Research on various magnitudes of paleoearthquakes: A case study of non-characteristic earthquakes from the Salt Lake site of Haiyuan fault
-
摘要:
海原断裂是青藏高原东北缘一条重要的陆内活动左旋走滑断裂,于1920年发生过里氏8(1/2)级特大地震,形成约230km的地表破裂带和高达10.2m的同震左旋位移。该断裂的大地震复发行为特征一直是地震地质学家关注的重点,然而现有的认识需要更多以精细沉积地层约束的古地震数据的验证。基于此,在海原断裂中段干盐池盆地成功开挖了数个大型三维探槽,揭露了清晰的韵律性、面状展布地层和丰富的古地震事件证据。在探槽上部2.5m厚的最新细粒沉积层序记录了AD 1500以来的3次地震事件。基于地层中14C样品的结果和历史地震史料的考证,限定这3次地震事件分别对应于AD 1920年、AD 1760年(或1709年)和AD 1638年的地震,但其震级差别很大。除了最新一次地震,即1920年海原大地震的震级为8(1/2)级,其他2次地震事件的震级较小,均小于7级,说明海原断裂上伴生有地表破裂的地震不全是特征型地震事件。结果表明,古地震探槽中揭示的地震强度不一定相同,而且中等震级地震也可以产生地表破裂,其地层证据在合适的条件下,如无沉积间断、沉积速率大等环境能在地层中得到保存。
Abstract:The active left-lateral Haiyuan fault is one of the major continental strike-slip faults in the Tibetan Plateau. The last large earthquake that occurred on the fault was the great 1920 Ms 8(1/2) Haiyuan earthquake with a 230-km-long surface rupture and maximum left-lateral slip of 10.2m. Much less known is its earthquake recurrence behavior in spite of much focused studies. The current understanding is still preliminary and requires validation of paleoseismic data based on fine stratigraphy in trenching. In this study, the authors present results of a paleoseismic study at the Salt Lake site in a shortcut pull-apart basin within the section that broke in 1920. 3D excavation at the site exposed fine-grained and layered stratigraphy and ample evidence of multiple paleoseismic events. Charcoal fragments are abundant in the trenches. AMS dating of charcoal fragments shows that multiple events occurred during the past 3600 years. Of these, the youngest three and possibly four events were recorded in the top 2.5m section of distinctive thinly-layered stratigraphy. A comparison of paleoseismic with historical earthquake records suggests that these three events are correlative to the AD 1920, 1760 (or 1709) and 1638 earthquakes. Historical accounts of earthquake damage suggest that earthquakes exposed in the trenches are markedly different in magnitude. With the exception of the most recent M8 earthquake in AD 1920, two earlier events were considerably smaller, with magnitude M<7, and more likely M6 or less. Thus, the Haiyuan fault could produce surface-rupturing earthquakes with a variety of magnitudes, not just characteristic earthquakes. This study indicates that paleo-earthquakes exposed in trenches are not necessarily similar in size, and moderate magnitude events might produce surface ruptures, which can be preserved in stratigraphy and exposed in a paleoseismic trenching under some conditions, for instance, the sedimentation is fast enough and there exists no hiatus in deposition.
