• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

班公湖-怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示

强巴扎西, 吴浩, 格桑旺堆, 次仁欧珠, 巴桑顿珠, 琼达, 女达娃

强巴扎西, 吴浩, 格桑旺堆, 次仁欧珠, 巴桑顿珠, 琼达, 女达娃. 2016: 班公湖-怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示. 地质通报, 35(5): 648-666. DOI: 10.12097/gbc.dztb-35-05-648
引用本文: 强巴扎西, 吴浩, 格桑旺堆, 次仁欧珠, 巴桑顿珠, 琼达, 女达娃. 2016: 班公湖-怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示. 地质通报, 35(5): 648-666. DOI: 10.12097/gbc.dztb-35-05-648
QIANGBA Zhaxi, WU Hao, GESANG Wangdui, CIREN Ouzhu, BASANG Dunzhu, QIONG Da, NÜ Dawa. 2016: Early Cretaceous magmatism in Dongqiao, Tibet: Implications for the evolution of the Bangong-Nujiang Ocean and crustal growth in a continent-continent collision zone. Geological Bulletin of China, 35(5): 648-666. DOI: 10.12097/gbc.dztb-35-05-648
Citation: QIANGBA Zhaxi, WU Hao, GESANG Wangdui, CIREN Ouzhu, BASANG Dunzhu, QIONG Da, NÜ Dawa. 2016: Early Cretaceous magmatism in Dongqiao, Tibet: Implications for the evolution of the Bangong-Nujiang Ocean and crustal growth in a continent-continent collision zone. Geological Bulletin of China, 35(5): 648-666. DOI: 10.12097/gbc.dztb-35-05-648

班公湖-怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示

基金项目: 

中国地质调查局项目 1212011086060

吉林大学研究生创新基金资助项目( 2015018

详细信息
    作者简介:

    强巴扎西(1973-),男,高级工程师,从事青藏高原区域地质调查与研究。E-mail:qbzx@126.com

  • 中图分类号: P534.53;P588.11+5

Early Cretaceous magmatism in Dongqiao, Tibet: Implications for the evolution of the Bangong-Nujiang Ocean and crustal growth in a continent-continent collision zone

  • 摘要:

    对班公湖-怒江缝合带内的岩浆作用进行LA-ICP-MS锆石U-Pb测年和地球化学分析,在辉绿岩中获得138.7±1.0Ma的206Pb/238U年龄加权平均值,在流纹岩中获得了110.4±0.4Ma的谐和年龄,表明区内岩浆作用具有2期成因。地球化学研究认为,辉绿岩是地幔熔融的产物,花岗闪长岩为岩石圈地幔熔融的产物,而流纹岩显示2类不同的岩石地球化学特征,低Sr流纹岩为古老岩石圈地幔熔体经历分离结晶作用的产物,高Sr流纹岩具有埃达克岩的特征,为增厚下地壳熔融的产物。综合已有的研究,早白垩世岩浆作用在缝合带两侧均有展布,其中早期岩浆岩为班公湖-怒江洋双向俯冲的产物,末期岩浆岩是碰撞后俯冲洋壳前缘断离形成的。早白垩世班公湖-怒江洋经历了双向俯冲到大洋闭合的演化过程,并在早白垩世末期发生了俯冲洋壳的断离事件。同时,高Sr流纹岩的发现表明,早白垩世末期班公湖-怒江缝合带已经发生了明显的地壳增厚作用。

    Abstract:

    The Dongqiao area is located across Bangong Co-Nujiang River suture zone (BNSZ) and the southern Qiangtang terrane. The study area has widely exposed diverse rock types such as diabases, rhyolites and granodiorites. In this paper, the authors report the LA-ICP-MS zircon U-Pb age and whole-rock major and trace element composition data of the diverse Early Cretaceous magmatic rocks from Dongqiao. The diabase sample yielded a zircon U-Pb age of 138.7±1.0Ma, and the zircons from rhyolite yielded an age of 110.4±0.4Ma, indicating that the magmatic rocks in Dongqiao formed in two periods of magmatism. According to geochemical characteristics of the rocks, the diabases were produced by partial melting of the mantle, and the granodiorites by partial melting of ancient lithospheric mantle that had been modified by subduction-related components. In addition, the geochemical data indicate that rhyolites can be divided into two types of high Sr and low Sr rhyolites. Low Sr rhyolites were formed by partial melting of ancient lithospheric mantle, and the melt subsequently underwent intense fractional crystallization. High Sr rhyolites had an affinity with adakites, which were derived from partial melting of thickened lower crust. The new data obtained by the authors, together with recently published data, led the authors to develop a model of bidirectional subduction and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean which can explain the two magmatic events in the region from BNSZ to the southern Qiangtang terrane. Research on high Sr rhyolites indicates that the extensive magmatism and continent-continent collision contributed significantly to the crustal growth after the closure of Bangong-Nujiang Ocean in Early Cretaceous.

  • 川-滇-黔铅锌银多金属成矿区是中国主要的铅锌银矿产基地之一,共发现400多个铅-锌矿床和矿化点。前人主要针对震旦系—二叠系沉积岩中的典型铅锌矿床进行了较系统的矿床地质、矿床地球化学及成矿年代学研究,取得了诸多重要进展[1-4]:① 矿床分布明显受构造控制,属于后生热液矿床;② 成矿物质具有多来源特征,其中基底岩石是重要的物源岩;③ 尽管成矿年龄差别较大,但主要集中于192~226Ma,暗示矿床形成与印支运动有关。而滇中铅锌矿集区赋矿层位多,从昆阳群到第四系各时代地层中均有铅锌矿床赋存,几乎涵盖了所有川-滇-黔成矿区赋矿地层。云南禄劝噜鲁铅锌矿床滇中矿集区赋存于下寒武统梅树村组顶部白云岩地层中。前人仅对滇中矿集区做过报道[5-10],对云南禄劝噜鲁铅锌矿床研究较薄弱,地球化学资料未见报道,制约了该矿床成矿过程和成矿预测研究。

    本次在详实的矿床地质研究基础上,开展系统的同位素地球化学和年代学研究,以期查明噜鲁铅锌矿床的成矿特征、物质来源和形成时代,分析矿床形成机制及成矿动力学背景。

    滇中铅锌矿集区位于扬子地块西南缘,上扬子铅锌成矿带上,其大地构造位置大致北起东川东西向的宝台厂-洪门厂断裂,南到红河断裂西至绿汁江断裂,东达小江断裂。滇中铅锌矿集区地壳结构复杂,具有多层结构的特征。滇中铅锌矿集区地层从古元古界大红山群(苴林群)到新生界第四系均有分布。沉积岩岩性以碳酸盐岩为主。滇中铅锌矿集区经历了多期的构造运动,断裂构造主要有元谋-绿汁江断裂、普渡河-滇池断裂、西昌-易门断裂、小江断裂、红河断裂、弥勒-师宗断裂(图 1)。

    图  1  噜鲁铅锌矿床矿区地质图
    P2β—上二叠统峨眉山玄武岩组;P1q+m—下二叠统茅口组+栖霞组;∈1d+s—中寒武统双龙潭+陡坡寺组;∈1l—下寒武统龙王庙组;∈1c—下寒武统仓浪铺组;∈1q—下寒武统筇竹寺组;∈1m2—下寒武统梅树村组上段;∈1m1—下寒武统梅树村组下段;Zbdn—上震旦统灯影组;1—城市名;2—断裂(①—元谋-绿汁江断裂;②—西昌-易门断裂;③—普渡河-滇池断裂;④—小江断裂;⑤—红河断裂;⑥—弥勒-师宗断裂);3—湖泊; 4—铅锌矿体;5—断层;6—地层产状;7—地理点;8—地质界线;9-勘探线
    Figure  1.  Geological map of the Lulu Pb-Zn ore district

    滇中矿集区受扬子板块与印度板块碰撞及板内攀西裂谷作用的影响,岩浆活动频繁,从古—中生代均有岩浆活动,最重要的是二叠纪基性火山活动,其次为燕山期中酸性岩浆侵入活动。

    噜鲁铅锌矿床位于昆明市禄劝县,大地构造位置地处扬子地块西南边缘,小江深大断裂与普渡河-滇池深大断裂之间,目前该矿床仍处于勘查阶段,资源量已达小型矿床规模。

    矿区出露地层有新元古界震旦系灯影组(Zbdn)、下寒武统梅树组(∈1m)、筇竹寺组(∈1q)、沧浪铺组(∈1c)、龙王庙组(∈1l)、陡坡寺+双龙潭组(∈1d+s)、下二叠统茅口+栖霞组(P1q+m)、上二叠统峨眉山玄武岩组(P2β)。铅锌矿体赋存于下寒武统梅树组下段(∈1m1)(图 1)。

    矿区内构造简单,为宏宽背斜东翼的单斜岩层构造,走向北北西,倾向约70°,倾角多为12°~20°,局部出现小的次级褶曲。在矿区范围内断层不发育,仅南部有1条,且离铅锌矿体较远,对矿体没有明显的破坏作用。

