[6-8]、古太平洋俯冲成因[9-10]等多种观点。另一方面,大兴安岭北段的中西部地区目前有较多的年代学资料,但东部地区火山岩年代学及火山岩构造背景的研究较滞后。因此,本文对研究区不同期次火山岩开展详细的研究工作,进一步划分火山岩浆活动期次,讨论火山岩的成因及形成的构造环境,为晚中生代火山岩的构造环境提供依据。
1. 地质背景及岩石学特征
龙江盆地位于黑龙江省龙江县境内,内蒙古自治区东部,所在区域为古生代陆壳侧向增生区,亦为兴安地块和松嫩地块的缝合区(图 1-a)。在地质特征上,龙江盆地是由多个发育在海西褶皱基底上,以早白垩世为主体的一群中小规模的断陷湖盆组合而成,形成条件相近的断陷,具有各自独立的沉积体系。
图 1 大兴安岭北部构造单元划分[11](a)和龙江盆地地质简图(b)Figure 1. Tectonic setting map of the northern Da Hinggan Mountains (a) and simplified geological map of Longjiang basin(b)区内出露的地质体主要包括晚古生代大石寨组、花岗岩体及晚中生代火山岩。其中,大石寨组为一套经过低级变质作用改造的火山-沉积岩系[12],其形成环境为浅海并伴随较强烈的火山活动;花岗岩主要由花岗闪长岩和二长花岗岩组成,为一套高钾钙碱性系列岩石。盆地内出露的晚中生代地层自下而上为下白垩统龙江组、光华组和甘河组,是大兴安岭北段火山盆地的基本类型。龙江组为偏中性火山岩,以安山岩、安山质凝灰岩、火山角砾岩、凝灰质细-粉砂岩夹少量英安岩、英安质凝灰岩为主,与下伏二叠系和侵入岩呈角度不整合接触。光华组为偏酸性火山岩,以流纹岩、碱流岩、流纹质凝灰岩、流纹质沉凝灰岩夹薄层凝灰质细-粉砂岩为主,灰白色粘土岩及沉凝灰岩中富产叶肢介、介形虫、淡水双壳类、腹足类、昆虫及植物化石,属于中期热河生物群。甘河组为偏中基性火山岩,以玄武岩、橄榄玄武岩和玄武安山岩为主,厚度大于82.6m,喷发覆盖于下伏地层之上。
本文涉及的光华组在光华村—兴义村一带分布,出露面积约89km2,碱流岩出露于大景星山附近(图 1-b),沿新兴村-大景星山-东临山进行地层剖面实测和采样,详细考察了龙江盆地碱流岩的野外产状、空间分布特征和野外地质关系。大景星山呈椭圆形,长轴方向为北北东向,与区域构造(断裂)走向一致,地貌表现为中央山峰高耸,周围是阶梯状下降的多轮环状山。碱流岩以大景星山为中心向四周溢流(图 2-a),覆盖于下部流纹质-英安质火山碎屑岩之上,流面发育(图 2-b),岩性稳定。本次研究的样品(PM412TW25)采自大景星山碱流岩中心部位,即北纬47°09′28″、东经122°56′27″。
碱流岩呈灰白色-灰紫色,斑状结构,基质具有球粒-显微嵌晶结构。斑晶成分为透长石(10%~ 15%),半自形板状,局部聚斑状,发育横向裂纹(图 2-c),卡氏双晶,粒径0.4~3.0mm。基质以长英质放射状、扇形球粒为主,球粒之间可见少量他形粒状石英中嵌有自形长柱状正长石微晶。正长石呈半自形板状,卡氏双晶,近平行消光,表面较洁净,可见流状定向(图 2-d),粒径均小于0.1mm。
2. 锆石U-Pb分析方法及结果
样品破碎和锆石分选由河北省廊坊市科大矿物分选技术股份有限公司完成。锆石阴极发光(CL)照相在中国地质科学院北京离子探针中心完成。锆石激光剥蚀等离子体质谱(LA-ICP-MS)U-Pb同位素分析在中国地质科学院国家地质实验测试中心完成。试验中采用高纯氦作为剥蚀物质载气,用标准参考物质NIST SRM610进行仪器最佳化,样品测定时用哈佛大学标准锆石91500作为外部校正。本次实验采用的激光斑束直径为30μm,激光脉冲为10Hz,能量密度为16~ 17 J/cm2。普通铅校正采用Anderson的方法,详细实验测试过程可参见文献[13]。锆石U-Pb同位素分析结果见表 1,代表性的锆石阴极发光图像见图 3,年龄加权平均值计算和U-Pb谐和图(图 4)由3.0版本的Isoplot程序完成[14]。
表 1 大景星山碱流岩(PM412TW25)LA-ICP-MS锆石U-Th-Pb同位素测试结果Table 1. LA-ICP-MS data of zircons from the pantellerite (PM412TW25) in Dajingxing Mountain测点号 组成/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 38 56 0.68 0.0500 0.0021 0.1376 0.0062 0.0198 0.0006 195.9 95 130.9 5.6 126.5 3.7 2 40 63 0.64 0.0508 0.0023 0.1352 0.0067 0.0200 0.0006 229.7 103 128.8 6.0 127.5 3.9 5 32 53 0.62 0.0499 0.0035 0.1300 0.0096 0.0198 0.0007 188.1 154 124.1 8.6 126.2 4.3 6 46 74 0.63 0.0484 0.0018 0.1247 0.0051 0.0184 0.0005 119.2 87 119.3 4.6 117.5 3.4 8 180 127 1.41 0.0549 0.0020 0.1497 0.0059 0.0195 0.0006 408.4 79 141.6 5.2 124.6 3.6 9 38 63 0.61 0.0510 0.0036 0.1326 0.0099 0.0196 0.0007 240.2 155 126.4 8.9 125.2 4.3 10 29 61 0.48 0.0491 0.0025 0.1339 0.0072 0.0196 0.0006 150.9 114 127.6 6.4 125.1 3.8 12 47 73 0.63 0.0495 0.0022 0.1305 0.0062 0.0188 0.0006 171.9 101 124.5 5.6 120.1 3.6 13 35 63 0.55 0.0507 0.0030 0.1259 0.0078 0.0187 0.0006 227.9 130 120.4 7.1 119.6 3.8 14 31 57 0.54 0.0491 0.0028 0.1273 0.0076 0.0191 0.0006 154.4 128 121.6 6.9 121.8 3.8 16 105 103 1.02 0.0534 0.0020 0.1389 0.0056 0.0189 0.0006 344.7 83 132 5.0 120.4 3.5 17 28 50 0.56 0.0473 0.0025 0.1257 0.0069 0.0190 0.0006 61.2 120 120.2 6.2 121.6 3.7 18 248 174 1.43 0.0496 0.0017 0.1340 0.0050 0.0195 0.0006 175.5 79 127.6 4.5 124.4 3.6 19 32 50 0.65 0.0496 0.0021 0.1365 0.0060 0.0198 0.0006 178.3 94 129.9 5.4 126.5 3.7 22 33 62 0.53 0.0482 0.0022 0.1306 0.0062 0.0188 0.0006 111 102 124.6 5.5 120.1 3.5 23 20 42 0.47 0.0475 0.0050 0.1239 0.0138 0.0182 0.0007 73.1 235 118.6 12 116.3 4.5 25 26 45 0.58 0.0548 0.0037 0.1427 0.0102 0.0196 0.0007 403 144 135.4 9.0 125.4 4.2 28 38 68 0.56 0.0472 0.0025 0.1264 0.0071 0.0188 0.0006 56.3 123 120.9 6.4 119.8 3.6 29 81 85 0.95 0.0505 0.0019 0.1312 0.0054 0.0188 0.0006 217.6 87 125.2 4.8 120.1 3.5 锆石阴极发光图像显示,碱流岩样品中大多数锆石晶体多呈短柱状,部分长柱状,晶轴比为1:1~1:3,柱面和锥面较发育,韵律环带不很发育,Th/U值介于0.48~1.43之间,反映岩浆成因锆石的特点。对80粒锆石中的30颗锆石进行了测试分析,其中11个测点由于Pb丢失而偏离谐和曲线,无年龄意义。其余数据分布在谐和线上及其附近,206Pb/238U年龄加权平均值为122.4±1.7Ma(n= 19,MSWD=0.77)。该年龄与光华村光华组火山-沉积碎屑岩中的双壳类、叶肢介、三尾拟蜉蝣等热河生物群化石组合所属时代早白垩世相符合,代表火山岩的喷发年龄。