-
Keywords:
- Haiyuan fault /
- Salt Lake /
- paleoearthquake /
- historical earthquake /
- non-characteristic earthquake
-
感谢山东菏泽一中邢秀臣老师、中国地震局地质研究所助理研究员张金玉、硕士生唐茂云、李占飞和中国地震局兰州地震研究所硕士生王朋涛对野外工作的帮助。感谢评审专家的仔细审阅及有益的修改意见。
-
图 5 古地震事件A 和C 部分判断标志放大图
a—2007 首次开挖剖面;b—2007 年西墙的二次开挖剖面(a、b位置一致,见图 4)
Figure 5. Zoom in figures of event A and B indicators
英文注解
图 7 古地震事件C 和E 部分判断标志放大图
(a 为2007 年东墙二次开挖剖面,位置在9~15m 处;b 的位置见图 4)
Figure 7. Zoom in figures of event C and E indicators
表 1 干盐池探槽古地震事件证据汇总
Table 1 Summary of paleoseismic events’evidence from the Salt Lake trench
地震事件 探槽壁 位置/m 证据类别 被错断最年轻地层/下限地层 未被错断最老地层/上限地层 地震事件判识证据和分级 A T09E 9~10 tb,mt, vo 102 地表 地层102 形成花状隆起, 上盘整体倾斜;地震时产生崩积楔,并与后期沉积地层形成角度不整合[S] T07E 16~17 vo, fis 102 地表 断层带,地层107 的碎块掉入裂缝中,并在断层带两侧产生30cm的垂直位错;在一条南倾断层上盘上部的地层向北倾斜[S] T07W 14~15 vo,fz 102 地表 断层带,地层107 被断错20cm, 被断错的地层在断层带内发生旋转[S] T07WW 14 au,cw, tb,vo 102 地表 近地表地层从107 到102 均被断错;南倾断错的剪切作用使上盘的地层产生拖曳;近地表时,断层的倾角近水平,并造成地层102 在上盘形成楔状的双重地层[S] 7~8 fis, vo 105 张裂隙和充填;断层两侧地层102~105 表现为数厘米的视垂向错位[S] T09W 8~9 cw, au 102 地表 近地表地层从107 到102 均被断错;近地表时,断层的倾角近水平,并造成地层102 在上盘形成楔状的双重地层[S] B T09E 10~11 vo ,ut 107 底部 106 断裂向上分成2 支;一支延伸至地层107,地层弯曲指示这条断裂可能与南侧50cm的主断裂带相连接,并破裂到地表(事件A) [W] 110 底部 107 底部 地层129~110 被垂直断错,这支断裂向上尖灭, 位错量向上减小并逐渐消失[M] T07EE 17~18 vo, ut 110 底部 109 2 支断裂向上的位错量逐渐减小,一支尖灭在地层109 中, 另一支尖灭在地层110 中[M] C T09E 1~2 vo, tc 124 110 地层126~122 在断层南侧非常平,到断层北侧倾向北.视垂直位错量约为25cm;该次事件的证据比较充分,但是事件层不清楚,可能在地层122 之上,也可能在地层124 之上[F 或M] 8 ut, vo 125 122 一直到地层126 位错都比较明显, 然后消失在地层124, 因此可能是事件E的证据[M] 9~10 vt, tc 123 117 2 条分支之间有隆起,一条分支向上错断之层122 底部,另一条消失在地层123 中,这2 条分支向下合并然后消失(无根断层)[S] T07E 8~9 Ut 128 122 层128 明显被断错,但是断层向上延伸的层位不清楚,可能是事件C或D造成的[M] T07EE 9~10 vt,au, mt 122 116 2 条断层断错了地层124,上覆地层122 可能由于断层作用或隆起发生弯曲;断错的证据非常明显,但是事件层也可以归于事件E;上覆地层表现为范围较广的背斜弯曲变形,可能是由于较新事件造成的[M] 16~17 vt 124 116 断层断错了薄层124,被地层116 覆盖;地层122 在断层带内消失, 因此并不清楚该层是否受到断层的影响, 这些断错可能和较新事件C有关[M] T07W 8 vo 126 122? 地层126 的位错约为5cm, 位移逐渐减少并消失于地层122 底;地层122 被广泛弯曲;上覆地层充填在断层北边的下降区,形成角度不整合[F] 14~15 au 124 122? 地层128~123 均被变形形成无根向斜[S];证据非常明显, 但是由于年轻事件的变形叠加,不清楚该事件相关的地震层是在层122 之上还是之下;透镜状的地层122 说明该层沉积在洼地区 T07WW 7~8 vo 124 122? 地层124 被断错, 断裂带之外的地层弯曲变形,可能是由于弥散型变形方式;变形量向上逐渐减小及后期事件A的变形叠加使该支断层的时代断错至层123 还是层122 之上,不能很好区分[M] 8 vo 126 116 地层126 被断错约10cm, 位错量向上很快减小, 到层124 减弱至弯曲变形和约7cm的位移量, 断层终止于地层122 之下或之上一点[F] 13~14 au 124 122? 