    矿区内岩浆活动较强,主要为中上二叠统(P2β),形成上部、下部2个旋回。第一旋回岩性主要以灰绿色斜斑玄武岩为主夹致密玄武岩或斜斑玄武岩。第二旋回岩性主要为底部火山角砾岩、火山角砾玄武质凝灰岩、凝灰岩夹灰岩;向上为熔岩,上部为杏仁状玄武岩;中部致密状玄武岩为主夹杏仁状玄武岩;下部以斜长玄武岩为主。

    矿区目前圈定铅锌矿体1个(图 2),矿体赋存于下寒武统梅树村组下段(∈1m1)顶部白云岩中,矿体产状与地层基本一致,呈似层状、局部地段有脉状矿体。矿体地表出露长约150m,倾向南,倾角15°~ 20°,矿体厚度一般为1.70~10.71m,平均厚约3.26m,随深度增大,矿体厚度有逐步变厚的趋势。矿体倾向延伸控制约350m。随着矿体的延深见少量的白云岩夹石呈透镜状分布。矿体Pb品位为0.44%~ 20.00%,平均品位为1.78%;Zn品位为0.56%~9.06%,平均品位为2.01%。

    图  2  噜鲁铅锌矿床3勘探线剖面
    1c—下寒武统仓浪铺组;∈1q—下寒武统筇竹寺组;∈1m2—下寒武统梅树村组上段;∈1m1—下寒武统梅树村组下段;1—白云岩;2—砂质白云岩;3—泥质粉砂岩;4—粉砂岩;5—页岩;6—铅锌矿体;7—产状;8—钻孔
    Figure  2.  Geological section along No. 3 exploration line of the Lulu Pb-Zn deposit

    矿石中金属矿物主要为方铅矿、闪锌矿、黄铁矿、白铁矿、毒砂等;非金属矿物主要为重晶石、石英、方解石。矿石中常见菊花状、放射状重晶石(图 3),也可见少量乳滴状沥青。矿石结构主要为自形-他形中细晶状结构、压碎结构、纤维状结构、交代溶蚀结构等。矿石构造主要为块状构造、网脉状构造、浸染状构造、脉状构造、条带状-条纹状构造。围岩蚀变主要有黄铁矿化、硅化、重晶石化、碳酸盐化等。其中黄铁矿化常见黄铁矿呈团块状、星散状、脉状等分布,脉宽最大可达1m,在坑道及老硐见矿位置均普遍分布。重晶石化常见重晶石呈团块状、放射状及细脉状分布于铅锌矿体及黄铁矿周围,较富集。碳酸盐化以白云石化为主,广泛发育于含矿层及顶板、底板,并贯穿于成矿过程的始终。

    图  3  噜鲁铅锌矿床矿物手标本与镜下特征
    a—块状矿石,矿石矿物组合为方铅矿(Gn)、黄铁矿(Py)、重晶石(Brt);b—方铅矿、闪锌矿(Sp)、重晶石等矿物呈现星点状分布;c—黄铁矿沿闪锌矿粒间充填交代,呈不规则状分布;d—方铅矿穿插交代闪锌矿,少量黄铁矿包含于闪锌矿中
    Figure  3.  Mineral hand specimens and microscopic features of Lulu Pb-Zn deposit

    矿区经历了多期成矿作用,根据矿脉穿插关系、矿物组合及矿石结构,结合区域构造演化过程,将噜鲁铅锌的成矿作用划分为沉积成岩期、热液成矿期和表生氧化期3期,其中热液成矿期可进一步划分为3个成矿阶段,即重结晶白云岩-石英-黄铁矿阶段、黄铁矿-方铅矿-闪锌矿阶段(主成矿阶段)和黄铁矿阶段。

    样品采自噜鲁铅锌矿床矿区坑道内,新鲜。用于Rb-Sr同位素定年的黄铁矿与方铅矿为矿物共生组合。

    Rb-Sr化学分离与质谱测试在中国科学院地质与地球物理研究所固体同位素地球化学实验室完成。同位素比值测试在高精度固体热电离质谱计(IsoProbe-T)上完成。采用单W和单Ta灯丝载入Sr和Rb样品,以纯化的TaF5作为发射剂,以Faraday接收器静态测量锶同位素组成,以Daly接收器监测Rb对Sr的同质异素干扰。测定方法和仪器参数见参考文献[9-10],锶同位素比值采用保守外精度误差0.05‰。

    硫同位素组成分析在中国科学院贵阳地球化学研究所环境地球化学国家重点实验室,采用EAIRMS法在连续流质谱仪上完成。用国标GBW04415和04414,Ag2S做内标,以CDT为标准,分析精度约为0.2‰(2σ)。

    铅同位素样品测试在核工业北京地质研究院分析测试研究中心进行,先称取适量样品放入聚四氟乙烯坩埚中,加入氢氟酸中、高氯酸溶样。样品分解后,将其蒸干,再加入盐酸溶解蒸干,加入0.5N氢溴酸(HBr)溶液溶解样品进行铅的分离;将样品溶解倒入预先处理好的强碱性阴离子交换树脂中进行铅的分离,用0.5N氢溴酸(HBr)溶液淋洗树脂,再用2N盐酸(HCl)溶液淋洗树脂,最后用6N盐酸(HCl)溶液解脱,将解脱溶液蒸干备质谱测定;用热表面电离质谱法进行铅同位素测量,仪器型号为JY/T004-1996,对1μg的铅,208Pb/206Pb测量精度优于0.005%,NBS981标准值(2δ):208Pb/206Pb= 2.1681 ± 0.0008,207Pb/206Pb=0.91464 ± 0.00033,204Pb/ 206Pb=0.059042±0.000037。

    本次对噜鲁铅锌矿床中的5件硫化物样品进行测试。根据测试结果可知,噜鲁铅锌矿床方铅矿单矿物Rb、Sr含量存在变化。由表 1可见,全部硫化物样品的Rb含量较低(0.1476×10-6~2.013×10-6),Sr含量不高(0.2279 × 10-6~2.957 × 10-6),Rb/Sr值为0.1142~4.0158;87Rb/86Sr值为0.3205~12.17,87Sr/86Sr值为0.712331~0.746457。

    表  1  噜鲁铅锌矿床硫化物Rb-Sr同位素组成
    Table  1.  Rb-Sr isotopic composition of sulfides from the Lulu Pb-Zn deposit
    编号 矿物 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr
    LL-0-02 黄铁矿 0.1476 1.293 0.3205 0.712331±10
    LL-0-04 黄铁矿 2.013 2.957 2.036 0.717113±8
    LL-13 方铅矿 0.3405 0.9726 1.037 0.714388±9
    LL-34 方铅矿 1.594 1.231 3.814 0.722339±11
    LL-36 方铅矿 0.9152 0.2279 12.17 0.746457±8
    下载: 导出CSV 
    | 显示表格

    本次共测试噜鲁铅锌矿床硫化物和硫酸盐矿物样品40件,硫同位素组成见表 2。其中13件方铅矿的δ34S值介于10.32‰~12.82‰之间,平均值为11.32‰;6件闪锌矿的δ34S值介于9.72‰~18.76‰之间,平均值为12.87‰;12件黄铁矿的δ34S值介于12.52‰~22.44‰之间,平均值为17.29‰;9件重晶石的δ34S值介于26.08‰ ~29.34‰之间,平均值为27.29‰;矿石中硫化物δ34S的变化规律为:方铅矿δ34S<闪锌矿δ34S<黄铁矿δ34S<重晶石δ34S,说明热液成矿作用过程中硫同位素分馏达到平衡。硫同位素直方图浓度中心为9‰~15‰(图 4)。

    图  4  噜鲁铅锌矿床硫同位素分布直方图
    Figure  4.  Sulfur isotopic histogram of the Lulu Pb-Zn deposit
    表  2  噜鲁铅锌矿床硫同位素组成
    Table  2.  Sulfur isotopic composition of the Lulu Pb-Zn deposit
    编号 测试矿物 δ34S/‰ 编号 测试矿物 δ34S/‰
    LL-0-01 方铅矿 11.09 LL-27 黄铁矿 16.80
    LL-0-02 方铅矿 10.86 LL-29 黄铁矿 13.78
    LL-0-04 方铅矿 10.77 LL-32 黄铁矿 16.86
    LL-12 方铅矿 11.63 LL-42 黄铁矿 22.44
    LL-13 方铅矿 11.66 LL-45 黄铁矿 13.30
    LL-16 方铅矿 12.10 LL-0-07 闪锌矿 14.22
    LL-28 方铅矿 12.82 LL-32 闪锌矿 10.97
    LL-32 方铅矿 11.08 LL-38 闪锌矿 18.76
    LL-34 方铅矿 12.27 LL-0-10 闪锌矿 10.38
    LL-36 方铅矿 11.01 LL-33 闪锌矿 13.18
    LL-41 方铅矿 10.87 LL-0-08 闪锌矿 9.72
    LL-42 方铅矿 10.32 LL-0-07 重晶石 27.02
    LL-45 方铅矿 10.67 LL-34 重晶石 27.12
    LL-01 黄铁矿 22.30 LL-0-08 重晶石 26.36
    LL-12 黄铁矿 11.63 LL-0-04 重晶石 27.21
    LL-13 黄铁矿 21.57 LL-12 重晶石 26.08
    LL-14 黄铁矿 14.35 LL-0-10 重晶石 29.34
    LL-14-1 黄铁矿 17.33 LL-13 重晶石 27.92
    LL-16 黄铁矿 14.53 LL-16 重晶石 28.47
    LL-17 黄铁矿 21.67 LL-14 重晶石 26.09
    下载: 导出CSV 
    | 显示表格

