The exhumation and uplift of the southern Shigu complex since Early Cretaceous evidenced by zircon and apatite fission track
-
摘要:
石鼓杂岩位于青藏高原东南缘经历了多期变质变形作用叠加。为了揭示杂岩体的低温热演化与浅部剥露历史,采集了石鼓杂岩南段石鼓镇-拉巴支村剖面变质岩中的锆石和磷灰石,开展裂变径迹分析。结果表明,石鼓杂岩从早白垩世(133~145Ma)到渐新世(31Ma)经历了一次缓慢的剥露(1.08℃/Ma),而从渐新世开始,其南部经历了较快速的剥露过程(3.23℃/Ma)。磷灰石热史模拟也反映出第二阶段较为快速的冷却过程。结合区域构造分析认为,拉萨与羌塘板块碰撞的远程效应影响早白垩世以来藏东地区地壳结构的调整,导致石鼓杂岩南部出现了第一阶段的剥露作用;而印度与欧亚板块碰撞与后碰撞过程对于石鼓杂岩的新生代剥露具有重要影响。
-
关键词:
- 藏东地区 /
- 石鼓杂岩 /
- 裂变径迹 /
- 早白垩世与渐新世剥露 /
- 板块作用
Abstract:The Shigu complex lies on the southeastern margin of the Tibetan Plateau,and is mainly distributed in Shigu and Zhongdian areas. The complex has experienced polyphase superposition of metamorphism and deformation. In order to reveal the low temperature thermal evolution and exhumation history at the shallow crustal level of the complex and correctly understand the exhumation and tectonic evolution of the metamorphic dome in eastern Tibet,the authors collected zircon and apatite fission track samples for the fission track analysis along the Shigu Town-Labazhi section. The analytical results show that the Shigu complex firstly experienced a slow cooling and exhumation from Early Cretaceous (133~145Ma) to Oligocene (31Ma),and a relatively rapid cooling process started from Oligocene. Time-temperature history simulated by inverse modeling of apatite fission track also reflects a relatively rapid cooling process at the second stage. From regional structural analysis,it is suggested that the far-field effects of the collision between the Lhasa and Qiangtang plates may have strongly affected the Early Cretaceous exhumation of the complex. Furthermore,the Indian-Eurasian collision and post-collisional effects had profound effects on the Cenozoic exhumation of the complex.
-
渤海海域是渤海湾盆地的一部分,由北部下辽河坳陷、西南部黄骅坳陷和南部济阳坳陷的延伸部分和渤中坳陷组成,是盆地自古近纪以来由水域变陆域演化过程中仅存的水域部分[1-3]。新生代盆地为中生代末以来叠置在华北中—古生界基底上发育的克拉通裂谷断陷盆地,对海域内中生代火山岩的研究,能深入地揭示盆地发育前的大地构造动力学背景。海域内中生代火成岩从基性、中性到酸性均有,以中、酸性为主,为碱性或亚碱性的钙碱性系列,普遍富K和Al[4],受西伯利亚板块和扬子板块碰撞、西太平洋依泽奈崎-库拉板块向亚洲大陆的俯冲作用及郯庐断裂的影响,整个中生代火山活动频繁[5-9]。区域研究认为,火山岩分布主要受郯庐断裂、秦皇岛-老铁山断裂、塘沽-埕北断裂的控制,火山岩类型主要为安山岩、玄武岩、火山凝灰岩等[1, 4, 10]。
然而,受限于海域内的钻井数量,有关中生代火山岩整体研究程度偏低,缺乏系统的地球化学研究,对岩体形成时代的认识也不同。以研究区庙西北凸起蓬莱9-1构造花岗岩为例,前人研究认为,该花岗岩为一套元古宙或太古宙混合花岗岩[11-12],与锦州25-1南变质花岗岩具有相似的构造演化,但后期钻井揭示,该区花岗岩并未发生变质作用,重力、磁力资料也将其解释为中生代火山岩[4]。因此利用锆石U-Pb同位素测定技术,重新测定构造区花岗岩的年龄十分必要。在前人工作的基础上,本次对渤海海域庙西北凸起蓬莱9-1构造潜山花岗岩进行了锆石U-Th-Pb同位素测定,以及主量、微量和稀土元素分析,解释其侵入时代、源区性质及成岩背景,为进一步认识庙西北凸起花岗岩岩浆活动、构造演化及油气成藏提供重要资料。
1. 区域地质背景
庙西北凸起位于渤海海域东部,是海域内唯一的独立构造单元渤中坳陷的一部分。该凸起夹持于渤东凹陷和庙西凹陷之间,是受东南侧北东向边界大断裂(庙西1号断裂)控制的半背斜构造,长条状,走向为NNE向,面积约242km2(图 1),总体显示为北西较深,向南东逐渐变浅过渡为斜坡的不对称碟状坳陷[1, 12-14]。凸起位于郯庐断裂渤海段渤中段东部,作为NE走向的辽东湾段和NNE走向的莱州湾段之间的转折地带,始新世时被北京-蓬莱断裂带错切,因此研究区受郯庐断裂带和张家口-蓬莱断裂带的双重影响[15]。多期断裂活动使研究区潜山长期遭受风化剥蚀,新近系直接超覆或披覆于潜山之上,同时受庙西北凸起东界大断层控制,研究区次生断层发育。
钻井揭示,庙西北凸起地层自上而下划分为平原组、明化镇组、馆陶组、中生界和元古宇。新近系岩性以砂泥岩互层为主,中生界为花岗岩,元古宇则以石英片岩为主。
通过对庙西北凸起A井及B井(井点位置见图 1-C)174块中生界岩心样品镜下鉴定,结合粉晶X衍射分析及主量元素成分分析结果进行CIPW计算,在剔出蚀变样品后,QAP图解投点显示,中生代花岗岩主要为花岗闪长岩,少量二长花岗岩。其中A井主要为二长花岗岩,呈灰白色,具花岗结构和二长结构(图 2-b),块状构造。岩石主要矿物组成为石英、钾长石、斜长石、黑云母或角闪石。B井则为花岗闪长岩,呈灰白色,局部钾化区域显示红色斑块,具半自形粒状结构,块状构造(图 2-a)。主要矿物组成为石英、钾长石、斜长石、角闪石、黑云母。斜长石含量占长石总量的65%~90%,多为更长石、中长石,聚片双晶发育,蚀变严重,暗色矿物以角闪石为主,多发生绿泥石化。此外,在B井酸性侵入岩中还发现少量基性岩脉,主要为辉绿岩(图 2-c)。
2. 分析方法
本文对4块庙西北凸起花岗岩进行了LAICP-MS锆石U-Pb测年,样品采自A井1400m、1500m深度及B井1387.6m、1555m深度(井位见图 1)。锆石分选在河北省地质调查局廊坊实验室完成,将样品粉碎至200目,依次用磁力和重力进行分选,最后在双目镜下挑选出用于定年的锆石。锆石制靶及反射光、透射光、阴极发光(CL)图像照相在北京锆年领航科技公司完成。LA-ICPMS锆石U-Pb同位素测定在南京大学内生金属矿床成矿机制国家重点实验室测定,采用Agilent7500型ICP-MS和德国Lambda Physik公司的Com Pex102 ArF准分子激光器(工作物质ArF,波长193nm),以及MicroLas公司的GeoLas 200M光学系统联机进行。激光束斑直径为30μm,激光剥蚀样品的深度为20~40μm,利用氦气作为剥蚀物质的载气,采样方式为单点剥蚀,数据采集选用一个质量峰一点的跳峰方式,每完成4~5个测点的样品测定,加测标样1次。在所测锆石样品分析15~ 20个点前后各测2次NISTSRM 610,锆石年龄采用标准锆石91500作为外标标准物质,用NISTSRM 610校正微量元素含量。每个锆石测试点的U-Pb年龄由Glitter4.4.1[16]程序计算,获得的同位素比值、年龄及误差值、普通铅校正用Excel和ComPbCorr#_151程序计算,年龄计算及U-Pb谐和图的绘制由Isoplot程序完成[17]。
元素分析样品采自A、B、C、D四口井不同深度岩心及岩屑(井位见图 1),样品的主量、微量和稀土元素分析在核工业北京地质研究院分析测试研究中心完成。其中, 主量元素分析采用X射线荧光光谱法分析,使用仪器为AB104-L, PW2404X射线荧光光谱仪;微量及稀土元素分析采用ICP-MS方法,利用酸溶法将样品溶液制备好后,用Element等离子体质谱分析仪分析,分析误差小于10%。
3. 测定结果
3.1 LA-ICP-MS锆石U-Th-Pb同位素测定
研究区测定2件二长花岗岩样品(A井1405m,1500m)及花岗闪长岩样品(B井1387.6m,1555m),年龄数据舍弃了测试过程中受老核或后期裂隙影响的偏年轻和偏老的数据。对A井1405m样品测定了22颗锆石、22个分析点。U-Pb分析结果表明(表 1)),校正后的锆石有效数据点为16个,其所测锆石的阴极发光图像、测定点位和相应的206Pb/238U视年龄如图 3-a所示。锆石阴极发光图像显示,锆石为双锥柱状晶形,自形程度较高,具有明显的岩浆振荡环带,个别颗粒中心存在明显的核部,为继承性锆石的残留。所测锆石颗粒的Th、U含量变化不大,分别为49.93×10-6~801.83×10-6和61.77× 10-6~1497.96×10-6,Th/U值为0.08~1.85,锆石颗粒阴极发光特征及Th/U值均反映出岩浆锆石特征[18]。所测LA-ICP-MS锆石U-Th-Pb同位素分析结果见表 1、图 4-a。16个分析数据点在206Pb/238U-207Pb/ 235U谐和图上均落在谐和线上或其附近,获得的16个206Pb/238U年龄数据集中于159±2~178±3Ma之间,给出的年龄加权平均值为164.2 ± 1.9Ma(n=16,MSWD=0.60)。