3. 岩石地球化学特征
本文对7件火山岩样品进行了主量、微量元素测试,结果见表 2。样品测试在国土资源部东北矿产资源监督检测中心完成,整个过程均在无污染设备中进行。主量元素采用X射线荧光光谱法(XRF),微量元素分析采用电感耦合等离子质谱法(ICP-MS)完成。主量元素分析精度和准确度优于5%,微量元素分析精度和准确度优于10%。
表 2 大景星山碱流岩主量、微量及稀土元素分析结果Table 2. Major, trace and rare earth elements compositions of the pantellerite in Dajingxing Mountain样品号 SiO2 Al2O3 Fe2O3 FeO TiO2 K2O Na2O CaO MgO MnO P2O5 烧失量 总量 AR DI PM412YQ7 73.32 14.04 0.63 0.54 0.2 5 4.84 0.15 0.23 0.003 0.03 0.24 99.23 5.51 96.75 PM412YQ9 73.29 13.82 0.16 0.54 0.2 5.25 4.65 0.52 0.49 0.01 0.03 0.29 99.23 5.45 95.65 PM412YQ10-1 73.85 13.41 0.74 0.54 0.2 5.3 3.95 0.29 0.73 0.034 0.03 0.17 99.24 5.15 94.42 PM412YQ10-2 72.94 13.35 1.28 0.4 0.19 5.44 4.21 0.21 0.54 0.044 0.05 0.43 99.1 5.93 95.39 PM412YQ23 74.16 12.76 1.18 0.56 0.17 4.72 4.64 0.28 0.63 0.01 0.04 0.33 99.47 6.09 95.71 PM412YQ25 75.64 12.96 0.3 0.4 0.16 4.54 4.54 0.13 0.18 0.004 0.04 0.19 99.09 5.53 97.54 PM412YQ27 73.14 13.85 0.58 0.45 0.2 4.92 4.9 0.21 0.54 0.004 0.04 0.29 99.14 5.64 96.21 A型花岗岩 73.81 12.4 1.24 1.58 0.26 4.65 4.07 0.75 0.2 0.06 0.04 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y PM412YQ7 74.0 151 19.8 75.1 13.7 0.51 10.14 1.71 9.60 1.82 4.64 0.75 5.10 0.74 47.4 PM412YQ9 71.1 163 19.4 74.9 14.2 0.44 10.78 1.77 10.05 1.92 4.90 0.79 5.34 0.78 59.5 PM412YQ10-1 75.3 166 20.2 80.0 15.1 0.51 10.95 1.77 9.35 1.73 4.26 0.69 4.66 0.67 35.3 PM412YQ10-2 60.6 120 15.8 61.6 11.6 0.57 8.62 1.44 8.50 1.64 4.19 0.69 4.60 0.67 48.1 PM412YQ23 72.2 161 18.9 71.8 13.3 0.65 9.94 1.66 9.51 1.83 4.80 0.78 5.20 0.76 46.7 PM412YQ25 57.9 162 16.5 60.7 11.9 0.51 9.02 1.54 9.21 1.80 4.57 0.76 5.17 0.75 45.2 PM412YQ27 74.8 152 20.2 76.0 14.2 0.42 10.33 1.76 9.99 1.89 4.86 0.80 5.36 0.79 46.6 样品号 Sr Rb Ba Th Ta Nb Zr Hf Sc Cr Ni Cs ΣREE δEu (La/Yb)N PM412YQ7 13.2 141 25.7 6.25 1.09 37.0 765 13.9 6.66 11.4 2.36 0.83 369 0.13 9.79 PM412YQ9 14.2 146 33.2 6.16 0.54 35.2 776 14.3 6.57 14.2 1.95 1.12 379 0.11 8.97 PM412YQ10-1 13.1 150 26.5 6.51 0.77 36.0 708 13.6 5.14 16.6 4.32 1.57 391 0.12 10.91 PM412YQ10-2 11.5 151 40.3 6.87 0.86 37.9 724 10.4 6.02 8.7 3.60 1.24 301 0.17 8.89 PM412YQ23 13.2 144 42.7 6.41 0.84 39.9 627 12.2 4.92 17.2 5.59 0.69 372 0.16 9.35 PM412YQ25 11.6 137 24.0 6.68 1.29 38.1 667 11.7 4.26 20.5 2.67 0.35 343 0.15 7.55 PM412YQ27 12.8 140 25.6 6.59 1.24 36.6 759 14.5 6.53 15.4 2.23 0.77 374 0.10 9.40 注:主量元素含量单位为%,微量和稀土元素为10-6;A型花岗岩数据据参考文献[15] 3.1 主量元素
大景星山碱流岩具有以下特征:①富Si(SiO2= 72.94%~75.64%),贫Mg(MgO=0.18%~0.73%)和Ca(CaO=0.13%~0.52%), 在TAS图解(图 5-a)中,所有样品点均落在流纹岩区,分异指数高(DI=94.42~ 97.54), 表现出高分异演化的特征。②碱含量高,全碱(K2O+Na2O)=9.08%~9.89%,碱度指数(AR)为5.15~ 6.09,且相对富钾,K2O/Na2O值为1.00~1.34,在Nb/Y-Zr/TiO2分类图解(图 5-b)中全部落在碱流岩区域。③准铝质-弱过铝质,A/CNK值变化范围为0.96~1.05。④低TiO2(0.16%~0.2%)和P2O5(0.03%~ 0.05%),显示岩浆经历了钛铁矿、磷灰石等矿物的分离结晶作用。上述主量元素特征与A型花岗岩平均值一致[15]。
3.2 微量元素
大景星山碱流岩稀土元素总量(ΣREE)在301 × 10-6~391 × 10-6范围内, 轻、重稀土元素比值(LREE/HREE)在8.91~10.47之间,(La/Yb)N=7.55~ 10.91,轻、重稀土元素分馏程度中等,轻稀土元素分馏较明显,(La/Sm)N值为3.06~3.49,重稀土元素分馏不显著。岩石的球粒陨石标准化稀土元素配分曲线呈明显的右倾“V”字形特征(图 6-a),并显示较明显的负Eu异常(δEu=0.1~0.17)。微量元素蛛网图(图 6-b)显示,大景星山碱流岩富集Rb、Th、U、Zr和轻稀土元素,如La、Ce、Nd和Sm,明显亏损Ba、Sr、P、Ti等元素。Nb和Ta具有中等-弱亏损。在Whalen等[15]提出的分类图(图 7)上,该区流纹岩与高度分异的I、S型花岗岩明显不同,所有样品点都落在A型花岗岩区。在花岗岩的微量元素构造判别图解(图 8)中,大景星山碱流岩全部落入板内花岗岩区。
图 7 Zr(a),Nb(c)与10000×Ga/Al判别图和(K2O+Na2O)/CaO(b),TFeO/MgO(d)与Zr+Nb+Ce+Y判别图[15]FG—分异的I、S型花岗岩;OTG—未分异的I、S、M型花岗岩;I、S、A—I、S、A型花岗岩Figure 7. Zr(a), Nb(c)versus 10000×Ga/Al and (K2O+Na2O)/CaO(b), TFeO/MgO versus Zr+Nb+Ce+Y discrimination diagrams图 8 (Y+Nb)-Rb(a)和Y-Nb(b)图解[18]WPG—板内花岗岩;VAG—火山弧花岗岩;syn-COLG—同碰撞花岗岩;ORG—洋脊花岗岩Figure 8. (Y+Nb)-Rb(a) and Y-Nb(b) discrimination diagrams4. 讨论