    本次共测试噜鲁铅锌矿床硫化物矿物样品12件,铅同位素组成见表 3。样品206Pb/204Pb值为18.259~18.342,平均值为18.307;207Pb/204Pb值为15.608~15.639,平均值为15.623;208Pb/204Pb值为38.46~38.821,平均值为38.540;铅同位素组成相对均一。样品ω值为36.070~40.860,平均值为37.740;Th/U值为3.690~4.160,平均值为3.838;μ值在9.470~9.560之间,平均值为9.516。样品μ值均小于9.81(现代海洋沉积物的μ值)。

    表  3  噜鲁铅锌矿床铅同位素组成
    Table  3.  The lead isotope composition of the Lulu Pb-Zn ore deposits
    样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 206Pb/207Pb μ ω Th/U
    LL-42 黄铁矿 18.342 15.629 38.543 1.174 9.530 37.600 3.820
    LL-45 黄铁矿 18.339 15.626 38.532 1.174 9.520 37.540 3.820
    LL-0-01 方铅矿 18.283 15.608 38.564 1.171 9.490 37.820 3.860
    LL-0-02 方铅矿 18.298 15.615 38.557 1.172 9.510 37.770 3.840
    LL-0-04 方铅矿 18.315 15.624 38.561 1.172 9.520 37.780 3.840
    LL-13 方铅矿 18.329 15.617 38.545 1.174 9.510 37.570 3.820
    LL-32 方铅矿 18.316 15.612 38.46 1.173 9.500 37.240 3.790
    LL-34 方铅矿 18.291 15.627 38.558 1.171 9.530 37.930 3.850
    LL-36 方铅矿 18.331 15.618 38.537 1.174 9.510 37.530 3.820
    LL-41 方铅矿 18.326 15.632 38.535 1.172 9.540 37.690 3.820
    LL-42 方铅矿 18.259 15.639 38.539 1.168 9.560 38.150 3.860
    LL-45 方铅矿 18.262 15.636 38.548 1.168 9.550 38.140 3.870
    下载: 导出CSV 
    | 显示表格

    热液矿物中Rb-Sr主要赋存在矿物晶格中,或赋存在固态微包体、流体包裹体中。随着测试技术的发展,以及Rb-Sr等时线法成功地运用于MVT铅锌矿床定年,众多学者对Rb-Sr定年法进行了研究,证明了Rb-Sr等时线法对铅锌矿床定年的有效性[11-12]。同理,许多学者也运用Rb-Sr法对研究区周边铅锌矿床进行了大量的定年研究[13-15]。前人对铅锌矿床闪锌矿的Rb-Sr同位素定年研究较多,这是因为闪锌矿较其他热液矿物Rb、Sr含量较高,且Rb/Sr值较高、变化范围较大[16]。随着测试技术的发展,方铅矿和黄铁矿的Rb-Sr同位素定年也成为可能[17-19]。田世洪等[18]对玉树地区东莫扎抓铅锌矿床方铅矿与黄铁矿矿物共生组合Rb-Sr等时线年龄进行了研究,并与闪锌矿单矿物Rb-Sr等时线年龄进行比较,两者的等时线年龄在误差范围内一致。黄华等[19]对云南保山金厂河铁铜铅锌多金属矿床方铅矿与闪锌矿矿物共生组合Rb-Sr等时线年龄进行了研究,并与闪锌矿单矿物Rb-Sr等时线年龄进行比较,两者的等时线年龄在误差范围内一致。刘建明等[20]认为,由于不同矿物相具有不同的化学势,化学性质不同的Rb和Sr将发生化学分异,从而使同一成矿母液中沉淀出的一组共生矿物具有不同的Rb/Sr值,用热液矿物组合Rb-Sr等时线测定热液矿床的成矿时代比较理想。因此,笔者运用噜鲁铅锌矿床方铅矿和黄铁矿矿物组合进行Rb-Sr等时线定年。经过Isoplot软件计算,5件硫化Rb-Sr同位素初始值(87Sr/86Sr)i为0.71135± 0.00012,得到202.8±1.4Ma等时线年龄(MSWD= 0.58)(图 5),表明该矿床形成于印支晚期—燕山早期。

    图  5  噜鲁铅锌矿床方铅矿与黄铁矿矿物组合Rb-Sr同位素等时线图
    Figure  5.  Rb-Sr isochron diagram of intergrowth pyrite and galena mineral association from the Lulu Pb-Zn deposit

    前人对区域上其他铅锌矿床做了大量的定年工作,黄智龙[13]等利用闪锌矿单矿物颗粒Rb-Sr法测定的会泽铅锌矿床成矿年龄为226±1Ma、225±1Ma、226±7Ma;蔺志永等[14]利用闪锌矿单矿物颗粒Rb-Sr法测定跑马铅锌矿床成矿年龄为200.1±4.0Ma;包广萍等[15]利用方解石Sm-Nd法测定的茂租铅锌矿成矿年龄为196±13Ma,前人获得年代学数据与本次取得的年代学数据在误差范围内一致。

    前人在研究87Sr/86Sr值的二元混合体系时提出,一组参加等时线拟合的样品,通过对其87Sr/86Sr-Sr-187Rb/86Sr-Rb-1作图,可以判断是否为混合线。当二者为正相关时,为混合线;二者非正相关时,获得的等时线年龄代表成矿阶段的成矿年龄[18-19]。本次将噜鲁铅锌矿床硫化物Rb-Sr同位素的87Sr/86Sr-Sr-187Rb/86Sr-Rb-1作图(图 6)。由图 6可知,典型铅锌矿床各要素之间不存在相关性。因此认为,硫化物Rb-Sr样品拟合的直线具有等时线意义。

    图  6  噜鲁铅锌矿床方铅矿与黄铁矿矿物组合87Sr/86Sr-Sr-1、87Rb/86Sr-Rb-1关系图
    Figure  6.  87Sr/86Sr-Sr-1, 87Rb/86Sr-Rb-1 relationship diagrams of intergrowth pyrite and galena mineral association in the Lulu Pb-Zn deposit

    川滇黔成矿域C-O-S-Pb-Sr同位素研究表明,峨眉山玄武岩与铅锌矿床成矿存在联系[13]。此外,在川滇黔成矿域,幔源的碱性岩浆岩体形成时代为204~225Ma[21]。晚二叠世—三叠纪,扬子地块和与特提斯洋闭合有关的邻近板块发生碰撞,即印支运动,前人研究认为,印支晚期古特提斯洋向北不断俯冲消减,使华南板块与印支板块在早中三叠世沿松马缝合带碰撞拼合,区内随后向陆内构造体制转化[22]。年代学数据表明,川滇黔成矿域的大规模成矿主要发生在印支晚期—燕山早期,成矿作用和华南板块与印支板块拼合造山作用的时限相吻合。印支运动可能与以上岩浆活动存在联系。韩润生等[23]认为,印支期造山作用对川-滇-黔成矿区铅锌多金属成矿作用产生重要影响。刘肇昌等[24]认为,该区毗邻的龙门山于三叠纪早期开始隆升;高振敏等[25]认为,南盘江-右江在三叠纪几乎同时封闭造山。因此,龙门山造山带、南盘江-右江增生弧型冲褶带在印支期演化过程中必然对该区铅锌成矿作用产生重要影响。前人也认为,川滇黔成矿区天桥铅锌矿床逆冲断层与印支运动存在联系[26]。而噜鲁铅锌矿床成矿时代为印支运动晚期—燕山早期,因此,印支运动可能与噜鲁铅锌矿床成矿存在联系。