表 1 渤海海域庙西北凸起中生代花岗岩LA-ICP-MS锆石U-Th-Pb测年数据Table 1. LA-ICP-MS zircon U-Th-Pb dating data for Mesozoic granite of Miaoxibei uplift in Bohai Sea area测试点号 含量/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ A-1405-2 155 402 0.39 0.0489 0.0011 0.1786 0.0041 0.0266 0.0004 0.0014 0.0000 141 54 167 3 169 3 27.3 0.8 A-1405-3 132 170 0.77 0.0486 0.0024 0.1818 0.0089 0.0273 0.0005 0.0032 0.0002 127 114 170 8 173 3 65 3 A-1405-4 239 387 0.62 0.0498 0.0016 0.1735 0.0055 0.0253 0.0004 0.0047 0.0002 188 77 162 5 161 2 95 5 A-1405-7 128 353 0.36 0.0497 0.0015 0.1734 0.0051 0.0254 0.0004 0.0044 0.0002 179 71 162 4 162 2 89 4 A-1405-8 320 615 0.52 0.0475 0.0012 0.1665 0.0042 0.0255 0.0004 0.0031 0.0001 74 57 156 4 162 2 62 3 A-1405-9 192 342 0.56 0.0485 0.0011 0.1771 0.0040 0.0266 0.0004 0.0039 0.0001 123 54 166 3 169 2 79 2 A-1405-10 341 569 0.60 0.0509 0.0012 0.1747 0.0041 0.0250 0.0004 0.0025 0.0001 234 54 163 4 159 2 50 1 A-1405-11 114 62 1.85 0.0499 0.0033 0.1775 0.0115 0.0258 0.0005 0.0065 0.0003 188 150 166 10 164 3 132 7 A-1405-14 142 157 0.90 0.0486 0.0029 0.1727 0.0100 0.0258 0.0005 0.0062 0.0005 128 134 162 9 164 3 125 10 A-1405-15 135 310 0.44 0.0482 0.0014 0.1768 0.0053 0.0266 0.0004 0.0024 0.0001 107 69 165 5 169 3 49 2 A-1405-16 366 282 1.30 0.0509 0.0016 0.1781 0.0054 0.0254 0.0004 0.0074 0.0005 236 73 166 5 162 2 148 10 A-1405-17 98 411 0.24 0.0478 0.0013 0.1744 0.0048 0.0264 0.0004 0.0069 0.0006 91 65 163 4 168 2 139 11 A-1405-18 802 1498 0.54 0.0500 0.0007 0.1770 0.0029 0.0257 0.0004 0.0031 0.0001 196 35 166 3 163 2 63 2 A-1405-20 550 755 0.73 0.0495 0.0012 0.1759 0.0043 0.0258 0.0004 0.0013 0.0001 172 57 165 4 164 3 26 1 A-1405-21 134 328 0.41 0.0502 0.0013 0.1784 0.0045 0.0258 0.0004 0.0063 0.0004 203 59 167 4 164 2 128 8 A-1405-22 50 650 0.08 0.0485 0.0010 0.1718 0.0037 0.0257 0.0004 0.0059 0.0005 123 51 161 3 164 2 119 9 A-1500-1 180 417 0.43 0.0501 0.0017 0.2041 0.0068 0.0294 0.0005 0.0013 0.0001 201 82 189 6 187 3 25 1 A-1500-2 188 484 0.39 0.0488 0.0017 0.1701 0.0057 0.0253 0.0004 0.0062 0.0006 138 81 159 5 161 2 124 12 A-1500-4 432 1108 0.39 0.0492 0.0008 0.2288 0.0036 0.0337 0.0005 0.0009 0.0000 158 37 209 3 214 3 17.4 0.4 A-1500-6 146 268 0.55 0.0496 0.0016 0.2110 0.0065 0.0310 0.0006 0.0007 0.0000 175 79 194 5 197 4 13.1 0.6 A-1500-7 155 78 1.98 0.0501 0.0039 0.1712 0.0132 0.0248 0.0005 0.0027 0.0002 199 179 160 11 158 3 55 3 A-1500-9 246 457 0.54 0.0489 0.0015 0.1694 0.0051 0.0251 0.0004 0.0061 0.0006 143 72 159 4 160 2 123 12 A-1500-10 60 169 0.36 0.0499 0.0024 0.1874 0.0088 0.0273 0.0005 0.0038 0.0004 190 111 174 8 173 3 77 7 A-1500-11 284 780 0.36 0.0503 0.0011 0.1892 0.0044 0.0273 0.0004 0.0015 0.0001 208 53 176 4 174 3 31 2 A-1500-12 153 383 0.40 0.0485 0.0011 0.1667 0.0040 0.0249 0.0003 0.0039 0.0002 124 57 157 3 159 2 79 3 A-1500-14 74 56 1.32 0.0509 0.0027 0.2155 0.0110 0.0307 0.0006 0.0009 0.0000 235 121 198 9 195 3 18.6 0.6 A-1500-16 139 278 0.50 0.0484 0.0017 0.1700 0.0060 0.0255 0.0004 0.0044 0.0003 117 83 159 5 162 2 88 6 A-1500-17 270 164 1.65 0.0477 0.0012 0.1678 0.0043 0.0255 0.0004 0.0011 0.0000 82 59 157 4 162 2 23 0.4 A-1500-20 189 391 0.48 0.0512 0.0012 0.2408 0.0055 0.0341 0.0006 0.0007 0.0000 252 56 219 5 216 3 14.5 0.4 B-1387.6-2 122 384 0.32 0.0487 0.0012 0.1788 0.0045 0.0267 0.0004 0.1788 0.0045 133 59 167 4 170 3 3324 76 B-1387.6-3 267 555 0.48 0.0491 0.0009 0.1744 0.0033 0.0258 0.0003 0.1744 0.0033 153 43 163 3 164 2 3248 56 B-1387.6-4 292 474 0.62 0.0514 0.0009 0.1815 0.0032 0.0256 0.0003 0.1815 0.0032 261 39 169 3 163 2 3371 55 B-1387.6-5 90 304 0.30 0.0490 0.0017 0.1706 0.0058 0.0253 0.0004 0.1706 0.0058 147 82 160 5 161 3 3183 100 B-1387.6-6 107 182 0.59 0.0502 0.0019 0.1797 0.0068 0.0260 0.0004 0.1797 0.0068 202 92 168 6 165 3 3340 117 B-1387.6-8 48 128 0.38 0.0486 0.0019 0.1746 0.0065 0.0260 0.0005 0.1746 0.0065 128 90 163 6 166 3 3252 112 B-1387.6-13 275 691 0.40 0.0481 0.0010 0.1713 0.0035 0.0258 0.0004 0.1713 0.0035 104 48 161 3 164 2 3196 61 B-1387.6-14 76 269 0.28 0.0492 0.0014 0.1744 0.0048 0.0257 0.0004 0.0079 0.0005 155 67 163 4 164 2 158 9 B-1387.6-16 212 149 1.43 0.0500 0.0025 0.1801 0.0088 0.0261 0.0005 0.0018 0.0001 196 116 168 8 166 3 36 2 B-1387.6-19 96 272 0.35 0.0487 0.0021 0.1781 0.0074 0.0265 0.0005 0.0007 0.0001 135 99 166 6 169 3 14 1 B-1387.6-20 72 269 0.27 0.0507 0.0014 0.1814 0.0050 0.0260 0.0004 0.0037 0.0002 225 64 169 4 165 2 75 4 B-1387.6-21 78 160 0.49 0.0485 0.0022 0.1760 0.0078 0.0263 0.0005 0.0020 0.0001 125 103 165 7 167 3 40 2 B-1387.6-22 143 331 0.43 