4.1 岩石成因
自1979年Loiselle等[19]提出以碱性、无水、非造山为特征的A型花岗岩以来,许多学者对A型花岗岩的岩石地球化学、岩石成因及构造背景进行了研究。目前认为,A型花岗岩不局限于非造山,也可以形成于不同的构造背景;在成分上,既可以是过碱的,也可以是准铝质或过铝质的[20-21];在岩石学上,包括石英正长岩、亚碱性-碱性花岗岩、流纹岩、碱流岩等[22-23]。大景星山碱流岩岩石富硅、富碱,贫Mg、Ca;稀土元素配分曲线呈现右倾“V”字形特征,显示强烈的负Eu异常;微量元素显示较低的Sr和Ba丰度,以及较高的Rb、Th、U、Zr等特点。其地球化学特征类似于A型花岗岩。
目前认为,碱性长英质岩石的成因模式有:①幔源岩浆与深熔形成的壳源岩浆的混合和交代作用[24-25];②富F、Cl麻粒岩高温部分熔融作用[26];③碱性岩浆的分离结晶作用[27-28];④在挥发组分作用下下地壳岩石部分熔融[29]。首先,由于研究区和相邻地区缺乏同时代的镁铁质岩石,可以排除大景星山碱流岩是幔源岩浆分离结晶作用产物的可能。其次,大景星山碱流岩富硅及贫Mg、Ca的特征可以排除幔源岩浆与深熔形成的壳源岩浆混合的成因机制。第三,岩石的高硅、相对富Na、贫Mg、贫Ca及强烈的负Eu异常等特征, 与下地壳麻粒岩物质部分熔融的成因模式并不吻合。
King等[20]认为,铝质A型花岗岩岩浆源于长英质地壳的部分熔融,而碱性花岗岩浆则为幔源镁铁质岩浆分异的产物。研究区大景星山碱流岩A/CNK值介于0.96~1.05之间,属于准铝质-弱过铝质,Si2O含量高、变化范围较小,含有低Al2O3、FeO和MgO含量,以及明显的Ba、P、Sr、Eu及Ti负异常特征,指示长英质成分的源岩在低压下发生部分熔融,其中斜长石、磷灰石及Ti、Fe氧化物在源岩中残留。综合上述特征可以判定,长英质地壳部分熔融及其后的分异作用可能为大景星山碱流岩形成的重要机制。
4.2 构造背景
1992年,Eby[22]把A型花岗岩分为A1型花岗岩(非造山花岗岩拉张环境)、A2型花岗岩(后造山环境)。在Nb-Y-Ce图解(图 9-a)中,大景星山碱流岩主要落在A1、A2的分界线上,而在Y/Nb-Rb/Nb判别图(图 9-b)中,样品点全部落入A1型花岗岩区,指示了一种非造山拉张环境。
图 9 大景星山碱流岩Nb-Y-Ce(a)和Y/Nb-Rb/Nb(b)图解[22]Figure 9. Nb-Y-Ce(a)and Y/Nb-Rb/Nb(b)diagrams of the pantellerite in Dajingxing Mountain兴蒙造山带东部的大兴安岭地区从晚古生代—早中生代经历了古亚洲洋、蒙古-鄂霍次克洋的闭合及区内多块体的拼贴过程[30]。早—中三叠世兴蒙造山带南缘碰撞型花岗岩的发现标志着古亚洲洋的最终闭合[31];早—中侏罗世,古太平洋板块开始向欧亚大陆俯冲,在吉黑东部(东宁—晖春)、小兴安岭—张广才岭地区形成大陆弧岩浆作用[32-34],而在西部额尔古纳—根河地区出露的钙碱性火山岩组合[35]则反映了活动陆缘的构造背景,引起该期岩浆事件的区域动力应来自于蒙古-鄂霍芡克大洋板块向额尔古纳地块下的俯冲作用。中侏罗世晚期—早白垩世早期阶段,古太平洋板块进入了间歇期[36],而在大兴安岭西坡—辽西地区存在一次重要的陆壳加厚过程[37-38],与该区构造推覆使地壳增厚的伸展环境有关[35],与蒙古-鄂霍芡克缝合带闭合时间一致。
早白垩世晚期火山岩(114 Ma ~131Ma,峰值年龄为125Ma)在大兴安岭地区广泛分布,北部以上库力组流纹岩和伊列克得组玄武岩为代表[39-40],南部以白音高老组流纹岩和梅勒图组玄武岩为代表[41],翼北—辽西地区,以义县组火山岩为代表,形成年龄为120~126Ma[42]。该期火山岩岩石组合为典型的双峰式火山岩,是早白垩世晚期区域性伸展的直接反映。同时,早白垩世晚期A型花岗岩的广泛分布[43]、变质核杂岩的产出[44]及同期沉积盆地的形成[45]都指示了伸展背景。大兴安岭巴尔哲碱性花岗岩和碾子山A型花岗岩(年龄为125Ma)是张性构造体制背景下的产物[46]。大景星山碱流岩的产出指示,大兴安岭北段龙江盆地在122.4Ma已经进入板内拉张环境,该期火山事件既与环太平洋构造体系有关,又与蒙古-鄂霍茨克构造带相联系,从大兴安岭地区中生代火山岩的空间展布可以判断,位于松辽盆地以西的龙江盆地碱流岩的形成与后者的联系更密切。
5. 结论
(1) 龙江盆地光华组碱流岩中的锆石为岩浆成因,LA-ICP-MS U-Pb定年结果为122.4±1.7Ma,表明其形成时代为早白垩世。
(2) 龙江盆地光华组碱流岩具有富硅、富碱、贫Mg、Ca的特征,具有显著的负Eu异常、低Sr和Ba丰度,以及较高的Rb、Th、U、Zr和轻稀土元素,说明其岩浆源区有斜长石、磷灰石及Ti、Fe氧化物残留,为长英质地壳部分熔融的产物。
(3) 龙江盆地光华组碱流岩的特征类似于铝质A1型花岗岩,形成于板内拉张环境,代表了伸展的大地构造背景。
致谢: 成文过程中得到吉林大学杨德明和马瑞教授的帮助,修改过程中得到吉林大学葛文春教授、 王建国副教授的指导,吉林大学杨浩博士、李兴奎硕士提出宝贵的意见,在此一并致以衷心的感谢。 -
表 1 塔尔气地区花岗斑岩LA-ICP-MS 锆石U-Th-Pb 分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb dating results for the granite porphyry from Taerqi area
样品号及 分析点号 含量/10-6 Th/U 同位素比值 年龄/Ma Th U Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U PM001-39-1-01 761 613 16.4 1.24 0.0487±0.0038 0.1385±0.0108 0.02062±0.00036 134±141 132±10 132±2 PM001-39-1-02 444 393 10.4 1.13 0.0489±0.0050 0.1419±0.0144 0.02106±0.00040 141±192 135±13 134±3 PM001-39-1-03 3377 2832 74.3 1.19 0.0487±0.0025 0.1389±0.0071 0.02069±0.00033 132±87 132±6 132±2 PM001-39-1-04 2469 2096 59.0 1.18 0.0488±0.0026 0.1476±0.0078 0.02193±0.00035 139±91 140±7 140±2 PM001-39-1-05 1911 2317 61.5 0.82 0.0488±0.0025 0.1520±0.0078 0.02257±0.00036 139±88 144±7 144±2 PM001-39-1-06 2262 2435 63.1 0.93 0.0487±0.0025 0.1430±0.0073 0.02127±0.00034 135±86 136±6 136±2 PM001-39-1-08 400 533 13.1 0.75 0.0487±0.0039 0.1426±0.0113 0.02122±0.00037 134±145 135±10 135±2 PM001-39-1-09 1738 1898 49.0 0.92 0.0487±0.0028 0.1441±0.0081 0.02146±0.00035 133±97 137±7 137±2 PM001-39-1-10 1319 1362 35.5 0.97 0.0487±0.0029 0.1434±0.0084 0.02138±0.00036 131±100 136±7 136±2 PM001-39-1-11 2188 2178 58.4 1.00 0.0488±0.0026 0.1469±0.0079 0.02185±0.00036 