    噜鲁铅锌矿床存在硫化物和硫酸盐共同沉淀析出现象。根据矿物组合规律推测,噜鲁铅锌矿床具有较高的氧逸度fO2,成矿流体的总硫同位素组成需综合考虑硫化物中的硫同位素及重晶石的硫同位素[27],即δ34SΣS>δ34S硫化物,δ34SΣS﹤δ34S重晶石。因此,下文将详细讨论该矿床的硫化物和重晶石的硫同位素组成,从而得出成矿流体中硫的来源。噜鲁铅锌矿床矿石矿物黄铁矿、闪锌矿和方铅矿相对富集重硫,其δ34S值浓度中心为9‰~15‰。明显不同于δ34S值在0附近的幔源硫。柳贺昌等[28]认为,区域上震旦系灯影组、寒武系龙王庙组及石炭系大塘组、摆佐组、马平组、黄龙组等中均有石膏、重品石等硫酸盐矿物,其δ34S值约为15%。与噜鲁铅锌矿床硫同位素组成相近,因而噜鲁铅锌矿床硫化物中的硫可能主要来自多个时代地层,为海相硫酸盐的还原产物。

    噜鲁铅锌矿床重晶石的δ34S值介于26.08‰~ 29.34‰之间,平均值为27.29‰。滇中矿集区缺少下寒武统硫酸盐硫同位素数据,但Claypool等[29]报道世界其他地区寒武纪海相硫酸盐的δ34S值为30‰左右;于津生等[30]在总结前人研究成果的基础上,认为晚前寒武纪海相硫酸盐岩的δ34S值约为18‰,进入显生宙后,海相硫酸盐岩δ34S值急剧增加到30‰左右,尔后逐渐减小。笔者认为,该矿床中重晶石的硫主要来源于下寒武统海相硫酸盐。因此,硫化物与重晶石中的硫具有同源性。

    海相硫酸盐的还原过程主要存在3种观点:热化学还原、细菌还原和有机质热降解。热化学还原较细菌还原发生在相对高温条件且能产生许多还原态硫,形成还原态硫的δ34S值变化范围较小,细菌还原作用发生条件与热化学还原相反[31]。热水塘铅锌矿床δ34S值集中在8‰~13‰之间。笔者测得噜鲁铅锌矿床方解石流体包裹体的均一温度主要分布在12~180℃之间(未发表数据)。前文已述,矿石沉淀时成矿流体中硫已达平衡,可利用矿物对δ34S差值计算成矿温度,利用统一手标本黄铁矿和方铅矿的δ34S差值(表 1)计算的成矿温度为122~ 227℃[32]。综合上述观点,成矿温度超过了细菌可以存活的温度[33]。因此,细菌还原作用对噜鲁锌矿床可能影响较小。有机质热降解通常发生在100~ 150℃, 虽然矿石中常发育有沥青,证明有机质在一定程度上参与成矿,但噜鲁铅锌矿床还没有由碳酸盐岩中有机质热降解作用产生硫的报道,有机质热降解作用贡献大小不能确定。这些特征均表明, 噜鲁铅锌矿床成矿流体中的硫可能为各时代碳酸盐岩地层的海相硫酸盐热化学还原的产物,有机质可能参与了成矿作用。

    川滇黔铅-锌-银多金属成矿域绝大部分铅锌矿床赋存于不同时代的碳酸盐岩地层的粗晶白云岩、白云质灰岩中,区域分布大面积峨眉山玄武岩。柳贺昌等[28]认为,川滇黔成矿域成矿物质由碳酸盐岩地层和玄武岩提供;李连举等[34]认为,上震旦统、下寒武统、中上泥盆统和石炭系是区域重要的矿源层;胡耀国[35]则认为,成矿物质主要来源于区域基底岩石。

    前已述及,206Pb/204Pb、207Pb/204Pb、208Pb/204Pb组成相对均一。据Zartman等[36]的铅同位素构造模式图解,可将数据投在206Pb/204Pb-207Pb/204Pb图(图 7)上,数据点落入上地壳和造山带演化曲线之间,表明在成矿作用过程中,铅是多源混合的产物。该区域在基底岩石的铅同位素组成范围内(图 7),靠近不同时代碳酸盐地层和峨眉山玄武岩,与震旦系灯影组白云岩分布范围相差较远(表 4),与会泽及天桥铅锌矿床也存在差异。这些铅同位素组成特征表明,本区成矿物质主要由基底岩石提供,区域上不同时代碳酸盐岩地层和峨眉山玄武岩可能提供了部分成矿物质。

    图  7  噜鲁铅锌矿床铅同位素图解
    (底图据参考文献[43],天桥铅锌矿床、会泽铅锌矿床、震旦系灯影组白云岩、泥盆系—二叠系碳酸盐岩、二叠系峨眉山玄武岩和基底岩石铅同位素数据据参考文献[37-42])
    Figure  7.  The lead isotope histogram of the Lulu Pb-Zn ore deposit
    表  4  噜鲁铅锌矿床铅同位素组成统计对比
    Table  4.  Statistics of Pb isotopic compositions of various rock units in the area
    统计对象 样品个数 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb
    会泽铅锌矿 95 18.251~18.530 15.439~15.855 38.487~39.433
    天桥铅锌矿 33 18.378~18.601 15.519~15.811 38.666~39.571
    栖霞~茅口组 2 18.189~18.759 15.609~16.522 38.493~38.542
    黄龙组 2 15.656~16.675 18.136~18.167 38.204~38.236
    摆佐组 8 18.120~18.673 15.500~16.091 38.235~39.685
    大埔组 5 18.397~18.828 15.537~16.499 38.463~39.245
    灯影组 10 18.198~18.517 15.699~15.987 38.547~39.271
    昆阳群 27 17.781~20.993 15.582~15.985 37.178~40.483
    会理群 6 18.094~18.615 15.630~15.827 38.274~38.932
    峨眉山玄武岩 16 18.175~19.019 15.528~15.662 38.380~39.928
    下载: 导出CSV 
    | 显示表格

    噜鲁铅锌矿床铅同位素组成相对稳定,可能是由于成矿物质来源铅同位素组成相对稳定的地质体或成矿物质来源于铅同位素组成相对不稳定的地质体,成矿流体在沉淀成矿之前存在均一化过程[13]。从表 2可见,区域上基底岩石、玄武岩及碳酸盐岩地层铅同位素组成均有较宽的变化范围,即本区不存在铅同位素组成相对稳定的地质体。因此,笔者认为,本矿床成矿流体在成矿之前可能存在均一化过程。

    87Sr/86Sr值是判断成岩成矿物质来源的重要指标,在矿床地质研究中,常利用其示踪成矿物质来源。但应用锶同位素组成示踪成矿物质来源时,需要对潜在源区的锶同位素组成进行成矿年龄校正。噜鲁铅锌矿床成矿年龄为202.8±1.4Ma,且近年来,川滇黔成矿域成矿年代学研究取得了重要进展,成矿作用时间集中于约200Ma[28]。经年龄(200Ma)校正后,印支运动产生的基性玄武岩在成矿时的87Sr/86Sr值为0.7039~0.7078[38];扬子地块西南缘各时代沉积的碳酸盐岩在成矿时的87Sr/86Sr值为0.7073~0.7111[23, 41-42];昆阳群基底地层在成矿时的87Sr/86Sr值为0.7243~0.7288 [23]。地幔的87Sr/86Sr值为0.704±0.002[26]。而噜鲁铅锌矿床硫化物在成矿时的87Sr/86Sr值为0.7112~0.7115。通过分析,矿床中硫化物较地幔和峨眉山玄武岩有更多放射性成因锶,成矿物质可能来自于基底地层,或成矿流体流经这些富放射性成因岩体。

    噜鲁铅锌矿床成矿时代主要发生在印支晚期,成矿作用和华南板块与印支板块拼合造山作用的时限相吻合。硫化物和硫酸盐矿物的硫同位素分析结果说明,硫主要为海相硫酸盐热化学还原的产物;硫化物铅同位素组成和Rb-Sr同位素组成证实,成矿物质主要来自基底岩石或成矿流体流经这些富放射性成因岩石。因此,噜鲁铅锌矿床成矿流体中组分来源不同,主要来自于基底岩石,或成矿流体流经这些富放射性成因岩体。基底岩石为噜鲁铅锌矿床提供了成矿流体及重要的成矿物质。噜鲁铅锌矿床围岩和黄铁矿稀土元素揭示,噜鲁铅锌矿床赋矿地层可能为成矿提供了成矿流体,成矿流体可能为富Cl流体,暗示成矿温度应该为中低温,成矿流体可能遭受了外来热液的混入(另文探讨)。

    综合上述认识,基底岩石是矿床的成矿流体与成矿物质的重要来源。将该矿床成矿过程描述为,印支期构造旋回过程中,伴随着西面地区大面积玄武岩喷发与沉积建造,产生的热、气与地下热水,驱动来自基底岩石以氯化物络合物形式携带大量成矿金属的含矿热卤水溶液,含矿热卤水溶液沿途不断萃取、溶解高背景地层中的铅-锌-银等矿质,并还原不同时代地层沉积岩中海相硫酸盐的大气降水或层间水发生流体混合,伴随着物理、化学等成矿条件的改变,在有利的空间部分聚集成矿,金属硫化物沉淀形成具有工业价值的矿体。