0.0499 0.0011 0.1790 0.0041 0.0260 0.0004 0.0066 0.0003 188 54 167 4 166 2 133 7 B-1555-1 293 737 0.40 0.0488 0.0010 0.1650 0.0034 0.0245 0.0003 0.0066 0.0003 139 49 155 3 156 2 133 7 B-1555-2 127 364 0.35 0.0481 0.0017 0.1704 0.0058 0.0257 0.0004 0.0013 0.0001 104 80 160 5 164 3 26 1 B-1555-3 100 429 0.23 0.0465 0.0017 0.1638 0.0060 0.0255 0.0004 0.0034 0.0002 25 78 154 5 163 3 69 4 B-1555-4 136 336 0.40 0.0491 0.0014 0.1682 0.0048 0.0249 0.0004 0.0068 0.0004 152 69 158 4 158 2 137 8 B-1555-5 112 329 0.34 0.0500 0.0017 0.1733 0.0059 0.0252 0.0004 0.0068 0.0006 193 82 162 5 160 2 138 11 B-1555-7 595 908 0.66 0.0518 0.0013 0.1705 0.0041 0.0239 0.0003 0.0074 0.0006 274 58 160 4 152 2 148 12 B-1555-8 374 655 0.57 0.0485 0.0010 0.1694 0.0035 0.0254 0.0003 0.0059 0.0003 123 49 159 3 161 2 118 6 B-1555-9 380 714 0.53 0.0483 0.0010 0.1666 0.0033 0.0250 0.0003 0.0057 0.0003 113 48 156 3 159 2 116 7 B-1555-11 358 577 0.62 0.0494 0.0010 0.1688 0.0034 0.0248 0.0003 0.0048 0.0003 167 47 158 3 158 2 96 5 B-1555-14 171 191 0.90 0.0488 0.0016 0.1739 0.0057 0.0258 0.0004 0.0064 0.0004 139 78 163 5 164 2 128 8 B-1555-15 225 514 0.44 0.0503 0.0014 0.1800 0.0051 0.0259 0.0004 0.0078 0.0007 210 67 168 4 165 2 157 13 B-1555-16 102 457 0.22 0.0487 0.0012 0.1743 0.0042 0.0259 0.0004 0.0064 0.0004 135 57 163 4 165 2 129 9 B-1555-21 40 152 0.27 0.0511 0.0027 0.1816 0.0094 0.0258 0.0005 0.0025 0.0002 244 124 169 8 164 3 51 4 B-1555-22 227 474 0.48 0.0479 0.0017 0.1773 0.0062 0.0268 0.0004 0.0076 0.0009 95 80 166 5 171 3 152 19 B-1555-23 122 294 0.42 0.0489 0.0014 0.1781 0.0050 0.0264 0.0004 0.0042 0.0003 141 67 166 4 168 3 85 5 对A井1500m样品测定了20颗锆石、20个分析点。U-Pb分析结果表明(表 1),校正后的锆石有效数据点为13个,其所测锆石的阴极发光图像、测定点位和相应的206Pb/238U视年龄如图 3-b所示。1405m样品的锆石颗粒阴极发光特征及Th/U值也反映出岩浆锆石的特征。所测LA-ICP-MS锆石U-Th-Pb同位素分析结果见表 1、图 4-b。13个数据点在206Pb/238U-207Pb/235U谐和图上均落在谐和线上或其附近,13个206Pb/238U年龄值变化较大,在159±2~216±3Ma之间,其年龄集中段(150~170Ma)给出的年龄加权平均值为160.6 ± 1.7Ma(n=6,MSWD=0.5)。
对B井1387.6m样品测定了24颗锆石、24个分析点。U-Pb分析结果表明(表 1),校正后的锆石有效数据点为16个,锆石的阴极发光图像、测定点位和相应的206Pb/238U视年龄如图 3-c所示。与二长花岗岩相似的锆石阴极发光图像显示,锆石为双锥柱状晶形,自形程度较高,所测锆石颗粒的Th、U含量分别为48.34×10-6~292.25× 10-6和127.86×10-6~690.52×10-6,Th/U值为0.27~ 1.43,为岩浆锆石特征。所测LA-ICP-MS锆石U-Th-Pb同位素分析结果见表 1、图 4-c。16个数据点在206Pb/238U-207Pb/235U谐和图上均落在谐和线上或其附近,16个206Pb/238U年龄集中于155±3~ 170 ± 3Ma之间,给出的年龄加权平均值分别为155.4 ± 2.5Ma(n=3,MSWD=0.07)和165.0 ± 1.3Ma(n=13,MSWD=0.75)。
B井1555m样品测定了23颗锆石、23个分析点,U-Pb分析结果表明(表 1),校正后的锆石有效数据点为15个,其所测锆石的阴极发光图像、测定点位和相应的206Pb/238U视年龄如图 3-d所示。所测样品的Th/U值为0.22~0.9,同样为岩浆锆石特征。LA-ICP-MS锆石U-Th-Pb同位素分析结果见表 1、图 4-d。15个数据点在206Pb/238U-207Pb/235U谐和图上均落在谐和线上或其附近,15个206Pb/238U年龄集中于152±2~171±3Ma之间,给出的年龄加权平均值为160.9±2.6Ma(n=15,MSWD=0.93)。
3.2 地球化学特征
表 2列出了庙西北凸起所测花岗岩样品的主量、微量、稀土元素测定结果及计算所得的有关参数,其中花岗闪长岩样品采自B井、C井、D井(具体深度见表 2,C、D井井位坐标见图 1),二长花岗岩样品采自A井(具体深度见表 2)。
表 2 庙西北凸起中生代花岗岩主量、微量和稀土元素分析数据Table 2. Major, trace and rare earth element data for Mesozoic granite of Miaoxibei uplift元素 B井/m C井/m D井/m 1387.4 1492.5 1493.6 1498 1499.4 1502 1503.95 1505.6 1511.9 1514.85 1518.37 1518.6 1602.85 1603.77 1604 1605.5 1605.79 1640.76 SiO2 68.20 68.55 68.91 68.59 68.51 68.74 68.80 69.05 66.57 69.48 70.41 71.77 67.65 68.34 68.64 67.73 67.81 68.19 Al2O3 15.00 17.19 16.28 16.19 15.72 16.36 16.58 16.31 14.84 15.69 15.80 14.93 16.32 16.51 16.74 16.45 16.25 15.79 TFe2O3 2.44 2.06 2.62 3.23 3.86 3.31 2.74 2.71 2.83 2.51 2.29 2.12 3.64 3.15 2.96 3.31 3.42 3.35 MgO 0.65 0.37 0.48 0.52 0.53 0.51 0.48 0.54 0.48 0.48 0.37 0.43 0.51 0.59 0.55 0.62 0.57 0.83 CaO 3.10 1.78 2.13 2.42 2.35 2.70 2.58 2.50 3.05 1.23 2.19 2.30 0.65 0.89 0.64 0.75 0.74 3.06 Na2O 4.99 5.51 4.53 4.92 4.68 4.86 4.78 4.89 4.12 4.61 4.68 4.41 5.10 4.52 4.60 4.51 4.94 4.44 K2O 2.89 2.94 3.41 2.52 2.44 2.89 3.31 2.98 2.89 3.17 2.79 2.76 3.27 3.33 3.48 3.85 3.54 2.72 MnO 0.07 0.04 0.06 0.08 0.23 0.08 0.07 0.07 0.27 0.06 0.05 0.06 0.09 0.13 0.05 0.15 0.07 0.08 TiO2 0.19 0.22 0.23 0.23 0.23 0.22 0.19 0.23 0.10 0.20 0.20 0.20 0.26 0.28 0.28 0.27 0.24 0.30 P2O5 0.09 0.10 0.09 0.10 0.09 0.10 0.08 0.10 0.09 0.15 0.09 0.09 0.12 0.14 0.13 0.13 0.13 0.13 FeO 1.15 1.00 0.95 1.45 1.30 0.90 1.45 1.45 1.50 0.90 0.95 0.95 2.55 1.90 1.95 1.65 1.75 1.70 烧失量 2.30 1.24 1.25 1.19 1.34 0.20 0.37 0.59 4.71 2.39 1.12 0.91 2.35 2.11 1.91 2.22 2.27 1.09 总量 97.63 98.76 98.73 98.79 98.64 99.77 99.62 99.37 95.24 97.57 98.87 99.07 97.62 97.87 98.07 97.76 97.71 98.88 ALK 7.88 8.45 7.94 7.44 7.12 7.75 8.09 7.87 7.01 7.78 7.47 7.17 8.37 7.85 8.08 8.36 8.48 7.16 AKI 0.53 0.49 0.49 0.46 0.45 0.47 0.49 0.48 0.47 0.50 0.47 0.48 0.51 0.48 0.48 0.51 0.52 0.45 K/Na 0.58 0.53 0.75 0.51 0.52 0.59 0.69 0.61 0.70 0.69 0.60 0.63 