136±92 139±7 139±2 PM001-39-1-12 407 298 8.2 1.36 0.0488±0.0058 0.1411±0.0167 0.02096±0.00043 137±224 134±15 134±3 PM001-39-1-13 872 458 14.2 1.90 0.0486±0.0042 0.1393±0.0118 0.02077±0.00039 130±155 132±11 133±2 PM001-39-1-15 1821 1802 47.0 1.01 0.0488±0.0029 0.1443±0.0084 0.02143±0.00036 139±101 137±7 137±2 PM001-39-1-16 1624 1400 37.9 1.16 0.0487±0.0028 0.1457±0.0082 0.02168±0.00037 135±96 138±7 138±2 PM001-39-1-18 1730 1647 43.8 1.05 0.0487±0.0029 0.1439±0.0085 0.02142±0.00036 133±101 137±8 137±2 PM001-39-1-19 2151 2346 60.5 0.92 0.0525±0.0030 0.1528±0.0088 0.02111±0.00035 306±100 144±8 135±2 PM001-39-1-20 4539 4026 110 1.13 0.0487±0.0027 0.1458±0.0079 0.02171±0.00036 133±92 138±7 138±2 PM001-39-1-21 2945 2543 69.8 1.16 0.0488±0.0030 0.1446±0.0088 0.02149±0.00036 137±106 137±8 137±2 PM001-39-1-22 1022 799 22.3 1.28 0.0487±0.0045 0.1419±0.0131 0.02113±0.00039 132±172 135±12 135±2 PM001-39-1-23 2215 2824 71.3 0.78 0.0487±0.0028 0.1433±0.0083 0.02132±0.00036 135±99 136±7 136±2 PM001-39-1-25 2289 2831 72.6 0.81 0.0488±0.0028 0.1458±0.0084 0.02167±0.00037 136±99 138±7 138±2 PM006-9-1-01 155 145 3.7 1.07 0.0487±0.0038 0.1323±0.0102 0.01970±0.00033 132±141 126±9 126±3 PM006-9-1-02 163 135 3.6 1.20 0.0486±0.0048 0.1341±0.0131 0.02002±0.00034 127±186 128±12 128±3 PM006-9-1-03 629 619 15.7 1.02 0.0511±0.0022 0.1374±0.0058 0.01950±0.00027 244±71 131±5 124±3 PM006-9-1-04 61 67 1.7 0.91 0.0486±0.0082 0.1343±0.0224 0.02004±0.00041 129±294 128±20 128±5 PM006-9-1-05 127 87 2.6 1.46 0.0497±0.0060 0.1415±0.0168 0.02063±0.00047 183±224 134±15 132±5 PM006-9-1-06 371 327 8.5 1.13 0.0486±0.0035 0.1331±0.0096 0.01986±0.00030 129±134 127±9 127±3 PM006-9-1-07 155 115 3.1 1.34 0.0487±0.0048 0.1330±0.0131 0.01981±0.00034 132±188 127±12 126±3 PM006-9-1-08 173 137 3.7 1.26 0.0484±0.0047 0.1313±0.0127 0.01965±0.00032 121±187 125±11 125±3 PM006-9-1-09 117 93 2.5 1.26 0.0487±0.0078 0.1352±0.0215 0.02012±0.00039 135±284 129±19 128±3 PM006-9-1-10 71 77 1.9 0.92 0.0485±0.0075 0.1377±0.0213 0.02057±0.00047 126±271 131±19 131±5 PM006-9-1-11 155 117 3.2 1.32 0.0485±0.0053 0.1314±0.0144 0.01965±0.00038 124±209 125±13 125±3 PM006-9-1-12 134 88 2.5 1.53 0.0490±0.0068 0.1372±0.0189 0.02033±0.00040 145±255 131±17 130±5 PM006-9-1-13 683 519 13.8 1.32 0.0514±0.0021 0.1381±0.0056 0.01949±0.00027 258±68 131±5 124±3 PM006-9-1-14 37 39 1.0 0.95 0.0483±0.0162 0.1315±0.0439 0.01972±0.00059 115±516 125±39 126±6 PM006-9-1-16 38 43 1.0 0.90 0.0494±0.0122 0.1360±0.0335 0.01995±0.00053 168±399 129±30 127±5 PM006-9-1-17 114 90 2.4 1.27 0.0485±0.0052 0.1339±0.0144 0.02003±0.00038 122±205 128±13 128±3 PM006-9-1-18 56 58 1.5 0.97 0.0484±0.0086 0.1324±0.0235 0.01982±0.00043 121±299 126±21 127±5 PM006-9-1-19 86 75 1.9 1.15 0.0483±0.0090 0.1350±0.0250 0.02025±0.00042 115±309 129±22 129±5 PM006-9-1-20 318 208 5.9 1.53 0.0489±0.0032 0.1367±0.0088 0.02029±0.00032 141±116 130±8 129±3 PM006-9-1-21 98 82 2.2 1.18 0.0489±0.0072 0.1360±0.0198 0.02016±0.00039 144±265 130±18 129±3 PM006-9-1-22 132 97 2.6 1.37 0.0485±0.0066 0.1313±0.0177 0.01962±0.00040 125±246 125±16 125±5 PM006-9-1-23 218 160 4.4 1.36 0.0487±0.0041 0.1351±0.0113 0.02013±0.00034 131±155 129±10 128±3 PM006-9-1-24 189 149 4.0 1.27 0.0485±0.0044 0.1344±0.0121 0.02009±0.00034 123±170 128±11 128±3 PM006-9-1-25 71 50 1.4 1.41 0.0485±0.0096 0.1370±0.0268 0.02046±0.00047 126±324 130±24 131±5 PM006-5-1-01 683 484 13.5 1.41 0.0486±0.0021 0.1316±0.0056 0.01963±0.00026 128±74 126±5 125±3 PM006-5-1-02 606 880 20.9 0.69 0.0485±0.0016 0.1304±0.0042 0.01950±0.00025 123±51 124±4 124±3 PM006-5-1-03 742 1163 27.0 0.64 0.0488±0.0012 0.1307±0.0032 