    噜鲁铅锌矿床成矿流体中不同组分来源不同。原生矿石硫化物硫同位素组成δ34S在9.72‰~ 22.44‰之间,多数为9‰~15‰。重晶石δ34S值介于26.08‰~29.34‰之间,平均为27.29‰。矿床中的硫同位素组成变化较大,δ34S值在6.33‰~9.75‰之间。噜鲁铅锌矿床主要是碳酸盐地层的海相硫酸盐热化学还原的产物。铅同位素组成特征表明,本区成矿物质可能由基底地层提供,区域上不同时代碳酸盐岩地层可能提供了部分成矿物质。由锶同位素可知,噜鲁铅锌矿床成矿物质可能来自基底地层,或成矿流体流经这些富放射性成因岩体。Rb-Sr同位素测年表明,噜鲁铅锌矿床成矿年龄为印支中晚期,印支运动对噜鲁铅锌成矿作用产生了重要影响。

    硫、铅、铷-锶同位素数据研究成果表明,噜鲁铅锌矿床成矿流体中不同组分来源不同,但主要来自于基底地层,在印支运动强大的驱动力作用下,促使成矿元素活化-混合-迁移-聚集成矿。

    致谢: 样品测试工作得到中国科学院广州地球化学研究所ICP-MS 实验室和西南冶金地质测试所老师和同学的大力支持,成文过程中得到吉林大学李才教授的指导和帮助,在此一并致以衷心的感谢。
  • 图  1   拉萨地块构造划分图(a)和研究区地质简图(b)

    拉萨地块在青藏高原中的位置及其构造单元划分图[8];b—东巧地区地质简图;BNSZ—班公湖-怒江缝合带;SNMZ—狮泉河-纳木错蛇绿岩混杂带;LMF—洛巴堆-米拉山断裂带;IYZSZ—雅鲁藏布缝合带

    Figure  1.   Tectonic subdivision of the Lhasa Terrane(a) and simplified geological map of the study area(b)

    图  2   辉绿岩和流纹岩显微照片

    a—辉绿岩;b—流纹岩;Q —石英;Pl —斜长石;Px—辉石

    Figure  2.   Petrographical photos of diabase and rhyolite

    图  3   东巧地区辉绿岩与流纹岩锆石U-Pb 谐和图

    Figure  3.   U-Pb concordant diagrams of the zircons in the diabase and rhyolite in Dongqiao, Tibet

    图  4   地球化学判别图解

    a—Zr/TiO2-SiO2图解[15];b—Co-Th 图解[16];c、d—Y-Sr/Y 图解和YbN-(La/Yb)N图解[17];那曲安山岩数据据参考文献[18]

    Figure  4.   Geochemical discrimination diagrams

    图  5   球粒陨石标准化稀土元素配分曲线和微量元素原始地幔标准化配分曲线

    (原始地幔和球粒陨石数据据参考文献[19];那曲地区数据同图 4;后碰撞埃达克岩数据据参考文献[20-22]

    Figure  5.   Chondrite-normalized REE patterns and primitive-mantlenormalized trace element patterns for three kinds of adakites

    图  6   构造环境判别图解[27-29] 数据引用同图 4

    a—Nb×2-Zr/4-Y 图解:AⅠ— 板内碱性玄武岩;AⅡ—板内碱性玄武岩和板内拉斑玄武岩;B—E 型MORB;C—板内拉斑玄武岩和火山弧玄武岩;D—N 型MORB 和火山弧玄武岩;b—Hf-Th-Ta 图解:A—正常洋脊玄武岩;B—富集型洋脊玄武岩-板内拉斑玄武岩;C—碱性板内玄武岩;D—岛弧钙碱性玄武岩;c、d—DF1-DF2 图解:Col—碰撞型;IA—岛弧型;CA—陆缘弧型;CR—大陆裂谷型;OI—洋岛型

    Figure  6.   Tectonic discrimination diagrams

    图  7   主量元素哈克图解(数据引用同图 4

    Figure  7.   Harker diagrams showing the major element variations

    图  8   La-La/Sm 图解[31]和SiO2-La/Yb 图解

    Figure  8.   La-La/Sm diagram and SiO2-La/Yb diagram

    图  9   Th-Ba/Th 图解和Th/Sm-Th/Yb 图解

    Figure  9.   Th-Ba/Th diagram and Th/Sm-Th/Yb diagram

    表  1   辉绿岩和流纹岩LA-ICP-MS 锆石U-Th-Pb 同位素分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb data of the Dongqiao magmatic rocks

    测点微量元素/10-6Th/U同位素比值年龄/Ma
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/235U206Pb/238U
    TW4005(辉绿岩)
    1123688635881.920.049990.001420.149850.004320.021560.000251423.81381.6
    2117703434052.070.048100.001340.143950.004150.021470.000231373.71371.5
    31731049348062.180.047380.001230.144190.004060.021820.000271373.61391.7
    4125690636861.870.046760.001440.141590.004580.021710.000231344.11381.5
    589.7453528041.620.047680.001680.144990.005470.021760.000291374.91391.8
    6104617829562.090.046870.001830.145170.005950.022240.000331385.31422.1
    779.9424723941.770.045610.001630.141910.005470.022300.000341354.91422.2
    8135804538002.120.046240.001460.139460.004550.021630.000231334.11381.4
    9147964838412.510.047310.001430.142980.004550.021640.000251364.01381.5
    101701208842262.860.048630.001530.143120.004690.021100.000241364.21351.5
    11132688840131.720.047750.001460.141650.004520.021330.000221354.01361.4
    1252.3260215821.650.046330.001540.143900.005100.022630.000421374.51442.6
    13121716432752.190.046900.001350.141310.004330.021720.000251343.81391.6
    14124718834872.060.046920.001360.141320.004350.021740.000241343.91391.5
    1558.5278117681.570.048840.001650.152860.005670.022630.000371445.01442.3
    1686.3478125891.850.048870.001560.146130.005120.021620.000301384.51381.9
    17138747339331.90.048140.001400.146610.004560.021970.000231394.01401.5
    1885.2472124981.890.046970.001420.147090.005070.022640.000361394.51442.3
    1987.6521924312.150.050510.001460.148870.004560.021240.000231414.01361.5
    20146660845311.460.048670.001390.150540.004450.022330.000261423.91421.6
    TW3803(流纹岩)
    1135126017610.720.046500.002410.110270.005480.017360.000181065.01111.1
    2125114812890.890.064400.003240.153300.007530.017360.000211456.61111.3
    3128121112580.960.045010.002980.108940.007120.017740.000241056.51131.5
    4135132713920.950.049850.002570.116750.005930.017060.000211125.41091.3
    5202166713901.200.070450.0042910.73680.010830.017650.000251639.41131.6
    6127117712900.910.045870.003080.108720.007130.017250.000241056.51101.5
    7132119313040.920.056850.003710.136430.008690.017370.000231307.81111.5
    8186193316371.180.048030.002440.114640.006050.017140.000201105.51101.3
    9137127311701.090.058380.003520.140550.008730.017400.000211347.81111.4
    10134130013680.950.044170.002580.105830.006130.017550.000261025.61121.6
    11158146714760.990.050900.002490.122350.006110.017390.000231175.51111.4
    12128126514020.900.045500.002660.105480.006080.017050.000221025.61091.4
    13181185312681.460.048490.003480.113930.008250.017220.000221107.51101.4
    14255268123031.160.047500.001910.112680.004440.017270.000181084.01101.1
    15155144014461.000.056700.003580.136980.008870.017530.000261307.91121.6
    16142139214520.960.047920.003300.115230.007990.017630.000461117.31132.9
    17159157119080.820.052200.002620.122000.006070.017100.000201175.51091.3
    18402418132361.290.051920.001720.122070.004090.017060.000151173.71091.0
    19177139514080.990.088200.005210.219270.014220.017640.0002920111.81131.9
    20138129013440.960.049930.002760.120870.006490.017610.000201165.91131.3
     注:带删除线数据为未参与年龄计算的数据
    下载: 导出CSV