0.64 0.74 0.76 0.85 0.72 0.61 A/NKC 1.37 1.68 1.62 1.64 1.66 1.57 1.55 1.57 1.48 1.74 1.64 1.58 1.81 1.89 1.92 1.81 1.76 1.55 δ 2.46 2.79 2.43 2.16 1.99 2.33 2.54 2.38 2.08 2.29 2.04 1.79 2.84 2.43 2.55 2.83 2.90 2.04 La 33.40 27.20 25.40 30.50 23.70 29.30 29.60 45.90 35.20 36.80 33.80 25.50 26.30 28.90 39.80 40.70 44.80 27.20 Ce 60.50 50.00 46.70 54.90 43.10 52.70 52.90 79.40 62.70 62.20 63.30 44.70 49.90 51.70 71.00 71.20 76.00 50.10 Pr 6.89 5.45 5.48 6.10 4.76 6.20 5.83 8.74 6.68 7.12 7.45 4.92 5.34 5.74 7.86 7.96 8.88 6.12 Nd 24.30 20.50 21.20 23.50 18.90 24.60 21.40 33.00 24.60 27.70 29.30 19.00 20.80 21.80 31.20 31.60 35.50 25.60 Sm 3.35 3.39 3.56 3.19 2.71 3.74 2.98 4.21 3.42 3.96 4.50 2.75 2.85 2.82 4.44 3.99 4.63 3.80 Eu 1.17 1.25 1.68 1.22 0.97 1.33 1.22 1.44 4.68 2.63 1.45 1.10 1.22 1.02 1.25 1.84 1.65 1.43 Gd 2.60 2.55 3.11 2.74 2.37 2.89 2.69 3.25 5.25 3.73 3.44 2.91 2.53 2.16 3.52 3.72 3.76 3.73 Tb 0.32 0.31 0.42 0.35 0.28 0.38 0.31 0.40 0.36 0.39 0.48 0.37 0.26 0.26 0.42 0.41 0.40 0.49 Dy 1.70 1.69 2.20 1.87 1.70 2.18 1.62 2.20 1.77 2.01 2.56 1.86 1.26 1.45 1.79 1.88 1.77 2.45 Ho 0.31 0.29 0.43 0.31 0.30 0.34 0.26 0.32 0.29 0.33 0.42 0.32 0.25 0.26 0.33 0.33 0.30 0.46 Er 0.81 0.77 1.20 0.92 0.86 1.07 0.73 1.03 1.01 1.02 1.20 0.96 0.70 0.70 0.92 0.90 0.86 1.20 Tm 0.13 0.12 0.19 0.17 0.15 0.17 0.13 0.18 0.13 0.17 0.22 0.15 0.12 0.12 0.15 0.16 0.13 0.19 Yb 0.84 0.98 1.41 1.00 0.92 1.39 0.73 0.98 0.99 1.00 1.18 0.97 0.66 0.80 1.07 0.99 0.85 1.16 Lu 0.13 0.13 0.18 0.18 0.14 0.19 0.11 0.14 0.13 0.14 0.18 0.12 0.11 0.13 0.15 0.15 0.13 0.15 Li 9.94 18.70 19.90 25.80 19.30 24.60 21.40 22.30 16.40 16.00 17.30 13.20 10.30 11.20 9.15 12.00 14.90 20.30 Be 0.76 1.80 1.42 1.61 1.69 1.84 1.40 1.36 1.44 1.47 1.41 1.20 1.17 1.55 1.89 1.45 1.58 1.44 Sc 2.52 2.70 3.04 2.79 2.66 2.79 2.64 2.96 3.03 2.99 3.17 2.55 3.06 3.01 3.27 3.24 3.33 3.37 V 30.60 23.90 27.10 27.90 26.20 31.70 25.60 27.30 35.10 23.80 27.90 25.00 34.70 37.80 38.40 40.70 39.90 44.80 Cr 6.20 128.00 11.20 11.80 11.80 11.60 9.37 10.10 12.00 12.40 10.10 10.40 11.50 11.00 10.90 12.70 14.90 12.80 Co 3.01 3.49 3.69 3.56 9.03 3.89 3.39 3.77 3.57 2.81 3.44 2.80 4.09 3.41 3.83 4.43 4.54 4.83 Ni 4.49 5.70 5.81 4.46 5.24 5.15 4.24 4.28 5.35 4.26 3.84 4.10 3.17 2.54 3.03 3.94 4.38 4.71 Cu 8.29 11.00 13.20 12.00 15.30 15.40 10.10 9.37 20.20 16.30 10.50 9.60 13.50 13.30 9.59 14.20 18.80 13.90 Zn 40.90 59.00 53.10 54.90 49.40 82.80 43.80 58.20 120.00 70.20 53.90 45.80 50.00 45.20 47.50 55.90 55.30 57.60 Ga 16.00 20.50 17.70 20.10 17.60 21.10 18.00 20.80 19.10 20.00 20.50 17.70 18.30 19.00 19.20 21.30 21.30 19.60 Rb 71.70 81.80 84.70 73.80 61.90 82.70 75.30 79.40 94.60 115.00 75.10 69.10 83.90 89.30 104.00 103.00 98.30 68.00 Sr 843 797 783 783 679 909 808 846 820 649 845 751 539 489 485 642 740 904 Y 9.03 8.86 12.90 9.97 9.00 11.50 7.96 10.30 9.27 10.50 13.40 10.40 7.29 7.19 9.72 9.72 8.80 13.50 Nb 6.22 11.40 8.47 6.92 6.46 8.09 5.62 6.68 5.67 7.64 8.86 7.06 6.22 6.07 8.14 6.74 7.69 8.49 Mo 0.34 0.72 0.75 0.87 1.87 0.77 0.40 0.46 1.03 0.87 0.26 0.43 0.45 0.19 0.23 0.84 1.06 0.43 Cd 0.49 0.06 0.08 0.02 0.04 0.07 0.09 0.08 0.37 0.10 0.05 0.06 0.04 0.04 0.06 0.07 0.08 0.03 In 0.01 0.02 0.02 0.03 0.03 0.03 0.01 0.02 0.03 0.03 0.03 0.02 0.01 0.03 0.02 0.02 0.03 0.03 元素 B井/m C井/m D井/m 1387.4 1492.5 1493.6 1498 1499.4 1502 1503.95 1505.6 1511.9 1514.85 1518.37 1518.6 1602.85 1603.77 1604 1605.5 1605.79 1640.76 Sb 0.19 0.12 0.34 0.28 0.37 0.29 0.13 0.15 7.59 2.99 0.12 0.12 0.44 0.21 0.31 0.59 0.34 0.14 Cs 0.77 1.43 1.34 1.16 1.14 1.11 0.95 1.19 1.55 1.91 0.93 0.75 1.69 1.40 2.12 1.53 1.62 1.70 Ba 1265 841 1498 706 723 861 1021 1002 6392 3087 888 816 1347 1018 1076 2142 1728 1174 Ta 0.42 0.55 0.63 0.47 0.44 0.58 0.38 0.46 0.41 0.53 0.52 0.48 0.44 0.45 0.61 0.53 0.59 0.72 W 0.35 8.04 0.36 0.31 0.26 0.15 0.10 0.10 0.84 1.39 0.16 0.09 0.34 0.56 2.05 0.78 0.60 0.13 Tl 0.46 0.49 0.52 0.47 0.62 0.45 0.41 0.43 1.59 1.10 0.38 0.39 0.52 0.47 0.61 0.63 0.56 0.35 Pb 18.80 19.50 24.70 21.40 326.00 24.20 20.60 23.50 177.00 63.40 28.20 21.40 24.00 15.50 16.10 28.10 21.60 19.90 Bi 0.06 0.09 0.13 0.05 0.05 0.04 0.03 0.03 0.04 0.06 0.03 0.03 0.11 0.06 0.05 0.05 0.04 0.02 Th 4.02 3.57 3.97 6.34 3.22 3.95 3.31 7.97 3.50 4.06 4.41 2.80 3.99 3.60 4.35 4.66 5.50 3.13 U 2.77 5.67 7.40 3.53 3.95 8.14 3.68 1.90 1.42 2.23 0.80 0.51 1.38 1.12 1.00 1.14 1.37 0.80 Zr 43.90 70.10 53.60 62.70 58.00 67.20 46.90 52.60 36.50 46.30 43.00 36.50 35.90 32.70 31.40 26.70 26.60 31.70 Hf 1.34 2.37 1.95 2.01 1.88 2.27 1.54 1.80 1.09 1.39 1.56 1.18 1.39 1.15 1.24 0.89 1.13 1.18 δEu 1.21 1.30 