地层126~124 断错作用和褶皱作用,透镜状的地层122 说明该层局部沉积在低洼地;在断层带附近,地层122 之上的地层沉积延展范围大于地层122[S] T09W 7~8 vo 124 107 地层124 被断错,但是由于分层较差,很难限定断错截止的准确位置[F] D T09E 8~9 tb, vo 127 124 地层128 被挤压倾斜,断层向上终止不明[M] T07EE 16~17 vo,cw 128 124 断层分为2 支,地层128 被断错,破裂的块体被旋转,地层126 的厚度在断层带附近变薄, 说明该层沉积发生在陡坎形成之后,超覆陡坎之上[F] T07E 14~16 ut,tb, vo 129 126 一条分支向上延伸,断错了地层129,然后终止在128 中或稍微向上一点[F]被断错的地层128 的块体在2 条断层之间倾斜,但可能被较新的事件所扰动[F] T07W 8~9 vo, ut 128 126 地层128 发生褶皱和弯折变形,视垂直位错终止于地层127 中[W] 14~15 ut, vo 129 124? 地层129 在2 条断层之间被挤压并向上弯曲变形,由于地层界线不明,断层向上终止位置不确定, 事件C或D均有可能[M] T09W 1~2 ut 128 126 2 条次级断层终止于地层126 之下[W] E T09E 0~1 vo, ut 204 129 地层204 及以下地层在断层南侧平缓,但在北侧发生倾斜,由于地层界线不清楚,很难确定地震层的位置[W] 8~9 au, fd 205 201 上至地层205 的地层褶皱变形,未被断层错断的上部地层(204~202) 依然有幅度较小的褶皱变形[S] 10 vo, au 204 202 次级垂直断层断错了地层,位错量向上减小,并形成南倾的陡坎;地层204 和203 在陡坎的底部变厚,代表发生于陡坎形成以后的覆盖型沉积;断层和地震层保存的都比较完好[S] T07EE 16~17 mt, au 205~207 204 在南倾的断层上面有花状隆起;薄层状地层非常清楚保存了主要的背斜和次级的向斜变形;在层204 和其之下强烈变形的地层之间形成了角度不整合[S] 15~16 au, mt 205~207 204 主要的向斜变形和相应的变形量较小的背斜;处于褶皱下部的断层被后期的地震事件再次激活和叠加[S] T07W 15 scarp, au 203 201 断层断错了地层210,断层上部是面向南的陡坎,陡坎被地层205~207 覆盖,下降盘地层厚度和颗粒大小均有所增加,上覆砂层203 也表现类似的特征[S] T07WW 13 vo, au 210 204 北侧断层上部是波纹状小陡坎,并与南侧1.2m的断层控制一个地堑;南侧断层两侧沉积地层发生了沉积相变化较大[S] 14~15 vo 207 202b? 分叉的2 支断层,位于其中间的地层向上拱起[F] T09W 1~2 mt 215 203 地层300 约有1m宽的拱曲变形,在断层之上有较短波长的隆起;上覆地层203~204 厚度变化,尖灭在隆起上[S] 2~6 au 202 126~128 地层202~215 强烈变形,可能地震时这些软弱的地层发生变形,并杂揉在一起;地层126 平缓地覆盖在变形的沉积地层上,在5~6m处,未变形的最老地层是128,与其他地方比,位于较低的层位[S] 9~10 fd 204 202 薄皮背斜的褶皱作用和断裂作用;地层300 以下没有发现明显的对应变形,这是浅表的弯曲折断型变形[F] 注:古地震事件判识标志据参考文献[34];au—角度不整合;cw—崩积楔;fc—相变;fd—褶皱作用;fis—裂隙充填;fz—断层带;mt—鼓包隆 起;sf—剪切错动纹理;tb—块体倾斜或倾覆;tc—地层层厚变化;ut—断裂向上终止;vo—垂直位错;S—较强, F—一般, M—中等, W—较弱 表 2 AD 1352—1919 年靖远和海原地区历史地震史料记载
Table 2 Document of historical earthquakes at Jingyuan and Haiyuan between AD 1352 and AD 1919
地震发生时间 史料记载 推测震中 地震目录来源 备注 1760.04.02 乾隆二十五年二月二十七日海原地震——《甘肃通志稿—变异志》页37乾隆二十五年二月二十七日地震——《镇远县志》卷7 页5 海原附近 [43-44] 由于这次地震相关记载较少,多数地震目录没将其收录,震级不定 1708.10.14 康熙四十七年秋九月地震西安州堡泉源壅塞——《海城县志》卷7 页2(图 9) [39, 44] 多数地震目录认为这次地震时间有误,应为中卫1709 年M7½地震 1638.01 崇祯十年十二月海都刺(今海原)、西安州地震,数月不止,边墙、墩台及民房悉圮——《明史·五行志》卷3 干盐池-海原之间 [39-46] 震中烈度估计为Ⅵ,震级为5½级,但是由于明代海原周围人烟稀少,大一些的行政单位(如县、卫)也不多,也不能完全排除地震发生在更偏远的地方,波及到海原和西安州,震级也有可能偏高些 1542.11.04 嘉靖二十一年九月甲戍山西阳平府、陕西固原州及宁夏卫、洮州卫,俱地震有声——《世宗实录》卷264页8和《国榷》卷57页3630 海原附近? [44] 这次地震的影响范围比较大,如果把这些有感区圈画出来,那么宏观震中可能在海原附近 1491.04.21 明弘治四年三月己丑,弘治四年三月己丑陕西靖虏卫(今甘肃靖远)、乾盐池(宁夏海原干盐池)地震有声——《孝宗实录》卷49页6和《国榷》卷42页2626 靖远和干盐池之间 [39, 43-44] 靖虏卫在今甘肃靖远县,干盐池在今宁夏海原县西,两地直线距离约70km。震中应在两地之间,即今甘肃、宁夏交界的屈吴山一带 -
McCalpin J P. Paleoseismology (2nd Edition)[M]. Elsevier Publishing, Oxford,2009. McCalpin J P. Paleoseismology (2nd Edition)[M]. Elsevier Publishing, Oxford,2009.