    表  2   东巧岩浆岩样品全岩地球化学元素分析结果

    Table  2   Whole-rock compositions of the Dongqiao magmatic rocks

    元素PM006-11GXW1PM006-9GXW1GXW1027-3GXW1027-2GXW1027-4GXW1027-4GXW1027-6GXW1028-1GXW1028-3GXW1028-4
    高Sr 流纹岩
    SiO277.176.176.973.372.872.973.174.874.875.0
    TiO20.120.090.100.250.070.070.090.070.110.14
    Al2O311.812.011.010.213.213.313.012.213.511.4
    Fe2O31.021.572.183.921.151.241.201.942.332.59
    FeO0.680.271.462.430.750.810.721.461.701.34
    MnO0.020.020.040.070.020.030.030.030.030.03
    MgO0.530.220.510.950.560.600.550.650.510.66
    CaO0.560.901.131.920.950.710.960.991.241.50
    Na2O3.993.303.782.393.233.183.422.463.354.46
    K2O2.223.762.233.334.234.333.974.452.332.53
    P2O50.050.050.110.090.040.050.050.160.050.08
    烧失量1.621.461.001.702.542.142.231.680.720.82
    总量99.7199.74100.44100.5599.5499.3699.32100.89100.67100.55
    Mg#41212425404039302227
    Cr20.911.51151258.99.124.2111133137
    Ni9.764.6611.2022.506.496.957.859.0014.0015.10
    Co3.811.388.4014.201.821.922.128.705.105.70
    Rb60.511484.211419018218516193.897.3
    W2.857.622.453.801.531.372.101.212.945.12
    Bi0.510.490.280.350.450.410.560.410.520.54
    Sr256292233235202192207266314289
    Ba872898424243062860965368253503411
    Sc3.511.282.025.341.401.472.201.882.823.16
    Nb9.3911.07.097.8013.212.415.47.436.207.16
    Ta0.981.010.680.690.930.850.910.740.610.74
    Zr70.590.080.679.874.876.878.773.868.678.0
    Hf2.362.802.232.182.452.482.512.342.052.30
    Ga13.813.115.420.016.216.116.421.931.324.8
    Sn2.992.844.505.703.382.673.354.004.304.20
    Ag0.060.100.100.110.060.040.070.110.110.09
    Au0.910.461.101.350.930.290.311.021.021.07
    Th11.819.416.110.912.811.613.112.911.011.5
    La16.732.635.325.317.317.718.923.118.624.2
    Ce30.563.060.041.429.029.233.238.730.036.9
    Pr3.756.975.774.753.743.934.034.943.224.08
    Nd13.623.619.517.114.615.415.517.111.714.3
    Sm2.693.983.333.312.913.123.063.112.282.74
    Eu0.800.980.740.860.860.880.920.830.910.84
    Gd1.792.442.102.201.942.052.201.881.361.63
    Tb0.240.260.180.240.180.200.220.170.130.16
    Dy0.970.790.410.930.550.590.740.400.350.49
    Ho0.180.100.060.170.090.100.130.050.050.08
    Er0.550.330.170.520.300.320.400.180.180.26
    Tm0.090.040.020.070.030.040.050.020.030.04
    Yb0.550.280.160.540.220.230.310.190.350.34
    Lu0.080.040.050.110.030.030.050.060.100.09
    Y4.763.142.905.804.854.755.342.103.003.50
    元素GXW1028-5GXW1028-5’GXW1028-6GXW1028-7GXW1834-1GXW1834-2GXW4015-4PM013-23Gxw1PM013-6Gxw4PM013-7Gxw1
    高Sr 流纹岩低Sr 流纹岩
    SiO275.874.875.175.874.773.375.475.079.376.7
    TiO20.080.060.060.070.080.080.270.180.200.25
    Al2O311.312.112.212.212.212.410.511.38.19.3
    Fe2O32.281.461.441.131.891.672.042.674.292.70
    FeO1.521.010.951.120.610.491.981.881.942.19
    MnO0.030.030.030.030.040.020.040.040.070.05
    MgO0.580.370.380.340.480.490.920.280.210.50
    CaO1.430.520.520.460.700.880.530.650.620.56
    Na2O4.864.985.005.094.064.073.423.431.923.60
    K2O1.711.931.961.922.863.022.164.473.713.26
    P2O50.060.050.060.050.110.050.040.190.100.05
    烧失量1.001.981.661.451.762.902.340.430.070.21
    总量100.6599.2999.3699.6699.4999.3799.64100.52100.5399.37
    Mg#2525262530343412718
    Cr12811.510.611.77.99.16.0175144140
    Ni14.18.749.7010.45.785.898.3410.69.108.00
    Co4.702.382.512.643.442.964.682.904.603.10
    Rb57.264.456.256.0113115150255174226
    W3.643.792.936.551.951.654.349.533.124.82
    Bi0.440.470.430.440.440.370.761.670.270.83
    Sr25231430129841943621.463.941.230.1
    Ba59352951455656561650.930.215.56.0
    Sc2.201.871.741.841.791.661.460.960.531.49
    Nb7.6012.110.810.912.311.060.368.034.040.8
    Ta0.750.770.700.730.890.774.485.202.873.52
    Zr71.671.771.373.876.676.0800840600765
    Hf2.222.242.232.342.422.3823.620.213.315.8
    Ga18.210.79.99.712.111.728.124.920.520.8
    Sn6.102.873.453.043.282.4712.55.707.2813.25
    Ag0.100.110.090.110.040.070.120.080.100.09
    Au1.330.400.400.370.810.710.741.321.581.63
    Th10.913.112.213.212.711.833.858.326.832.5
    La21.022.419.420.020.618.695.063.569.971.1
    Ce41.137.033.232.334.931.6184119130137
    Pr3.634.744.134.204.284.0121.713.515.817.0
    Nd12.918.215.616.016.315.181.447.160.263.7
    Sm2.483.392.933.162.992.8217.210.713.414.2
    Eu0.710.940.880.850.950.851.120.350.750.77
    Gd1.422.442.052.152.292.0718.510.512.913.7
    Tb0.130.250.190.210.240.213.742.102.552.73
    Dy0.310.810.610.650.880.6321.613.916.217.7
    Ho0.040.130.100.110.160.114.702.963.503.76
    Er0.150.380.320.330.480.3313.29.0610.711.0
    Tm0.020.040.040.040.050.042.171.571.801.85
    Yb0.200.290.240.260.340.2614.510.211.711.6
    Lu0.050.040.030.040.050.042.381.511.801.73
    Y2.304.504.194.294.384.6516273.492.391.6
    元素PM013-22Gxw2PM013-21Gxw1PM013-1Gxw1PM013-6Gxw3PM013-8Gxw1PM013-12Gxw1PM013-12Gxw2PM013-20Gxw1PM001-29Gxw3PM001-29Gxw5
    低Sr 流纹岩花岗闪长岩
    SiO277.378.974.578.277.077.276.578.765.265.5
    TiO20.180.190.300.260.240.230.260.170.790.76
    Al2O310.09.310.38.99.09.09.99.215.715.7
    Fe2O32.152.573.264.044.113.733.292.781.401.43
    FeO1.882.061.941.582.192.312.431.882.652.51
    MnO0.030.040.040.060.070.050.040.030.070.07
    MgO0.420.300.970.180.480.250.210.171.631.49
    CaO0.580.690.940.670.900.980.940.643.143.03
    Na2O1.072.231.402.082.653.324.102.563.743.90
    K2O6.274.094.184.353.263.042.223.404.204.28
    P2O50.180.190.080.050.150.180.230.200.230.21
    烧失量0.560.142.140.210.500.320.330.920.880.77
    总量100.62100.7100.05100.58100.55100.61100.45100.6599.6399.65
    Mg#1913297158884547
    Cr15013210315416218716215829.233.8
    Ni9.2011.809.908.109.8011.0012.6010.5016.213.3
    Co3.205.004.102.804.506.706.204.009.869.26
    Rb39619032915520614694.4154195192
    W8.429.104.186.705.887.278.788.613.763.21
    Bi0.540.730.730.340.530.700.710.750.140.04
    Sr47.551.449.163.670.834.682.894.2294296
    Ba23.855.129.922.543.815.876.388.8674651
    Sc0.620.560.880.880.970.291.281.2910.09.54
    Nb47.048.145.334.636.337.039.945.128.431.0
    Ta4.674.353.753.083.163.163.664.032.432.62
    Zr882832848743700700701748274275
    Hf20.019.918.012.714.814.015.216.47.868.25
    Ga20.420.125.822.921.021.924.022.120.820.2
    Sn7.007.305.3011.98.836.906.608.203.473.28
    Ag0.090.090.090.090.080.090.100.100.070.07
    Au1.121.225.661.522.351.051.501.350.360.36
    Th54.947.334.928.328.830.834.242.334.334.3
    La56.364.387.876.661.162.865.762.459.059.2
    Ce107126161144119128133128112113
    Pr11.214.119.816.315.114.816.715.512.112.3
    Nd39.050.974.160.756.655.662.656.941.841.8
    Sm9.2711.716.813.112.112.414.212.97.267.13
    Eu0.260.440.940.760.730.640.830.681.721.68
    Gd9.4911.615.812.011.511.312.912.06.496.43
    Tb2.142.443.072.312.252.142.492.431.121.12
    Dy15.316.620.115.814.713.715.915.96.666.60
    Ho3.403.614.403.763.203.013.433.471.261.29
    Er10.511.013.212.59.929.5910.710.83.783.86
    Tm1.841.962.272.301.721.751.911.910.580.59
    Yb12.012.914.415.711.511.912.912.83.583.78
    Lu1.801.902.112.431.791.922.061.960.500.55
    Y93.493.011210283.478.679.584.936.637.0
    元素PM001-42GXW1PM001-43GXW1PM001-53GXW1PM008-3GXW2PM008-5GXW1PM007-0GXW2GXW1018-3GXW1018-4GXW1019-1GXW1019-3
    花岗闪长岩
    SiO264.859.562.261.466.666.963.363.561.559.7
    TiO20.790.950.891.090.660.690.600.630.950.72
    Al2O314.815.615.716.015.615.715.415.515.515.7
    Fe2O32.062.472.480.780.891.070.530.860.350.98
    FeO1.903.262.384.162.452.083.052.874.304.16
    MnO0.060.100.060.080.060.050.060.060.080.09
    MgO2.414.213.362.891.561.262.532.263.184.40
    CaO3.215.403.364.283.002.123.202.704.404.10
    Na2O2.762.893.043.803.954.373.943.623.513.67
    K2O5.443.674.503.563.654.262.643.622.792.60
    P2O50.180.280.260.340.200.190.200.220.250.23
    烧失量1.231.301.301.311.071.024.313.932.933.52
    总量99.6499.6399.5399.6999.6999.7199.7699.7799.7499.87
    Mg#57626055504660575965
    Cr76.914010295.221.811.865.651.285.2185
    Ni37.745.541.445.713.88.035.622.052.482.6
    Co11.618.716.815.68.146.0013.812.217.018.3
    Rb290186214176155176108137112120
    W3.772.333.118.600.632.141.802.602.612.41
    Bi0.200.391.160.220.150.540.130.120.200.22
    Sr297374335390284264300250346339
    Ba568682652498561618410696418385
    Sc10.614.115.111.67.646.629.039.3812.113.8
    Nb31.725.727.027.620.622.314.214.219.813.2
    Ta2.812.122.342.602.032.181.141.261.521.08
    Zr348257314157215264167167226148
    Hf10.37.428.985.266.047.785.045.126.384.75
    Ga18.419.919.819.819.119.417.417.418.419.2
    Sn4.214.493.933.483.363.452.212.103.972.68
    Ag0.100.090.080.060.050.050.070.080.140.10
    Au0.360.290.480.730.460.610.560.410.600.47
    Th51.028.438.029.224.928.614.815.017.817.2
    La66.057.557.745.847.147.232.231.840.833.4
    Ce11011210988.488.889.357.658.076.462.4
    Pr13.012.512.09.799.329.866.306.278.547.03
    Nd42.843.441.534.431.633.821.922.329.925.4
    Sm6.857.456.886.145.465.933.923.905.464.81
    Eu1.291.721.481.611.321.441.081.131.361.28
    Gd6.126.386.085.504.885.433.783.805.374.48
    Tb0.991.081.020.960.860.940.620.640.890.75
    Dy5.776.315.945.715.205.672.953.254.533.75
    Ho1.131.211.161.101.001.120.570.640.900.75
    Er3.353.653.483.263.043.321.441.692.371.91
    Tm0.510.550.530.510.480.520.220.260.360.30
    Yb3.363.543.383.252.963.361.491.822.411.98
    Lu0.480.520.490.470.420.470.230.280.370.32
    Y32.434.033.031.228.230.019.121.629.424.3
    元素GXW1424-1GXW1424-2GXW1059-2GXW1059-3GXW1091-1GXW1091-2GXW4005-0GXW4008-1GXW4009-1GXW4814-1
    花岗闪长岩辉绿岩
    SiO265.166.563.263.664.864.850.549.747.349.9
    TiO20.670.580.790.780.700.701.161.351.591.18
    Al2O315.415.215.515.515.515.415.916.616.116.5
    Fe2O30.950.700.850.882.181.912.021.451.301.39
    FeO3.003.064.273.841.871.876.967.669.037.35
    MnO0.070.060.090.080.060.050.150.150.170.16
    MgO1.581.401.831.781.691.786.586.018.057.25
    CaO3.132.643.263.311.461.476.044.984.064.33
    Na2O3.923.863.913.865.064.844.024.714.145.24
    K2O3.653.643.993.983.773.931.541.160.390.22
    P2O50.230.170.230.230.200.200.190.220.230.19
    烧失量1.651.611.421.532.182.424.735.727.406.07
    总量99.3599.4299.3499.3799.4799.3799.7999.7199.7699.78
    Mg#46444345485161586264
    Cr22.620.336.533.630.526.1181137193196
    Ni14.713.220.718.718.418.389.868.695.898.0
    Co9.548.3110.99.789.909.8234.635.237.440.1
    Rb15514722320920518163.647.87.918.40
    W0.890.703.533.072.292.021.051.290.690.86
    Bi0.240.100.240.210.390.350.040.060.030.03
    Sr312288296288275272248518496444
    Ba569526630589518466286330826109
    Sc6.686.1110.910.46.656.7425.426.031.627.9
    Nb24.022.536.135.227.029.310.413.27.6610.0
    Ta1.361.432.032.111.752.080.750.920.540.74
    Zr248223305295292274132150102116
    Hf7.456.619.208.948.578.173.844.843.143.34
    Ga19.417.620.519.419.517.019.018.518.218.4
    Sn2.882.834.654.484.453.692.122.291.511.19
    Ag0.050.040.070.060.050.060.090.080.070.09
    Au0.320.460.840.630.290.300.420.480.580.37
    Th21.919.832.529.521.821.19.26.82.95.8
    La51.245.356.657.846.351.724.419.711.415.6
    Ce84.376.196.397.180.391.148.239.823.431.4
    Pr9.818.5211.611.609.0810.35.794.873.173.91
    Nd36.331.242.542.832.737.122.019.414.316.1
    Sm6.175.287.047.015.376.084.814.683.783.75
    Eu1.731.441.931.861.521.641.441.541.681.20
    Gd6.225.457.156.925.485.975.335.334.724.46
    Tb0.910.771.020.970.780.841.071.141.040.96
    Dy4.554.015.054.913.894.286.146.926.255.70
    Ho0.910.791.010.980.790.851.321.451.341.22
    Er2.572.262.882.782.232.483.483.883.493.32
    Tm0.370.330.410.400.320.360.550.620.560.53
    Yb2.312.022.602.542.052.213.643.973.583.50
    Lu0.350.320.410.390.310.350.610.660.560.57
    Y21.020.926.224.820.220.143.446.643.037.4
     注:主量元素含量单位为%,稀土和微量元素含量为10-6
    下载: 导出CSV
  • 孙立新. 班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应[D].中国地质大学博士学位论文(北京),2005.
    朱弟成, 潘桂棠,莫宣学,等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J]. 岩石学报,2006,22(3):534-546.
    吴浩,李才,胡培远,等. 西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J]. 地质通报,2013,7:1014-1026.
    谌微微. 羌塘地块白垩纪火山岩和红层古地磁学和年代学新结果及其大地构造意义[D].中国地质大学(北京)博士学位论文,2014.
    潘桂棠,莫宣学,侯增谦,等. 冈底斯造山带的时空结构及演化[J]. 岩石学报. 2006,3:521-533.
    朱弟成,莫宣学,赵志丹,等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报,2008,24(3):401-412.
    Zhu D C,Mo X X,Niu Y L,et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology,2009, 268:298-312.