1.54 1.26 1.17 1.24 1.32 1.19 3.38 2.09 1.13 1.19 1.39 1.26 0.97 1.46 1.21 1.16 ∑REE 145.48 123.50 126.05 136.91 109.86 137.98 128.47 191.49 156.48 159.69 162.88 116.04 119.59 125.04 173.62 175.54 188.45 137.57 LREE 129.61 107.79 104.02 119.41 94.14 117.87 113.93 172.69 137.28 140.41 139.80 97.97 106.41 111.98 155.55 157.29 171.46 114.25 HREE 6.84 6.85 9.13 7.53 6.72 8.61 6.58 8.50 9.93 8.78 9.68 7.67 5.89 5.87 8.35 8.53 8.19 9.82 LREE/HREE 18.94 15.74 11.39 15.86 14.00 13.69 17.31 20.33 13.82 15.98 14.44 12.78 18.06 19.08 18.63 18.43 20.93 11.63 元素 A井/m 1300 1320 1330 1340 1350 1360 1370 1380 1390 1410 1420 1435 1450 1460 1470 1475 1485 1500 SiO2 71.73 70.54 69.92 72.12 71.91 70.86 70.93 71.08 71.40 68.86 69.10 67.36 66.99 69.24 69.69 67.37 68.68 69.21 Al2O3 13.27 14.56 14.25 14.18 13.85 14.13 14.58 14.30 14.63 16.01 15.47 15.32 14.95 14.83 15.26 16.28 15.85 15.60 Fe2O3T 4.14 3.78 4.02 2.41 3.11 3.35 2.92 3.11 2.11 2.30 2.59 3.87 4.38 3.71 2.38 2.12 1.91 2.19 MgO 0.38 0.44 0.52 0.49 0.53 0.54 0.46 0.45 0.46 0.45 0.52 0.50 0.67 0.57 0.51 0.46 0.39 0.44 CaO 1.56 1.77 1.96 1.76 1.52 1.47 1.72 1.30 1.25 2.19 2.14 2.02 2.41 2.26 2.14 2.49 2.30 1.97 Na2O 3.51 3.91 4.02 3.86 3.91 3.60 3.98 4.03 4.16 4.38 4.13 4.08 4.39 3.84 4.18 4.42 4.44 4.41 K2O 3.76 3.91 3.79 3.85 3.69 4.31 4.08 4.06 4.24 4.29 4.24 4.13 4.11 3.93 4.12 4.55 4.06 4.50 MnO 0.05 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.09 0.09 0.06 0.06 0.05 0.07 TiO2 0.10 0.11 0.12 0.12 0.13 0.11 0.11 0.14 0.12 0.13 0.14 0.15 0.16 0.14 0.14 0.13 0.13 0.11 P2O5 0.05 0.06 0.08 0.05 0.05 0.06 0.06 0.06 0.04 0.07 0.06 0.07 0.05 0.05 0.05 0.06 0.06 0.05 FeO 3.55 3.00 3.10 1.60 2.20 2.50 2.50 2.60 1.35 1.15 1.75 2.75 3.45 2.70 1.70 1.30 1.00 1.30 烧失量 1.44 0.85 1.22 1.06 1.20 1.47 1.07 1.38 1.50 1.22 1.49 2.36 1.62 1.27 1.42 2.00 2.06 1.42 总量 98.55 99.15 98.74 98.91 98.75 98.49 98.90 98.59 98.46 98.74 98.45 97.56 98.20 98.67 98.53 97.95 97.88 98.55 ALK 7.27 7.82 7.81 7.71 7.60 7.91 8.06 8.09 8.40 8.67 8.37 8.21 8.50 7.77 8.30 8.97 8.50 8.91 AKI 0.55 0.54 0.55 0.54 0.55 0.56 0.55 0.57 0.57 0.54 0.54 0.54 0.57 0.52 0.54 0.55 0.54 0.57 K/Na 1.07 1.00 0.94 1.00 0.94 1.20 1.03 1.01 1.02 0.98 1.03 1.01 0.94 1.02 0.99 1.03 0.91 1.02 A/NKC 1.50 1.52 1.46 1.50 1.52 1.51 1.49 1.52 1.52 1.47 1.47 1.50 1.37 1.48 1.46 1.42 1.47 1.43 δ 1.84 2.22 2.27 2.04 2.00 2.25 2.33 2.33 2.48 2.91 2.68 2.77 3.01 2.30 2.58 3.30 2.81 3.03 La 13.90 12.60 12.40 14.20 17.50 16.40 18.80 13.40 21.90 25.10 17.10 20.40 18.60 19.70 27.60 27.00 28.50 24.70 Ce 26.30 23.90 23.10 25.90 32.60 30.50 35.00 24.50 38.30 46.20 32.30 37.40 33.90 36.70 49.90 50.30 52.00 45.10 Pr 2.90 2.83 2.67 2.92 3.71 3.37 3.83 2.71 3.82 5.16 3.72 4.16 3.90 4.13 5.52 5.64 5.69 5.12 Nd 11.20 9.83 9.12 10.50 12.80 11.50 13.30 10.30 13.50 18.10 13.10 15.40 14.30 14.90 19.30 19.80 20.00 17.70 Sm 1.76 1.50 1.27 1.71 2.05 1.86 1.97 1.40 1.91 2.62 1.99 2.18 1.98 2.28 2.39 2.84 2.70 2.69 Eu 0.78 0.77 0.82 0.82 0.84 0.85 0.85 0.70 0.76 0.93 0.68 0.83 0.71 0.84 0.90 0.99 1.09 0.96 Gd 1.21 1.25 0.91 1.17 1.33 1.16 1.20 1.03 1.44 1.78 1.44 1.53 1.60 1.61 1.83 2.07 1.97 1.93 Tb 0.20 0.17 0.16 0.19 0.20 0.19 0.16 0.12 0.15 0.24 0.21 0.19 0.20 0.22 0.20 0.21 0.24 0.25 Dy 1.09 0.65 0.79 0.99 0.95 0.82 1.04 0.64 0.99 1.19 1.14 1.13 1.09 1.19 1.23 1.12 1.40 1.24 Ho 0.19 0.15 0.13 0.16 0.19 0.18 0.16 0.15 0.18 0.20 0.17 0.22 0.23 0.20 0.22 0.26 0.24 0.25 Er 0.62 0.47 0.47 0.47 0.46 0.49 0.45 0.44 0.48 0.60 0.56 0.59 0.54 0.71 0.65 0.67 0.73 0.74 Tm 0.10 0.07 0.07 0.08 0.09 0.08 0.09 0.06 0.07 0.12 0.11 0.10 0.12 0.10 0.11 0.13 0.12 0.12 Yb 0.59 0.48 0.47 0.57 0.69 0.52 0.65 0.44 0.50 0.63 0.73 0.63 0.76 0.70 0.81 0.89 1.05 0.92 Lu 0.08 0.08 0.08 0.09 0.12 0.11 0.08 0.10 0.07 0.10 0.13 0.09 0.10 0.10 0.14 0.13 0.16 0.15 Li 17.00 20.90 23.20 18.00 19.90 23.90 21.40 20.30 25.50 20.90 22.70 22.00 26.10 22.80 19.00 16.00 24.80 23.60 元素 A井/m 1300 1320 1330 1340 1350 1360 1370 1380 1390 1410 1420 1435 1450 1460 1470 1475 1485 1500 Be 1.42 1.18 1.44 1.18 1.82 1.57 1.05 1.59 1.31 1.50 1.63 1.47 1.82 1.60 2.36 1.86 2.07 2.24 Sc 2.26 2.28 2.06 2.25 2.20 2.30 2.23 2.26 2.12 2.08 2.49 2.48 2.71 2.60 1.97 2.23 2.40 2.46 V 34.30 19.00 23.40 25.60 23.30 22.60 25.40 20.20 15.90 18.80 18.30 20.60 21.00 18.10 18.10 18.90 18.10 22.40 Cr 12.60 8.64 6.78 10.90 10.00 11.60 15.20 9.91 14.80 9.12 22.50 20.50 16.00 13.10 8.32 6.74 14.00 8.14 Co 4.29 3.52 3.10 3.65 9.46 3.00 3.06 2.56 2.71 3.09 5.02 6.12 4.45 3.45 2.43 2.41 3.10 3.47 Ni 5.03 4.71 3.60 4.53 8.84 4.54 5.31 3.14 4.57 3.68 6.25 5.52 4.62 3.77 3.23 2.78 3.82 4.04 Cu 8.67 9.02 6.07 