冉勇康,邓起东.古地震学研究的历史、现状和发展趋势[J].科学通报, 1999,44(10):880-889. 刘静,徐锡伟, 李岩峰, 等. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性——兼论古地震研究中的若干问题[J]. 地质通报, 2007, 26(6):650-660. Richter F R. Elementary Seismology[M]. W. H. Freeman and Company, San Francisco, and Bailey Bros. & Swinfen Ltd., London, 1958. Richter F R. Elementary Seismology[M]. W. H. Freeman and Company, San Francisco, and Bailey Bros. & Swinfen Ltd., London, 1958.
Zhang W Q, Jiao D C, Zhang P Z, et al. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan China earthquake[J]. Bull. Seismol. Soc. Am., 1987, 77:117-131. Zhang W Q, Jiao D C, Zhang P Z, et al. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan China earthquake[J]. Bull. Seismol. Soc. Am., 1987, 77:117-131.
Chen W P, Molnar P. Seismic moments of major earthquakes and average rate of slip in central Asia[J]. J. Geophys. Res., 1977,82:2954-2969. Chen W P, Molnar P. Seismic moments of major earthquakes and average rate of slip in central Asia[J]. J. Geophys. Res., 1977,82:2954-2969.
Zhang P Z, Molnar P, Burchfiel B C, et al. Bounds on the Holocene slip rate along the Haiyuan fault, north-central China[J]. Quaternary Research, 1988,30:151-164. Zhang P Z, Molnar P, Burchfiel B C, et al. Bounds on the Holocene slip rate along the Haiyuan fault, north-central China[J]. Quaternary Research, 1988,30:151-164.
Deng Q D, Chen S, Song F, et al. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake[J]. Earthquake Source Mechanics, 1986:169-182. Deng Q D, Chen S, Song F, et al. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake[J]. Earthquake Source Mechanics, 1986:169-182.
国家地震局地质研究所, 宁夏省地震局.海原活动断裂带[M].北京:地震出版社,1990. Zhang P Z,Burchfiel B C,Molnar P, et al. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China[J]. Geological Society of America Bulletin, 1990,102:1484-1498. Zhang P Z,Burchfiel B C,Molnar P, et al. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China[J]. Geological Society of America Bulletin, 1990,102:1484-1498.
刘百篪,周俊喜.海原活断层上的史前大地震[J].地震地质, 1985,7(4):11-21. 何文贵,刘百篪,吕太乙,等.老虎山断裂带的分段性研究[J].西北地震学报. 1994,16(3):67-72. 何文贵,袁道阳,葛伟鹏,等.祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J].地震,2010,30(1):131-137. Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 1995,120(3):599-645. Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 1995,120(3):599-645.