    Zhu D C,Mo X X,Niu Y L,et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology,2009, 268:298-312.

    Zhu D C,Zhao Z D,Niu Y L,et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,2011, 301:241-255.

    Zhu D C,Zhao Z D,Niu Y L,et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,2011, 301:241-255.

    常青松,朱弟成,赵志丹,等. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J]. 岩石学报,2011,7:2034-2044.
    常青松. 西藏羌塘地块南缘热那错火山岩的岩石学、年代学和地球化学[D].中国地质大学(北京)硕士学位论文,2012.
    Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198:77-91.

    Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198:77-91.

    吴浩, 李才, 胡培远, 等. 藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J]. 地质通报,2014,11:1804-1814.
    涂湘林,张红,邓文峰,等. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用[J]. 地球化学,2011,1:83-98.
    Yuan H,Gao S,Liu X,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards & Geoanalytical Research,2004,28(3):353-370.

    Yuan H,Gao S,Liu X,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards &Geoanalytical Research,2004,28(3):353-370.

    Winchester J A,Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977, 20:325-343.

    Winchester J A,Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977, 20:325-343.

    Hastie A R,Kerr A C,Pearce J A,et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007,48:2341-2357.

    Hastie A R,Kerr A C,Pearce J A,et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007,48:2341-2357.

    Defant M,Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990, 347:662-665.

    Defant M,Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990, 347:662-665.

    黄玉,朱弟成,赵志丹,等. 西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义[J]. 岩石学报,2012,5:1603-1614.
    Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society, London Special Publications,1989,42:313-345

    Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society, London Special Publications,1989,42:313-345

    Chung S L,Liu D Y,Ji J Q,et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31:1021-1024.

    Chung S L,Liu D Y,Ji J Q,et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31:1021-1024.

    Hou Z Q,Gao Y F,Qu X M,et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139-155.

    Hou Z Q,Gao Y F,Qu X M,et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139-155.

    Guo Z F,Wilson M,Liu J Q. Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust[J]. Lithos,2007,96:205-224.