9.42 7.85 6.84 8.60 5.45 7.25 7.60 12.00 11.50 8.68 6.51 8.55 6.71 6.12 6.71 Zn 39.50 42.40 40.40 45.00 40.30 66.90 61.50 43.30 48.10 48.80 51.70 60.10 48.70 45.30 41.70 38.70 42.30 51.90 Ga 15.50 17.10 16.70 17.20 16.80 15.60 18.10 18.00 17.70 19.40 18.60 19.20 18.90 20.10 21.40 21.20 21.70 20.50 Rb 88.50 89.20 93.50 97.70 103.00 105.00 99.30 108.00 97.80 97.80 112.00 97.00 110.00 117.00 122.00 112.00 117.00 116.00 Sr 617 646 665 634 615 766 627 575 746 818 678 724 758 780 746 713 850 733 Y 5.64 5.12 4.71 5.03 5.95 5.67 5.26 4.26 5.21 6.19 6.41 6.18 6.49 6.67 7.39 7.36 7.52 7.78 Nb 4.68 4.60 4.65 5.41 5.66 5.57 6.12 5.25 4.89 5.41 6.37 5.17 5.70 6.27 7.18 7.27 6.47 6.84 Mo 0.87 0.76 0.61 1.25 1.25 1.64 3.01 1.01 0.78 1.16 2.78 2.28 1.89 1.14 1.15 0.93 1.44 0.54 Cd 0.08 0.04 0.03 0.01 0.04 0.11 0.04 0.06 0.04 0.07 0.05 0.05 0.07 0.04 0.03 0.08 0.04 0.17 In 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 Sb 0.39 0.17 0.15 0.33 0.14 0.27 0.30 0.23 0.24 0.18 0.51 0.44 0.33 0.29 0.23 0.20 0.31 0.92 Cs 1.05 0.89 0.97 1.05 1.15 1.31 1.16 1.29 1.13 1.16 1.33 1.33 1.61 1.50 1.30 1.12 1.19 1.46 Ba 1384 1258 1317 1261 1424 1703 1270 1271 1658 1682 1332 1446 1447 1500 1536 1447 1813 1516 Ta 0.31 0.29 0.29 0.34 0.53 0.37 0.38 0.29 0.38 0.39 0.46 0.38 0.35 0.40 0.60 0.55 0.53 0.50 W 5.85 2.35 5.54 4.46 86.10 2.79 2.89 2.29 2.26 3.30 7.36 18.10 5.90 2.93 2.49 1.72 3.13 3.48 Tl 0.52 0.50 0.49 0.57 0.54 0.56 0.54 0.64 0.57 0.53 0.70 0.61 0.68 0.64 0.76 0.64 0.73 0.63 Pb 22.90 18.80 18.50 20.50 22.10 23.50 20.90 19.00 20.10 21.60 28.10 23.60 25.70 24.60 28.90 23.10 30.00 30.80 Bi 0.03 0.03 0.01 0.03 0.02 0.02 0.01 0.03 0.01 0.01 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.03 Th 2.23 2.40 1.66 2.01 2.55 2.33 2.62 2.17 3.24 3.69 3.29 3.71 2.82 3.17 4.06 4.64 4.06 3.61 U 0.63 0.67 0.49 0.85 0.74 1.19 0.68 0.56 0.61 0.74 1.37 1.41 0.72 0.80 1.18 0.76 1.04 0.72 Zr 35.50 22.00 22.50 24.00 33.60 27.90 32.30 26.30 37.30 40.70 43.30 34.60 39.10 42.70 43.80 41.00 50.60 45.90 Hf 1.35 0.94 1.27 1.23 1.53 1.20 1.42 1.27 1.78 1.80 1.92 1.27 1.44 1.67 1.92 1.90 2.10 2.26 δEu 1.63 1.71 2.33 1.77 1.56 1.78 1.69 1.78 1.41 1.31 1.23 1.40 1.22 1.33 1.32 1.25 1.45 1.29 ∑REE 66.56 59.86 57.16 64.79 79.48 73.69 82.85 60.25 89.27 109.15 79.78 91.03 84.51 90.05 118.19 119.41 123.40 109.64 LREE 56.84 51.43 49.38 56.05 69.50 64.48 73.75 53.01 80.19 98.11 68.89 80.37 73.39 78.55 105.61 106.57 109.98 96.27 HREE 4.08 3.31 3.07 3.71 4.02 3.54 3.84 2.98 3.87 4.86 4.48 4.48 4.63 4.83 5.19 5.48 5.90 5.59 LREE/HREE 13.93 15.53 16.07 15.09 17.28 18.24 19.23 17.81 20.72 20.20 15.39 17.95 15.84 16.26 20.37 19.45 18.63 17.21 注:主量元素含量单位为%,微量和稀土元素为10-6 3.2.1 主量元素
花岗闪长岩与二长花岗岩主量元素具有相似性,其平均SiO2含量分别为68.60%和69.67%;ALK(K2O+Na2O)含量分别为7.79%和8.19%;两者A/NCK值分别为1.62和1.47,说明样品均为铝过饱和;SiO2-(Na2O+ K2O)图解(图 5-a)中[19],样品点均落于亚碱性区域内;SiO2-FeO*/MgO图解(图略)中[20],样品点落于钙碱性区域内,花岗闪长岩和二长花岗岩里特曼指数(σ)分别为1.79~2.90和1.84~3.30,均为钙碱性系列;A/CNK-A/NK图解(图 5-b)显示,样品均为(强)过铝质。此外,蓬莱9-1构造花岗闪长岩的烧失量为0.2%~4.7%,二长花岗岩烧失量为0.9%~2.7%,说明样品经历了强烈的剥蚀作用。
在Harker图解上,花岗闪长岩与二长花岗岩表现出不同的演化特征(图略)。花岗闪长岩中MgO、TFeO含量与SiO2含量呈负相关,而二长花岗岩中MgO、TFeO含量与SiO2含量呈弱的正相关或相关性差,说明花岗闪长岩形成过程中,铁镁质矿物对其有一定的贡献。
3.2.2 微量及稀土元素
花岗闪长岩样品稀土元素总量(ΣREE)介于110×10-6~191×10-6之间,平均值为145×10-6;轻稀土元素(LREE)含量介于94×10-6~172×10-6之间,平均值为127×10-6;重稀土元素(HREE)含量介于6×10-6~ 10×10-6之间,平均值为8×10-6;LREE/HREE值介于11.39~20.93之间,平均值为16.17,说明轻、重稀土元素分异明显。二长花岗岩样品稀土元素总量介于57×10-6~123×10-6之间,平均值为87×10-6;LREE含量变化范围介于49×10-6~110×10-6之间,平均值为76×10-6;HREE含量变化范围介于3×10-6~ 6×10-6之间,平均值为4%;LREE/HREE值介于13.93~20.72之间,平均值为17.64,同样说明轻、重稀土元素分异明显。2种岩性样品(Ce/Yb)N值显示,两者整体具有重稀土元素亏损、轻稀土元素富集的特征,且δEu均大于1,说明Eu具有正异常。
2种样品在球粒陨石标准化稀土元素配分模式图(图 6)和原始地幔标准化蛛网图(图 7)中分布规律一致,所有样品的稀土元素配分曲线整体形态一致,表现出轻稀土元素富集、重稀土元素亏损的右倾平滑曲线,Eu明显正异常。从原始地幔标准化蛛网图可以看出,大离子亲石元素(LILE)富集程度较强,在蛛网图中表现为明显的峰,如Pb、Sr;而高场强元素(HFSE)则表现出一定的亏损,在蛛网图中为明显的谷,如Th、Nb、Zr等。
图 6 庙西北凸起中生代花岗岩球粒陨石标准化稀土元素配分模式图解(球粒陨石标准化值据参考文献[20])Figure 6. Chondrite-normalized REE patterns for Mesozoic granite of Miaoxibei uplift图 7 庙西北凸起中生代花岗岩微量元素原始地幔标准化蛛网图(原始地幔标准化值据参考文献[20])Figure 7. Primitive-mantle-normalized trace element patterns for Mesozoic granite of Miaoxibei uplift4. 讨论
4.1 花岗岩形成年代
受限于海域内钻井数量和年代分析数据不足,火山岩中缺乏古生物证据,海域内火山岩年代学一直存在争议。前人认为,研究区花岗岩年代为太古宙,但本文采用精确度较高的LA-ICP-MS锆石UPb测年,对构造区花岗岩进行系统的年代学测定,得到的二长花岗岩LA-ICP-MS锆石U-Pb年龄加权平均值为164.2±1.9Ma(样品A-1405)和160.6± 1.7Ma(样品A-1500),花岗闪长岩LA-ICP-MS锆石U-Pb年龄加权平均值为155.4±2.5Ma、165.0± 1.3Ma(样品B-1387.6)、160.9 ± 2.6Ma(样品B-1555)。根据本次锆石阴极发光图像,锆石具有明显的韵律环带,反映锆石是在岩浆房形成的。对于这类锆石有学者认为,最年轻颗粒的年龄最接近火山喷发的年龄,可以用最年轻锆石的年龄代表火山的喷发年龄[21]。本次研究获得的最年轻锆石U-Pb年龄为155.4±2.5Ma,该年龄被解释为岩浆结晶年龄,故潜山花岗岩形成时期为早、中侏罗世,为海域内首个中生界花岗岩潜山油藏。