袁道阳,刘百篪,吕太乙,等.毛毛山断裂带位移累积滑动亏损特征及其分段意义讨论[J].西北地震学报,1996,18(4):59-67. 袁道阳, 刘百篪, 吕太乙, 等.北祁连山东段活动断裂带的分段性研究[J].西北地震学报, 1998,20(4):27-33. Lasserre C, Morel P, Gaudemr Y, et al. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the western Haiyuan Fault, Gansu, China[J]. J. Geophys. Res.,1999,104:17633-17652. Lasserre C, Morel P, Gaudemr Y, et al. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the western Haiyuan Fault, Gansu, China[J]. J. Geophys. Res.,1999,104:17633-17652.
Lasserre C, Gaudemer Y, Tapponnier P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China[J]. J. Geophys. Res., 2002,107:2276-2290. Lasserre C, Gaudemer Y, Tapponnier P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China[J]. J. Geophys. Res., 2002,107:2276-2290.
张培震, 闵伟, 邓起东, 等. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学(D辑),2003,33(8):705-713. Liu Z J, Klinger Y, Xu X W, et al. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China[J]. Bull. Seis. Soc. Am., 2007,97:14-34. Liu Z J, Klinger Y, Xu X W, et al. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China[J]. Bull. Seis. Soc. Am., 2007,97:14-34.
Li C Y, Zhang P Z, Yin J, et al. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan plateau[J]. Tectonics, 2009,28:TC5010. Li C Y, Zhang P Z, Yin J, et al. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan plateau[J]. Tectonics, 2009,28:TC5010.
Jolivet R, Lasserre C, Doin M P, et al. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry[J]. J. Geophys. Res., 2012, 117:1-18. Jolivet R, Lasserre C, Doin M P, et al. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry[J]. J. Geophys. Res., 2012, 117:1-18.
张维歧, 焦德成. 海原古地震的一个剖面[J].地震地质,1984, 6(3):14. Deng Q D, Wang Y P, Song F M, et al.Principal Characteristics of the Nanxihuashan Fault Zone and the 1920 Haiyuan Earthquake Faultandthe Recurence of Strong Earthquakes[J]. EOS, Trans. Am. Geophys. Union, 1985, 6(46):169. Deng Q D, Wang Y P, Song F M, et al.Principal Characteristics of the Nanxihuashan Fault Zone and the 1920 Haiyuan Earthquake Faultandthe Recurence of Strong Earthquakes[J]. EOS, Trans. Am. Geophys. Union, 1985, 6(46):169.
Zhang P Z, Molnar P, Burchfiel B C, et al. Bounds on the average recurence interval of major earthquakes along the Haiyuan Fault in NorthCentral China[J]. Seismol. Res. Lett., 1988, 59(3):81-89. Zhang P Z, Molnar P, Burchfiel B C, et al. Bounds on the average recurence interval of major earthquakes along the Haiyuan Fault in NorthCentral China[J]. Seismol. Res. Lett., 1988, 59(3):81-89.
冉勇康, 段瑞涛, 邓起东, 等. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质, 1997, 19(2):97-107. 冉勇康,邓起东.海原断裂的古地震及特征地震破裂的分级性讨论[J].第四纪研究,1998,(3):271-278. 冉勇康,段瑞涛,邓起东. 海原断裂主要活动段的古地震与强震分布特征探讨[J]. 活动断裂研究, 1998, 6:42-55. 闵伟, 张培震. 海原活动断裂带破裂行为特征研究[J].地质论评, 2001,47(1):75-81. Min W,Zhang P Z, Deng Q D,et al.ThedetailedstudyofHolocenepaleoearthquakes ofactiveHaiyuan Fault[J]. Continental Dynamics, 20016(2):59-66. Min W,Zhang P Z, Deng Q D,et al.ThedetailedstudyofHolocenepaleoearthquakes ofactiveHaiyuan Fault[J]. Continental Dynamics, 20016(2):59-66.
Zhang P Z, Burchfield B C, Chen S, et al. Extinction of pull-apart basins[J]. Geology, 1989,17:814-817. Zhang P Z, Burchfield B C, Chen S, et al. Extinction of pull-apart basins[J]. Geology, 1989,17:814-817.