0.01943±0.00024 136±34 125±3 124±3 PM006-5-1-04 337 369 9.3 0.91 0.0485±0.0023 0.1327±0.0063 0.01985±0.00027 122±83 127±6 127±4 PM006-5-1-05 1030 1217 30.6 0.85 0.0498±0.0013 0.1375±0.0036 0.02002±0.00025 186±37 131±3 128±3 PM006-5-1-06 412 683 16.1 0.60 0.0487±0.0014 0.1334±0.0039 0.01986±0.00025 133±45 127±3 127±3 PM006-5-1-07 1129 1487 36.0 0.76 0.0486±0.0011 0.1324±0.0031 0.01974±0.00025 129±32 126±3 126±3 PM006-5-1-08 264 347 8.4 0.76 0.0486±0.0023 0.1322±0.0063 0.01974±0.00027 126±83 126±6 126±3 PM006-5-1-09 175 215 5.3 0.81 0.0485±0.0029 0.1340±0.0081 0.02002±0.00029 125±109 128±7 128±4 PM006-5-1-10 277 487 11.5 0.57 0.0486±0.0019 0.1345±0.0051 0.02005±0.00026 130±64 128±5 128±3 PM006-5-1-11 467 653 16.0 0.72 0.0485±0.0018 0.1341±0.0050 0.02004±0.00026 124±63 128±4 128±3 PM006-5-1-12 295 307 7.9 0.96 0.0487±0.0028 0.1332±0.0075 0.01985±0.00027 131±102 127±7 127±4 PM006-5-1-13 399 423 10.9 0.94 0.0488±0.0023 0.1359±0.0064 0.02019±0.00028 139±83 129±6 129±3 PM006-5-1-15 560 902 21.1 0.62 0.0485±0.0015 0.1322±0.0040 0.01975±0.00025 125±48 126±4 126±3 PM006-5-1-16 244 445 10.3 0.55 0.0486±0.0020 0.1339±0.0055 0.01997±0.00028 129±70 128±5 127±3 PM006-5-1-17 332 424 10.6 0.78 0.0516±0.0029 0.1438±0.0079 0.02021±0.00028 267±102 136±7 129±4 PM006-5-1-18 528 421 11.2 1.26 0.0486±0.0020 0.1313±0.0053 0.01958±0.00026 130±69 125±5 125±3 PM006-5-1-19 1184 1340 33.0 0.88 0.0488±0.0013 0.1314±0.0035 0.01954±0.00025 136±38 125±3 125±3 PM006-5-1-20 908 1228 29.8 0.74 0.0485±0.0014 0.1338±0.0038 0.02000±0.00026 124±43 128±3 128±3 PM006-5-1-21 982 992 25.0 0.99 0.0486±0.0013 0.1329±0.0037 0.01981±0.00026 131±40 127±3 126±3 PM006-5-1-22 504 628 14.9 0.80 0.0487±0.0018 0.1285±0.0048 0.01914±0.00026 131±62 123±4 122±3 PM006-5-1-23 329 363 9.2 0.91 0.0486±0.0022 0.1356±0.0060 0.02025±0.00029 126±75 129±5 129±3 PM006-5-1-24 376 643 14.8 0.58 0.0486±0.0017 0.1321±0.0047 0.01971±0.00027 128±58 126±4 126±3 PM006-5-1-25 514 445 11.6 1.16 0.0485±0.0026 0.1315±0.0072 0.01968±0.00027 122±97 125±6 126±3 表 2 塔尔气地区花岗斑岩主量、微量和稀土元素分析结果
Table 2 Major, trace and rare earth elements compositions for the granite porphyry from Taerqi area
样号 P006-3-1 P006-5-1 P006-7-1 P006-8-1 P006-9-1 P006-11-1 P006-12-1 P006-15-1 JB5157-3 P001-39-1 SiO2 76.60 77.28 76.10 75.69 75.33 75.67 75.85 73.79 77.10 74.20 TiO2 0.17 0.17 0.15 0.15 0.16 0.16 0.17 0.22 0.15 0.24 Al2O3 12.74 12.52 12.88 13.17 13.35 13.23 13.11 13.82 12.58 13.57 Fe2O3 0.86 0.83 0.86 0.83 0.85 0.92 0.86 0.89 0.78 1.17 FeO 0.17 0.26 0.12 0.12 0.14 0.07 0.12 0.43 0.10 0.43 TFeO 0.94 0.80 0.89 0.87 0.90 0.90 0.89 1.23 0.80 1.48 TFe2O3 1.05 0.89 0.99 0.96 1.01 1.00 0.99 1.37 0.89 1.65 MnO 0.05 0.03 0.10 0.05 0.08 0.07 0.09 0.08 0.06 0.05 MgO 0.29 0.28 0.10 0.10 0.11 0.10 0.11 0.26 0.11 0.29 CaO 0.29 0.25 0.23 0.21 0.23 0.18 0.31 0.61 0.21 0.34 Na2O 2.68 2.43 4.26 4.19 4.15 4.10 4.35 4.64 3.96 4.30 K2O 4.71 4.86 4.69 4.88 4.92 4.95 4.77 4.67 4.30 4.61 P2O5 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.04 0.06 LOI 1.33 0.97 0.43 0.51 0.60 0.46 0.17 0.39 0.56 0.66 Total 98.57 98.92 99.49 99.41 99.33 99.47 99.75 99.47 99.39 99.25 Ba 353.00 365.80 93.30 143.90 156.00 145.60 155.90 597.60 222.30 372.30 Rb 192.30 209.70 187.30 179.60 170.10 186.90 170.90 140.80 174.50 208.80 Sr 113.30 98.90 14.40 18.50 28.20 23.90 19.90 125.80 60.60 108.90 Y 12.17 9.39 21.84 16.00 14.71 13.01 25.04 18.87 12.62 13.02 Zr 103.00 102.80 173.00 165.50 177.20 163.30 192.80 188.10 122.60 168.80 Nb 17.55 14.58 28.04 23.46 23.87 25.61 28.87 20.76 17.96 20.52 Th 16.68 17.66 24.33 22.69 14.78 20.95 22.58 18.90 26.72 36.89 Pb 