受印支运动和燕山运动影响,华北板块在中生代发生广泛的火山活动,与之有关的火山岩许多学者进行了研究[22-26],认为晚印支运动形成的碱性岩局限地分散在华北板块,早燕山期的高Sr、低Y火山岩广泛分布于华北板块,晚燕山期火山岩则受控于郯庐断裂及大兴安岭-太行山脉。但对于渤海湾盆地,尤其是渤海海域之前对于火山岩的研究大多限于新生代火山岩[27-29],有学者对济阳坳陷中生界火山岩做了系统研究,将凹陷内中生界火山岩划分为6个时期[30]。本次研究所确定的花岗岩形成时期与华北地区早—中侏罗世(燕山早期)侵入岩形成时代中的第二个集中时段(155~175Ma,SHRIMP)吻合,意味着渤海海域中生代盆地演化与华北地区中生代火山活动有着密切关系。
4.2 源岩特征及花岗岩类型
原始地幔标准化蛛网图上,重稀土元素富集、轻稀土元素亏损,Sm/Nd值为0.15,正Eu异常,表明岩浆主要来源于上地壳物质的部分熔融,低稀土元素含量及高LREE/HREE值显示,源岩可能为角闪岩或榴辉岩,高Sr/Y值显示,在岩浆源区斜长石已经不稳定并开始熔融,残留相不存在或很少存在斜长石。区域地质研究也证实,花岗岩可能为下地壳来源。基于该认识,笔者认为,本区花岗岩是在早—中侏罗世地壳物质发生熔融上升侵入形成的。
花岗岩成因分类目前使用最广的是MISA型(即M、I、S和A型),对于不同成因类型花岗岩的划分前人给出大量的文献[31-33]。根据这些划分原则,研究区两类花岗岩均为过铝质S型花岗岩,主要表现为:① 铝饱和指数(A/CNK)介于1.13~1.92之间,均大于1.1,这与高分异I型花岗岩及铝质A型花岗岩存在差异[34];② 研究区花岗岩SiO2含量较小,K/ Na值较高,相对富钾与I型花岗岩相区分,同时TiO2和P2O5含量均大于0.1,碱铝指数(AKI)平均值(0.58)低于A型花岗岩下限值;③ 右倾球粒陨石标准化曲线配分样式,低Zr、Nb、Zn含量及低于350× 10-6的Zr+Nb+Ce+Y含量值,说明构造区花岗岩不同于A型花岗岩[31];④ P2O5含量随SO2含量增加基本保持不变,符合S型花岗岩特征[35]。
4.3 构造意义
华北板块经历了印支运动的改造后,在燕山期进入新的构造演化时期,其形成的南北成带、东西分块的区域构造格局发生了明显改变[30]。早、中侏罗世由于受扬子板块碰撞后持续效应的影响及构造应力的改变,使整个区域内火山岩发育。其侵入岩主要分布在燕山带的两侧,岩石类型以花岗岩、花岗闪长岩为主;喷出岩主要见于燕山、阴山、山东、辽西等地,以安山岩和玄武岩为主,火山作用主要集中在东部隆起区的断陷盆地内。研究区所获得的锆石U-Pb年龄证实,海域内在燕山期同样有明显的火山活动迹象,花岗岩(Y+Nb)-Rb判别图解[36](图 8-a)显示,构造区花岗岩均位于火山弧花岗岩(VAG)区;R1-R2因子判别图解[37](图 8-b)显示,研究区花岗岩形成于造山晚期和同碰撞的形成环境。基于这些图解推断,早—中侏罗世(燕山期早期)大洋板壳俯冲导致地幔橄榄岩发生熔融形成玄武质岩浆,岩浆底侵到下地壳,使下地壳增厚发生部分重融,最终形成花岗岩,正Eu异常也证实地壳增厚[38],晚期下地壳分离导致软流圈物质上涌,花岗质岩浆侵入形成。
这同整个华北地区区域背景吻合,侏罗纪前后扬子地块及佳蒙地块的影响,导致华北地台发育一套高Sr、低Y的钙碱性火山岩,目前大多数学者认为,这是由于地壳增厚导致下地壳熔融形成的[25, 39-41]。越来越多的学者开始将中国东部燕山期这套火山岩认定为埃达克质岩或C型埃达克质岩[25, 30, 39, 42-43]。研究区花岗岩在地球化学特征上与这套埃达克质岩具有很好的可对比性,实验岩石学资料证实,埃达克岩是在适当的温度(850~1150℃)和压力(1.0~4.0GPa)条件下由玄武质岩石部分熔融形成的[44-45]。张旗等[25]认为,晚侏罗世—早白垩世中国东部的埃达克岩呈面型分布,推测同样是大范围地壳加厚事件的产物。
综合研究认为,渤海海域在燕山期由于受扬子板块及佳蒙地块挤压,形成一套背景为同碰撞时期的火山弧环境的花岗岩,碰撞作用导致地壳快速缩短增厚,致使下地壳物质由于升温发生熔融上涌侵入,从而形成正Eu异常,重稀土元素亏损、轻稀土元素富集的过铝质S型花岗岩的形成,首次证实海域内燕山期同样存在东部高原现象。
5. 结论
(1)蓬莱9-1构造花岗岩分花岗闪长岩及二长花岗岩2类,测得的锆石U-Pb年龄表明花岗岩形成年代为早、中侏罗世,为渤海海域首个证实的中生代花岗岩油藏。
(2)地球化学分析认为,构造区花岗岩均具有高钾、富碱、强过铝质,重稀土元素亏损、轻稀土元素富集特征,正Eu异常,源岩为角闪岩或榴辉岩,是下地壳基性岩部分熔融形成的。
(3)渤海海域在燕山期同样受扬子板块及佳蒙地块挤压,发育一套与渤海湾盆地全区可对比的S型花岗岩或埃达克岩,首次证实海域内燕山期存在东部高原现象。
锆石和磷灰石裂变径迹实验分析得到中国地质大学(北京)袁万明教授和冯云磊博士的帮助,同时审稿人提出了宝贵的意见和建议,在此一并表示感谢。 -
图 1 石鼓杂岩地质图及采样位置图(a)和区域构造简图(b)(据参考文献[15]修改)
1—第四系;2—古近系;3—新元古界塔城岩组;4—新元古界陇巴岩组;5—古元古界露西岩组;6—古元古界羊坡岩组;7—古近纪花岗斑岩;8—古近纪正长斑岩;9—地质界线;10—断层;11—角度不整合界线。Ⅰ—扬子陆块;Ⅱ1-2—甘孜-理塘蛇绿混杂岩带及义敦岛弧;Ⅱ3—咱-中甸地块;Ⅲ1—维西陆缘弧带;Ⅲ2—点苍山-雪龙山结晶基底断块;Ⅳ—兰坪-思茅双向弧后-陆内盆地;①—红河-洱海-箐河断裂;②—点苍山-罗平山断裂;③—维西-乔后断裂
Figure 1. Geological map showing fission track sample locations (a) and tectonic sketch map (b) in Shigu complex
图 7 采样地形剖面(a)及沿剖面裂变径迹年龄分布图(b)(剖面位置见图 1)
Figure 7. Topographic profile (a) and the distribution of fission track ages along the section
表 1 锆石和磷灰石裂变径迹分析结果
Table 1 The analytical results of zircon and apatite fission track
样品号 矿物(粒数) ρs /(105· cm-2)(Ns) ρi/ (105· cm-2)(Ni) ρd/ (105· cm-2)(Nd) P(x2)/% 中心年龄(±1σ)/Ma L/μm(N) Sg1301 锆石(33) 160.526(5444) 83.359(2827) 15.904(7846) 35.2 143±7 Sg1304 锆石(33) 139.113(5046) 82.155(2980) 16.738(7846) 40.2 133±6 Sg1308 锆石(35) 150.277(5318) 83.644(2960) 17.294(7846) 16.5 145±7 Sg1311 锆石(4) 159.376(329) 66.366(137) 11.873(7846) 25.9 134±15 Sg1312 锆石(25) 151.442(2367) 60.014(938) 12.29(7846) 35.5 145±8 Sg1301 磷灰石(35) 4.352(1140) 41.898(10976) 13.847(5782) 0 29±2 12.7±2.0(105) Sg1304 磷灰石(25) 5.655(398) 49.387(3476) 12.962(5782) 7.4 31±2 13.1±2.0(87) 注:ρs、ρi 和ρd分别表示自发径迹密度、诱发径迹密度和标准径迹密度;Ns、Ni 和Nd 分别表示自发径迹数、诱发径迹数和标准径迹数;L—径迹长度;N—径迹数;P(x2)为x2的检验值 表 2 磷灰石热史模拟结果
Table 2 Thermal history simulation of apatites
样品 K-S检验 年龄GOF 模拟径迹长度/μm 实验径迹长度/μm 模拟年龄/Ma 测试年龄/Ma Sg1301 0.44 0.84 12.7 12.7 29.7 29.4 Sg1304 0.76 0.99 12.8 13.1 30.4 30.4 -
Gilley L D, Harrison T M, Leloup P H, et al. Direct dating of leftlateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2003, 108(B2):2127. Gilley L D, Harrison T M, Leloup P H, et al. Direct dating of leftlateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2003, 108(B2):2127.
Cao S Y, Kiu J L, Leiss B, et al. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone:Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 2011, 19:975-993. Cao S Y, Kiu J L, Leiss B, et al. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone:Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 2011, 19:975-993.
Liu F L, Wang F, Liu P F, et al. Multiple metamorphic events revealed by zircons from the Diancang Shan Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J]. Gondwana Research, 2013, 24(1):429-450. Liu F L, Wang F, Liu P F, et al. Multiple metamorphic events revealed by zircons from the Diancang Shan Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J]. Gondwana Research, 2013, 24(1):429-450.