邓起东,刘百篪,张培震,等. 活动断裂工程安全评价和位错量的定量评估[C].活动断裂研究(2)北京:地震出版社, 1992:236-246. Ding G Y, Chen J, Tian Q J, et al. Active faults and magnitudes of left-lateral displacement along the northern margin of the Tibetan Plateau[J]. Tectonophysics, 2004,380:243-260. Ding G Y, Chen J, Tian Q J, et al. Active faults and magnitudes of left-lateral displacement along the northern margin of the Tibetan Plateau[J]. Tectonophysics, 2004,380:243-260.
Scharer K M, Weldon R J Ⅱ, Fumal T E, et al. Paleoearthquakes on the southern San Andreas fault, Wrightwood, California, 3000 to 1500 B.C.:a new method for evaluating paleoseismic evidence and earthquake horizons[J]. Bull. Seismol. Soc. Am., 2007,97:1054-1093. Scharer K M, Weldon R J Ⅱ, Fumal T E, et al. Paleoearthquakes on the southern San Andreas fault, Wrightwood, California, 3000 to 1500 B.C.:a new method for evaluating paleoseismic evidence and earthquake horizons[J]. Bull. Seismol. Soc. Am., 2007,97:1054-1093.
Weldon R J Ⅱ, Fumal T E, Powers T J, et al. Structure and earthquake offsets on the San Andreas fault at the Wrightwood, California, paleoseismic site[J]. Bull. Seis. Soc. Am., 2002,92(7):2704-2725. Weldon R J Ⅱ, Fumal T E, Powers T J, et al. Structure and earthquake offsets on the San Andreas fault at the Wrightwood, California, paleoseismic site[J]. Bull. Seis. Soc. Am., 2002,92(7):2704-2725.
Allen C R, Brune J N. A low-stress-drop, low-magnitude earthquake with surface faulting:The Imperial, California, earthquake of March 4, 1966[J]. Bull. Seis. Soc.Am., 1967,57:501-514. Allen C R, Brune J N. A low-stress-drop, low-magnitude earthquake with surface faulting:The Imperial, California, earthquake of March 4, 1966[J]. Bull. Seis. Soc.Am., 1967,57:501-514.
Marco S, Stein M, Agnon A, et al. Long term earthquake clustering:a 50000 year paleoseismic record in the Dead Sea Graben[J]. J. Geophys. Res., 1996,101:6179-6192. Marco S, Stein M, Agnon A, et al. Long term earthquake clustering:a 50000 year paleoseismic record in the Dead Sea Graben[J]. J. Geophys. Res., 1996,101:6179-6192.
Bronk R C. OxCal 4.2 Manual. Available from Oxford Radiocarbon Accelerator Unit[EB/OL] [2015-11-26] https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. 2013. Bronk R C. OxCal 4.2 Manual. Available from Oxford Radiocarbon Accelerator Unit[EB/OL] [2015-11-26] https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. 2013.
中国科学院地震工作委员会历史组编.中国地震年表[M].北京:科学出版社,1956. 李善邦.中国地震目录[M].北京:地震出版社,1960. 中央地震工作小组办公室主编.1971.中国地震目录[M]. 北京:科学出版社,1971. 顾功叙. 中国地震目录[M]. 北京:科学出版社,1983. 谢毓寿,蔡美彪.中国地震历史资料汇编:第一卷-第四卷[M].北京:科学出版社,1983,1985,1987. 国家地震局兰州地震研究所.甘肃省历史地震资料汇编[M]. 北京:地震出版,社1989. 国家地震局地球物理研究所等. 明时期中国历史地震图集[M]. 北京:地图出版社,1986. 国家地震局震害防御司主编.中国历史强震目录(公元前23世纪-公元1911年)[M]. 北京:地震出版社,1995. Hudnut K, Beavan J. Vertical deformation (1952-1987) in the Salton Trough, California, from water level recordings[J]. J. Geophys. Res., 1989, 94:9463-9476. Hudnut K, Beavan J. Vertical deformation (1952-1987) in the Salton Trough, California, from water level recordings[J]. J. Geophys. Res., 1989, 94:9463-9476.