19.50 21.10 28.30 29.80 24.30 35.80 27.00 25.80 16.80 23.80 Ga 18.60 17.70 19.50 19.10 20.00 18.90 19.10 19.00 19.06 20.10 Zn 33.60 36.80 49.40 61.80 61.80 89.60 47.70 52.10 29.30 43.70 Cu 6.90 6.10 6.10 5.40 5.10 5.60 8.20 7.20 3.83 6.50 Ni 8.83 9.28 9.29 8.91 9.62 9.30 9.18 9.00 1.90 9.50 V 9.20 11.50 8.60 8.20 6.90 10.20 8.40 15.70 16.10 18.50 Cr 13.90 12.90 14.40 14.10 10.70 13.80 12.90 13.00 4.30 14.20 Hf 6.04 5.89 9.60 9.14 9.86 9.60 11.50 11.20 5.54 9.11 Sc 2.10 2.20 2.50 2.20 2.70 2.50 2.60 2.60 2.46 2.60 Ta 1.38 1.17 1.84 1.61 1.53 1.62 1.91 1.33 1.67 1.41 Co 1.18 0.96 0.51 0.44 0.42 0.57 0.49 1.15 0.69 1.26 U 4.25 4.28 3.75 4.10 3.79 2.95 3.73 2.06 5.70 4.64 La 32.08 27.34 31.58 22.53 26.28 18.94 35.16 40.91 8.40 23.27 Ce 48.70 40.07 70.41 60.25 72.77 60.00 76.40 70.05 49.74 53.83 Pr 5.97 5.10 7.63 5.55 6.12 4.14 8.44 9.06 2.08 4.38 Nd 18.51 15.52 25.37 18.61 19.54 13.29 28.90 30.94 6.51 13.59 Sm 3.02 2.46 5.08 3.55 3.64 2.44 5.87 5.44 1.41 2.32 Eu 0.45 0.42 0.39 0.36 0.37 0.29 0.45 0.82 0.21 0.42 Gd 2.40 2.06 3.98 2.74 2.91 2.10 4.58 4.24 1.48 2.07 Tb 0.38 0.31 0.70 0.49 0.49 0.36 0.80 0.66 0.27 0.34 Dy 2.23 1.82 4.30 3.21 3.22 2.55 5.01 3.86 1.93 2.35 Ho 0.43 0.36 0.85 0.64 0.62 0.61 0.98 0.73 0.44 0.49 Er 1.28 1.13 2.38 1.83 1.85 1.64 2.68 1.97 1.34 1.53 Tm 0.26 0.23 0.46 0.36 0.37 0.33 0.50 0.35 0.28 0.34 Yb 1.86 1.63 3.07 2.55 2.57 2.39 3.25 2.38 1.96 2.45 Lu 0.31 0.27 0.53 0.42 0.48 0.44 0.62 0.34 0.46 0.39 ΣREE 117.88 98.72 156.73 123.09 141.23 109.52 173.64 171.75 76.51 107.77 注:主量元素含量单位为%,微量和稀土元素单位为10-6 表 3 塔尔气地区花岗斑岩锆石Hf 同位素分析结果
Table 3 Zircon Hf isotopic data for the granite porphyry from Taerqi area
测点号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf* 2σm εHf(0) εHf(t) 2σ TDM1 TDM2 fLu/Hf PM006-9-101 127 0.043105 0.001768 0.282969 0.000026 6.97 9.6 0.9 410 569 -0.95 PM006-9-102 127 0.044225 0.001729 0.282939 0.000028 5.90 8.5 1.0 453 637 -0.95 PM006-9-103 127 0.038188 0.001605 0.282844 0.000018 2.55 5.2 0.6 588 851 -0.95 PM006-9-104 127 0.029551 0.001253 0.282852 0.000024 2.83 5.5 0.8 571 831 -0.96 PM006-9-105 127 0.042052 0.001639 0.282931 0.000031 5.64 8.3 1.1 463 653 -0.95 PM006-9-106 127 0.040631 0.001587 0.282875 0.000023 3.64 6.3 0.8 543 781 -0.95 PM006-9-107 127 0.024927 0.001097 0.282849 0.000023 2.72 5.4 0.8 574 838 -0.97 PM006-9-108 127 0.026990 0.001169 0.282877 0.000022 3.72 6.4 0.8 534 774 -0.96 PM006-9-109 127 0.047331 0.001964 0.282853 0.000026 2.88 5.5 0.9 581 832 -0.94 PM006-9-110 127 0.024371 0.001044 0.282898 0.000025 4.44 7.1 0.9 503 727 -0.97 PM006-9-111 127 0.026164 0.001120 0.282840 0.000022 2.42 5.1 0.8 586 857 -0.97 PM006-9-112 127 0.041735 0.001750 0.282886 0.000023 4.03 6.7 0.8 530 757 -0.95 PM006-9-113 127 0.116550 0.004173 0.282944 0.000026 6.08 8.5 0.9 477 639 -0.87 PM006-9-114 127 0.024745 0.000983 0.282891 0.000024 4.22 6.9 0.8 512 741 -0.97 PM006-9-115 127 0.017523 0.000766 0.282937 0.000022 5.84 8.6 0.8 444 636 -0.98 PM006-9-116 127 0.025477 0.001059 0.282961 0.000028 6.67 9.4 1.0 414 584 -0.97 PM006-9-117 127 0.030342 0.001273 0.282896 0.000026 4.37 7.1 0.9 509 733 -0.96 PM006-9-118 127 0.028210 0.001190 0.282912 0.000023 4.96 7.6 0.8 484 695 -0.96 PM006-9-119 127 0.032838 0.001375 0.282934 0.000025 5.74 8.4 0.9 455 646 -0.96 PM006-9-120 127 0.024083 0.001019 0.282876 0.000024 3.67 6.4 0.8 534 777 -0.97 PM006-9-121 127 0.035302 0.001461 0.282929 0.000023 5.55 8.2 0.8 464 658 -0.96 PM006-9-122 127 0.021658 0.000942 0.282946 0.000027 6.15 8.9 0.9 433 617 -0.97 PM006-9-123 127 0.039438 0.001553 0.282884 0.000025 3.95 6.6 0.9 530 761 -0.95 PM006-9-124 127 0.040482 