Tang Y, Liu J L, Tran M D, et al. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone:constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China[J]. International Journal of Earth Sciences, 2013, 102:605-626. Tang Y, Liu J L, Tran M D, et al. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone:constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China[J]. International Journal of Earth Sciences, 2013, 102:605-626.
Liu J L, Chen X Y, Tang Y, et al. New tectono-geochronogical constraints on timing of shearing along the Ailao Shan-Red River shear zone:Implications for genesis of Ailao Shan gold mineralization[J]. Journal of Asian Earth Science, 2015, 103:70-86. Liu J L, Chen X Y, Tang Y, et al. New tectono-geochronogical constraints on timing of shearing along the Ailao Shan-Red River shear zone:Implications for genesis of Ailao Shan gold mineralization[J]. Journal of Asian Earth Science, 2015, 103:70-86.
李宝龙, 季建清, 付孝悦, 等. 滇西点苍山-哀牢山变质岩系变质时限研究[J]. 岩石学报, 2009, 3:595-608. Harrison T M, Leloup P H, Ryerson F J, et al. Diachronous initiation of transtension along the Ailao Shan-Red River shear zone, Yunnan and Vietnam[J]. World and Regional Geology, 1996:208-226. Harrison T M, Leloup P H, Ryerson F J, et al. Diachronous initiation of transtension along the Ailao Shan-Red River shear zone, Yunnan and Vietnam[J]. World and Regional Geology, 1996:208-226.
Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research, 2001, 106:6683-6732. Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research, 2001, 106:6683-6732.
Li Q, Chen W J, Wan J L, et al. New evidence of tectonic uplift and transform movement style along Ailao Shan-Re River shear zone[J]. Science in China, 2001, 44:124-132. Li Q, Chen W J, Wan J L, et al. New evidence of tectonic uplift and transform movement style along Ailao Shan-Re River shear zone[J]. Science in China, 2001, 44:124-132.
Cao S Y, Neubauer F, Liu J L, et al. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt, southwestern Yunnan, China:Evidence from 40Ar/39Ar thermochronology[J]. Journal of Asian Earth Sciences, 2011, 42:525-550. Cao S Y, Neubauer F, Liu J L, et al. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt, southwestern Yunnan, China:Evidence from 40Ar/39Ar thermochronology[J]. Journal of Asian Earth Sciences, 2011, 42:525-550.
Li B L, Wang D D, Ji J Q. Structure, Timing, and Mechanism of the Pliocene and Late Miocene Uplift Process of the Ailao Shan-Diancang Shan, SE Tibet, China[J]. Acta Geologica Sinica (English Edition), 2014, 88:1084-1101. Li B L, Wang D D, Ji J Q. Structure, Timing, and Mechanism of the Pliocene and Late Miocene Uplift Process of the Ailao Shan-Diancang Shan, SE Tibet, China[J]. Acta Geologica Sinica (English Edition), 2014, 88:1084-1101.
万京林, 李齐. 哀牢山-红河左旋走滑剪切带构造抬升时间序列的裂变径迹证据[J]. 地震地质, 1997, 19(1):87-90. 张进江,钟大赉,桑海清,等.哀牢山-红河构造带古新世以来多期活动的构造和年代学证据[J]. 地质科学, 2006, 41(2):291-310. Leloup P H, Harrison T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B4):6715-6743. Leloup P H, Harrison T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B4):6715-6743.
Lacassin R, Schärer U, Leloup P H, et al. Tertiary deformation and metamorphism SE of Tibet:The folded Tiger-leap décollement of NW Yunnan, China[J]. Tectonics, 1996, 15(3):605-622. Lacassin R, Schärer U, Leloup P H, et al. Tertiary deformation and metamorphism SE of Tibet:The folded Tiger-leap décollement of NW Yunnan, China[J]. Tectonics, 1996, 15(3):605-622.
沙绍礼. 滇西石鼓变质带基本特征[J]. 岩石学报, 1989, 5(1):78-83. 沙绍礼, 陈晓林, 贾昙. 石鼓群的划分及变质特征探讨[J]. 云南地质, 2014(1):1-5. 翟明国, 从柏林. 对于点苍山-石鼓变质带区域划分的意见[J]. 岩石学报, 1993, 9(3):227-239. 李昆琼. 滇西北石鼓片岩变质变形特征及其划分[J]. 云南地质, 2003, 22(3):329-335. 崔峻豪, 任涛, 胡煜昭, 等. 滇西北石鼓群上段变质岩岩石学和地球化学研究:以巴迪地区为例[J]. 矿物学报, 2014, 34(2):199-207. 杨敬奎. 滇西北巴迪地区石鼓群上段变质岩系地球化学特征研究[D]. 昆明理工大学硕士学位论文, 2014. 莫宣学, 潘桂棠. 从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-51. 刘俊来, 唐渊, 宋志杰, 等. 滇西哀牢山构造带:结构与演化[J]. 吉林大学学报:地球科学版, 2011, 41(5):1285-1303. 钟大赉. 滇川西部古特提斯造山带[M]. 北京:科学出版社, 1998:1-231. Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt:tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343:431-437. Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt:tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343:431-437.
Liu J L, Tang Y, Tran M D, et al. The nature of the Ailao Shan-Red River (ASRR) shear zone:constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs[J]. Journal of Asian Earth Sciences, 2012, 47:231-251. Liu J L, Tang Y, Tran M D, et al. The nature of the Ailao Shan-Red River (ASRR) shear zone:constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs[J]. Journal of Asian Earth Sciences, 2012, 47:231-251.
唐渊, 尹福光, 王立全, 等. 滇西崇山剪切带南段左行走滑作用的构造特征及时代约束[J]. 岩石学报, 2013, 29(4):1311-1324. Liu F L, Wang F, Liu P H, et al. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J]. Gondwana Research, 2013, 24(1):429-450. Liu F L, Wang F, Liu P H, et al. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J]. Gondwana Research, 2013, 24(1):429-450.
袁万明, 杜杨松, 杨立强, 等. 西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析[J]. 岩石学报, 2007, 23(11):2911-2917. Galbraith R F. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 1981, 13(6):471-478. Galbraith R F. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 1981, 13(6):471-478.
Green P F, Duddy I R, Laslett G M, et al. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology:Isotope Geoscience Section, 1989, 79(2):155-182. Green P F, Duddy I R, Laslett G M, et al. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology:Isotope Geoscience Section, 1989, 79(2):155-182.
Crowley K D, Cameron M, Schaefer R L. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochim. Cosmochim. Acta, 1991, 55:1449-1465. Crowley K D, Cameron M, Schaefer R L. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochim. Cosmochim. Acta, 1991, 55:1449-1465.
Naeser C W, Faul H. Fission track annealing in apatite and sphene[J]. Journal of Geophysical Research, 1969, 74(2):705-710. Naeser C W, Faul H. Fission track annealing in apatite and sphene[J]. Journal of Geophysical Research, 1969, 74(2):705-710.
Wagner G, Van den Haute P. Fission track dating[M]. Dordrecht:Kluwer Academic Publisher, 1992. Wagner G, Van den Haute P. Fission track dating[M]. Dordrecht:Kluwer Academic Publisher, 1992.
Lorencak M, Seward D, Vanderhaeghe O, et al. Low-temperature cooling history of the Shuswap metamorphic core complex, British Columbia:constraints from apatite and zircon fission-track ages[J]. Canadian Journal of Earth Sciences, 2001, 38(11):1615-1625. Lorencak M, Seward D, Vanderhaeghe O, et al. Low-temperature cooling history of the Shuswap metamorphic core complex, British Columbia:constraints from apatite and zircon fission-track ages[J]. Canadian Journal of Earth Sciences, 2001, 38(11):1615-1625.
Clift P D, Blusztajn J, Nguyen A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 2006, 33(19):19403(1-5). Clift P D, Blusztajn J, Nguyen A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 2006, 33(19):19403(1-5).
来庆洲, 丁林, 王宏伟, 等. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J]. 中国科学(D辑), 2006, 36(9):785-796. 袁万明,王世成,杨志强,等. 北喜马拉雅带构造活动的裂变径迹定年证据[J]. 核技术,2002,25(6):451-454. 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学(D辑), 2011, 41(3):332-349. 邹波, 王国芝, 邓江红. 青藏高原东南缘中甸地区上新世快速隆升的磷灰石裂变径迹证据[J]. 成都理工大学学报:自然科学版, 2014, 41(2):227-236. 雷永良, 钟大赉, 季建清, 等. 东喜马拉雅构造结更新世两期抬升-剥露事件的裂变径迹证据[J]. 第四纪研究, 2008, 28(4):584-590. 刘文中, 徐士进, 万景林, 等. 攀西地区早白垩世以来地壳抬升运动的裂变径迹年龄研究[J]. 南京大学学报:自然科学版, 2003, 39(3):337-344. 李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报:中国地质科学院院报, 1995, 1:1-9. Passchier C W, Trouw R A J. Microtectonics[M]. Berlin:Springer, 1996. Passchier C W, Trouw R A J. Microtectonics[M]. Berlin:Springer, 1996.