Wei M, Sandwell D, Fialko Y, et al. Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR[J]. Geophys. Res. Lett., 2011,38(L01308):1-6. Wei M, Sandwell D, Fialko Y, et al. Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR[J]. Geophys. Res. Lett., 2011,38(L01308):1-6.
袁道阳, 雷中生, 何文贵, 等. 公元前186年武都地震考证与发震构造分析[J]. 地震学报, 2007,29(6):654-663. 刘兴旺, 袁道阳, 何文贵. 祁连山北缘佛洞庙-红崖子断裂古地震特征初步研究[J]. 震灾防御技术, 2014,9(3):411-419. Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature, 2006,444:358-360. Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature, 2006,444:358-360.
Klinger Y. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. J. Geophys. Res., 2010,115(B07306):1-19. Klinger Y. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. J. Geophys. Res., 2010,115(B07306):1-19.
Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull. Seismol. Soc. Am., 1994,84, 974-1002. Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull. Seismol. Soc. Am., 1994,84, 974-1002.
Streig A R, Dawson T E, Weldon R J Ⅱ. Paleoseismic evidence of the 1890 and 1838 earthquakes on the Santa Cruz Mountains section of the San Andreas fault, near Corralitos, California[J]. Bull. Seismol. Soc. Am., 2014, 104(1):285-300. Streig A R, Dawson T E, Weldon R J Ⅱ. Paleoseismic evidence of the 1890 and 1838 earthquakes on the Santa Cruz Mountains section of the San Andreas fault, near Corralitos, California[J]. Bull. Seismol. Soc. Am., 2014, 104(1):285-300.
Bakun W H, Wentworth C M. Estimating earthquake location and magnitude from seismic intensity data[J]. Bull. Seismol. Soc. Am., 1997, 87:1502-1521. Bakun W H, Wentworth C M. Estimating earthquake location and magnitude from seismic intensity data[J]. Bull. Seismol. Soc. Am., 1997, 87:1502-1521.
Wells D L, Coppersmith K J. Likelihood of Surface Rupture as a function of Magnitude[J]. Seismol. Res. Lett., 1993,64(1):54. Wells D L, Coppersmith K J. Likelihood of Surface Rupture as a function of Magnitude[J]. Seismol. Res. Lett., 1993,64(1):54.
Weldon R J Ⅱ, Biasi G. Probability of detection of ground rupture at paleoseismic sites[M]. Appendix I of Uniform California Earthquake Rupture Forecast, Version 3(UCERF3),2015:1-26. Weldon R J Ⅱ, Biasi G. Probability of detection of ground rupture at paleoseismic sites[M]. Appendix I of Uniform California Earthquake Rupture Forecast, Version 3(UCERF3),2015:1-26.
Sieh K E, Natawidjaja D H, Meltzner A J, et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra[J]. Science, 2008,322(5908):1674-1678. Sieh K E, Natawidjaja D H, Meltzner A J, et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra[J]. Science, 2008,322(5908):1674-1678.
Grant-Ludwig L, Akçiz S O, Noriega G R, et al. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo Plain[J]. Science, 2010,27:1117-1119. Grant-Ludwig L, Akçiz S O, Noriega G R, et al. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo Plain[J]. Science, 2010,27:1117-1119.
Akciz S, Ludwig L, Arrowsmith J, et al. Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California[J]. Geology, 2010,38:787-790. Akciz S, Ludwig L, Arrowsmith J, et al. Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California[J]. Geology, 2010,38:787-790.
Weldon R J Ⅱ, Scharer K, Fumal T, et al. Wrightwood and the earthquake cycle:What a long recurrence record tells us about how faults work[J]. GSA Today,2004,14(9):4-10. Weldon R J Ⅱ, Scharer K, Fumal T, et al. Wrightwood and the earthquake cycle:What a long recurrence record tells us about how faults work[J]. GSA Today,2004,14(9):4-10.
Stein S, Newman A. Characteristic and uncharacteristic earthquakes as possible artifacts:Applications to the New Madrid and Wabash seismic zones[J].Seismol. Res. Lett., 2004, 75:173-187. Stein S, Newman A. Characteristic and uncharacteristic earthquakes as possible artifacts:Applications to the New Madrid and Wabash seismic zones[J].Seismol. Res. Lett., 2004, 75:173-187.