0.001699 0.282911 0.000024 4.92 7.6 0.8 493 700 -0.95 PM006-9-125 127 0.029087 0.001206 0.282883 0.000023 3.92 6.6 0.8 527 761 -0.96 PM001-39-101 140 0.040219 0.001583 0.282879 0.000018 3.77 6.7 0.6 538 766 -0.95 PM001-39-102 140 0.063713 0.002811 0.282885 0.000015 4.00 6.8 0.5 547 758 -0.92 PM001-39-103 140 0.048091 0.001923 0.282893 0.000019 4.27 7.2 0.7 523 736 -0.94 PM001-39-104 140 0.055431 0.002582 0.282886 0.000016 4.03 6.9 0.6 542 755 -0.92 PM001-39-105 140 0.070272 0.003083 0.282903 0.000014 4.64 7.4 0.5 524 718 -0.91 PM001-39-106 140 0.074941 0.003237 0.282887 0.000015 4.06 6.8 0.5 551 757 -0.90 PM001-39-107 140 0.034674 0.001474 0.282247 0.000015 -18.58 -15.6 0.5 1437 2184 -0.96 PM001-39-108 140 0.046225 0.002217 0.282861 0.000014 3.16 6.0 0.5 573 808 -0.93 PM001-39-109 140 0.052295 0.002486 0.282920 0.000015 5.22 8.1 0.5 491 678 -0.93 PM001-39-110 140 0.054046 0.002570 0.282915 0.000014 5.05 7.9 0.5 499 689 -0.92 PM001-39-111 140 0.069395 0.003072 0.282871 0.000014 3.52 6.3 0.5 571 791 -0.91 PM001-39-112 140 0.051367 0.002018 0.282877 0.000026 3.71 6.6 0.9 547 772 -0.94 PM001-39-113 140 0.044306 0.001763 0.282876 0.000019 3.67 6.6 0.7 545 773 -0.95 PM001-39-114 140 0.028569 0.001186 0.282256 0.000017 -18.25 -15.3 0.6 1414 2162 -0.96 PM001-39-115 140 0.072833 0.003167 0.282894 0.000015 4.31 7.1 0.5 539 741 -0.90 PM001-39-116 140 0.062051 0.002862 0.282845 0.000015 2.57 5.4 0.5 608 850 -0.91 PM001-39-117 140 0.069122 0.002937 0.282895 0.000021 4.37 7.2 0.7 533 735 -0.91 PM001-39-118 140 0.055861 0.002430 0.282920 0.000018 5.24 8.1 0.6 490 676 -0.93 PM001-39-119 140 0.085761 0.003537 0.282886 0.000017 4.02 6.8 0.6 557 761 -0.89 PM001-39-120 140 0.081298 0.003425 0.282944 0.000020 6.10 8.9 0.7 466 627 -0.90 PM001-39-121 140 0.066828 0.002886 0.282870 0.000016 3.46 6.3 0.6 571 793 -0.91 PM001-39-122 140 0.050083 0.002247 0.282898 0.000016 4.44 7.3 0.6 520 727 -0.93 PM001-39-123 140 0.052519 0.002406 0.282944 0.000014 6.07 8.9 0.5 454 623 -0.93 PM001-39-124 140 0.078736 0.003423 0.282907 0.000019 4.76 7.5 0.7 524 713 -0.90 PM001-39-125 140 0.070461 0.003069 0.282926 0.000018 5.46 8.2 0.6 489 666 -0.91 表 4 塔尔气白音高老组主量、微量和稀土元素分析结果
Table 4 Major, trace and rare earth elements compositions of the Baiyingaolao Formation in Taerqi area
样号 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 lol Total PM006-17-1 76.3 12.30 0.27 1.20 0.28 0.27 0.31 4.78 3.07 0.03 0.07 0.92 98.88 PM004-82-1 78.21 11.66 0.22 0.82 0.50 0.21 0.28 4.20 2.73 0.063 0.041 0.97 98.93 PM004-91-1 79.34 11.85 0.09 0.48 0.14 0.18 0.11 3.90 3.00 0.056 0.017 0.79 99.16 PM004-94-1 78.96 11.82 0.11 0.54 0.05 0.12 0.05 5.14 2.39 0.026 0.013 0.74 99.22 样号 Ba Rb Sr Y Nb Th Hf Sc Ta U La Ce Pr Nd Sm PM006-17-1 839 180 177 15.6 17.6 18.3 7.31 2.80 1.24 4.77 28.3 59.0 6.30 21.1 3.64 PM004-82-1 505 194 83.6 22.4 18.3 21.3 7.12 3.74 0.89 4.03 15.3 55.9 3.81 14.1 3.05 PM004-91-1 214 164 48.9 10.3 12.6 17.0 3.25 2.18 0.78 5.21 10.9 26.0 2.83 7.02 1.06 PM004-94-1 355 218 42.7 10.8 14.5 22.5 3.29 2.82 0.84 4.03 13.2 25.4 2.84 7.58 1.23 样号 Eu Gd Tb Dy Ho Er Tm Yb Lu PM006-17-1 0.59 3.06 0.48 3.09 0.60 1.79 0.34 2.30 0.47 PM004-82-1 0.45 2.90 0.56 3.63 0.80 2.40 0.47 2.92 0.67 PM004-91-1 0.17 0.89 0.15 1.08 0.30 1.22 0.29 2.19 0.41 PM004-94-1 0.21 1.10 0.19 1.17 0.29 1.00 0.21 1.54 0.37 -
Wu F Y, Sun D Y, Ge W C,et al.Geochronology of the Phanerozoic granites in northeastern China[J].Journal of Asian Earth Sciences, 2011,41:1-30. Wu F Y, Sun D Y, Ge W C,et al.Geochronology of the Phanerozoic granites in northeastern China[J].Journal of Asian Earth Sciences, 2011,41:1-30.
Wu F Y, Sun D Y, Li H M, et al. A-type grantites in northeastern:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143-173. Wu F Y, Sun D Y, Li H M, et al. A-type grantites in northeastern:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143-173.
葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特特区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-760. 佘宏全,李进文,向平安,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. 朱怀亮,陈跃军,吴国学,等.黑河新生地区早白垩世花岗质岩石的锆石U-Pb年龄、地球化学特征及地质意义[J]. 世界地质,2013,32(4):665-680. Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J].Lithos, 2008,102(1):138-157. Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J].Lithos, 2008,102(1):138-157.
Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology,2010,276:144-165. Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology,2010,276:144-165.
Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J].Earth Planet. Sci. Lett.,2006,251:179-198. Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J].Earth Planet. Sci. Lett.,2006,251:179-198.
Dong Y, Ge W Ch, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J]. Lithos,2014,205:168-184. Dong Y, Ge W Ch, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J]. Lithos,2014,205:168-184.
Xu W L, Pei F P, Wang F, et al.Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic systems[J]. Journal of Asian Earth Sciences,2013,74:167-193. Xu W L, Pei F P, Wang F, et al.Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic systems[J]. Journal of Asian Earth Sciences,2013,74:167-193.
Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002, 192(1/2):59-79. Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002, 192(1/2):59-79.
侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604. Veevers J J,Saeed A, Belousova F A. U-Pb ages and source composition by Hf-isotope and trace element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J].Earth Science Reviews,2005,68:245-279 Veevers J J,Saeed A, Belousova F A. U-Pb ages and source composition by Hf-isotope and trace element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J].Earth Science Reviews,2005,68:245-279
Yuan H L,Gao S,Dai M N, et al. Simultaneous determinations of UPb age,Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008,247:100-118. Yuan H L,Gao S,Dai M N, et al. Simultaneous determinations of UPb age,Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008,247:100-118.
刘颖,刘海臣,李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,1996,25:552-558. 徐学纯,李雪菲,赵庆英,等. 内蒙古哈马尔乌拉花岗斑岩的锆石U-Pb定年及其岩石地球化学特征[J].地质与资源,2011,20(3):161-166. Boynton W V. Cosmochemistry of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114. Boynton W V. Cosmochemistry of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.
朱怀亮,陈跃军,吴国学,等.黑河新生地区早白垩世花岗质岩石的锆石U-Pb年龄、地球化学特征及地质意义[J]. 世界地质,2013,32(4):665-680. 曾庆栋,刘建明. 西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义[J].吉林大学学报,2010,40(4):828-834. 唐永举. 内蒙古乌兰浩特地区早白垩世侵入岩的岩石学、岩石地球化学特征及地质意义[D]. 中国地质大学(北京)硕士学位论文, 2014. 吴庆.内蒙古科右中旗地区花岗斑岩岩石成因及构造背景[D].吉林大学硕士学位论文,2014. 张成,李诺,陈衍景,等.内蒙古兴阿钼铜矿区侵入岩锆石U-Pb年龄及Hf同位素组成[J].岩石学报,2013,29(1):217-230. 张超,杨伟红,和钟铧,等.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究[J].世界地质,2014,33(2):255-261. 秦涛,郑长青,崔天日,等.内蒙古扎兰屯地区白音高老组火山岩地球化学、年代学及其地质意义[J].地质与资源, 2014,2(23):146-154. 张亚明,杜玉春,崔天日,等.扎兰屯地区白音高老组火山岩特征及成因[J].金属矿山,2014,6:101-104. 张乐彤,李世超,赵庆英,等.大兴安岭中段白音高老组火山岩的形成时代及地球化学特征[J].世界地质,2015, 34(1):44-54. 吴福元,李献华,杨进辉,等.花岗岩研究的若干问题[J].岩石学报, 2007,23(6):1217-1238. Whalen J B,Currie K L, Chappell B W. A-type granites:Geochemical characteristics discrimination and petrogenesis[J]. Contrib. Miner. Petrol.,1987,95:407-419. Whalen J B,Currie K L, Chappell B W. A-type granites:Geochemical characteristics discrimination and petrogenesis[J]. Contrib. Miner. Petrol.,1987,95:407-419.
隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480. 周漪,葛文春,王清海,大兴安岭中部乌兰浩特地区中生代花岗岩的成因-地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011,30(5):901-923. 吴福元,孙德有,林强,等.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4):956-983. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4):956-983.
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multionic parameters[J].Chemical Geology, 1985, 48(1):43-55. Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multionic parameters[J].Chemical Geology, 1985, 48(1):43-55.
赵海滨,韩振哲,刘旭光.大兴安岭阿龙山地区花岗片麻岩的同位素年龄与超大陆[J].东华理工学院学报, 2005, 28(4):313-316. 李培忠,于津生.黑龙汀碾子山品洞碱性花岗岩岩体年龄及其意义[J].地球化学,1993,4:389-398. Jahn B M,Wu F Y,Capdevila R,et al.Higlly evolved juvenile granites with tetrad REE pattems:the Wuduhe and Baerzhe granites from the Great Xing'an mountains in NE China[J]. Lithos, 2001,59(4):17l-198. Jahn B M,Wu F Y,Capdevila R,et al.Higlly evolved juvenile granites with tetrad REE pattems:the Wuduhe and Baerzhe granites from the Great Xing'an mountains in NE China[J]. Lithos, 2001,59(4):17l-198.
孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报,2011,27(4):1209-1226. 徐美君,许文良,孟恩,等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报,2011,30(9):1321-1338. 王建国,和钟铧,许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报,2013, 29(3):0853-0863. 葛文春,李献华,林强,等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183. 林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-215. 郭锋,范蔚茗,王岳军,等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报,2001,17(1):161-168. 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.