    Guo Z F,Wilson M,Liu J Q. Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust[J]. Lithos,2007,96:205-224.

    张玉修. 班公湖-怒江缝合带中西段构造演化[D].中国科学院研究生院(广州地球化学研究所)博士学位论文,2007.
    Kapp P,Yin A,Harrison T M,et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J].Geological Society of America Bulletin,2005,117:865-878.

    Kapp P,Yin A,Harrison T M,et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J].Geological Society of America Bulletin,2005,117:865-878.

    Zhang K J,Zhang Y X,Tang X C,et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews,2012,14:236-249.

    Zhang K J,Zhang Y X,Tang X C,et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews,2012,14:236-249.

    Zhu D C,Zhao Z D,Niu Y L,et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,2013, 23:1430-1455.

    Zhu D C,Zhao Z D,Niu Y L,et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,2013, 23:1430-1455.

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50:11-30.

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50:11-30.

    Meschede M A. Method of discriminating between different types of mid-ocean Basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,1986,56:207-218.

    Meschede M A. Method of discriminating between different types of mid-ocean Basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,1986,56:207-218.

    Verma S P,Pandarinath K,Verma S K,et al. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks[J]. Lithos,2013, 168/169:113-123.

    Verma S P,Pandarinath K,Verma S K,et al. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks[J]. Lithos,2013, 168/169:113-123.

    Fan J J,Li C,Xie C M,et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:Implications for the evolution of the Banggongco-Nujiang oceanic arm of Neo-Tethys[J]. International Geology Review,2014,56:1504-1520.

    Fan J J,Li C,Xie C M,et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:Implications for the evolution of the Banggongco-Nujiang oceanic arm of Neo-Tethys[J]. International Geology Review,2014,56:1504-1520.

    Allegre C J,Minster J F. Quantitative method of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38:1-25.

    Allegre C J,Minster J F. Quantitative method of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38:1-25.

    Atherton M P,Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146.

    Atherton M P,Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146.

    Rapp R P,Shimizu N,Norman M D,et al. Reaction between slabderived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa[J]. Chemical Geology,1999,160:335-356.

    Rapp R P,Shimizu N,Norman M D,et al. Reaction between slabderived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa[J]. Chemical Geology,1999,160:335-356.

    Wang Q,Wyman D A,Zhao Z H,et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology,2007,236:42-64.

    Wang Q,Wyman D A,Zhao Z H,et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology,2007,236:42-64.

    Zhu D C,Pan G T,Zhao Z D,et al. Early Cretaceous subductionrelated adakite-like rocks in the Gangdese, south Tibet:products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34:298-309.

    Zhu D C,Pan G T,Zhao Z D,et al. Early Cretaceous subductionrelated adakite-like rocks in the Gangdese, south Tibet:products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34:298-309.

    Castillo P R,Janney P E,Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology,1999,134:33-51.

    Castillo P R,Janney P E,Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology,1999,134:33-51.

    王强,赵振华,许继峰,等. 鄂东南铜山日、殷祖埃达克质(adakilic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J]. 岩石学报,2004,20(2):351-360.
    Sui Q L,Wang Q,Zhu D C,et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos,2013,168/169:144-159.

    Sui Q L,Wang Q,Zhu D C,et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos,2013,168/169:144-159.

    Wang Q,Zhu D C,Zhao Z D,et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,2014,198/199:24-37.

    Wang Q,Zhu D C,Zhao Z D,et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,2014,198/199:24-37.

    吴福元,葛文春,孙德有. 中国东部燕山期"埃达克质岩":问题与意义[C]//埃达克质岩及其地球动力学意义学术研讨会论文摘要. 北京. 2001:53-55.
    Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos,1999,46:411-429.

    Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos,1999,46:411-429.

    Benoit M,Aguillón-Robles A,Calmus T,et al. Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology,2002,110:627-648.

    Benoit M,Aguillón-Robles A,Calmus T,et al. Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology,2002,110:627-648.

    Barth M G,McDonough W F,Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,2000, 165(3):197-213.

    Barth M G,McDonough W F,Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,2000, 165(3):197-213.

    朱弟成,莫宣学,赵志丹,等. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,16(2):1-19.
    杜德道,曲晓明,王根厚,等. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报,2011,7:1993-2002.
    杜德道. 西藏班公湖-怒江缝合带(中段和西段)的花岗岩地球化学特征及其构造环境[D]. 中国地质大学(北京)硕士学位论文, 2012.
    隋清霖. 西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].中国地质大学(北京)硕士学位论文,2014.
    Fan J J,Li C,Xie C M,et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the Banggongco-Nujiang Neo-Tethys Ocean[J]. Lithos,2015,227:148-160.

    Fan J J,Li C,Xie C M,et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the Banggongco-Nujiang Neo-Tethys Ocean[J]. Lithos,2015,227:148-160.

    Qu X M,Wang R J,Xin H B,et al. Age and petrogenesis of Atype granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos,2012,146/147:264-275.

    Qu X M,Wang R J,Xin H B,et al. Age and petrogenesis of Atype granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos,2012,146/147:264-275.

    Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research,2014, 26(2):449-463.

    Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research,2014, 26(2):449-463.

    吴浩,李才,胡培远. 西藏班公湖-怒江缝合带中段达查沟地区三期埃达克质侵入岩的特征及构造-成矿意义[J]. 大地构造与成矿学. 2016. 已接受.
    Wu H,Li C,Hu P Y,et al. Early Cretaceous (100-105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review,2015,57:1172-1188.

    Wu H,Li C,Hu P Y,et al. Early Cretaceous (100-105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review,2015,57:1172-1188.

    Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66.

    Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66.

    Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico[J]. Geology,2004,32:77-80.

    Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico[J]. Geology,2004,32:77-80.

    Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics,2011,2:244-256.

    Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics,2011,2:244-256.

    Davies J H, von Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters,1995, 129:85-102.

    Davies J H, von Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters,1995, 129:85-102.

    Van de Zedde D M A,Wortel M R J. Shallow slab detachment as a transient source of heat at mid lithospheric levels[J]. Tectonics, 2001,20:868-882.

    Van de Zedde D M A,Wortel M R J. Shallow slab detachment as a transient source of heat at mid lithospheric levels[J]. Tectonics, 2001,20:868-882.

    任海东,颜茂都,孟庆泉,等. 羌塘盆地磁倾角浅化校正及其在构造上的应用——中侏罗纪以来约1000km的南北向缩短[J]. 地质科学,2013,02:543-556.
    刘治博. 南羌塘盆地西部上古生界-中生界构造变形特征及演化[D].中国地质大学(北京)博士学位论文,2014.
  • 期刊类型引用(9)

    1. 刘玲,张创,孙明. 志丹油田纸坊北油区三叠系延长组长6—长9储层致密史与油藏成藏史研究. 地质与资源. 2023(03): 327-334 . 百度学术
    2. 韩晓洁,范昌育,高潮,张丽霞,尹锦涛,王成达,王宁. 构造抬升区欠压实超压恢复方法——以鄂尔多斯盆地下寺湾地区延长组为例. 天然气地球科学. 2023(07): 1163-1172 . 百度学术
    3. 徐泽阳,刘震,赵靖舟,党佳城,李军,唐子怡. 基于测井响应特征的烃源岩古超压成因分析——以鄂尔多斯盆地三叠系延长组7段烃源岩为例. 天然气地球科学. 2023(11): 1950-1960 . 百度学术
    4. 王苗,吴柏林,李艳青,刘池阳,郝欣,刘明义,张婉莹,李琪,姚璐航,张效瑞. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究. 地球科学. 2022(01): 224-239 . 百度学术
    5. 邹敏,云金表,王濡岳,于岚,伍岳,吉圆圆,成立,何维领,赵刚. 镇泾地区中侏罗统延安组低幅度圈闭成因类型与评价. 断块油气田. 2022(03): 313-318+330 . 百度学术
    6. 胡艳飞,孔庆莹. 鄂尔多斯盆地西南部长8油层储层主控因素及分布规律. 吉林大学学报(地球科学版). 2022(04): 1078-1090 . 百度学术
    7. 马立元,邱桂强,胡才志,徐士林,陈纯芳,李松. 鄂尔多斯盆地红河油田延长组致密砂岩成藏机制分析. 沉积学报. 2022(06): 1762-1773 . 百度学术
    8. 郑登艳,王震亮,王联国,黄昊. 低幅度构造特征及其对油气成藏的控制作用:以鄂尔多斯盆地彭阳地区延安组为例. 现代地质. 2021(04): 1114-1123 . 百度学术
    9. 庞宏,吴松,胡英杰,王海朋,丁旭光,刘兴周,惠沙沙,陈昌,郭军敏. 辽河拗陷牛心坨沙四段致密砂岩油形成主控因素及有利区预测. 石油科学通报. 2020(04): 467-482 . 百度学术

    其他类型引用(3)

图(9)  /  表(2)
计量
  • 文章访问数:  2361
  • HTML全文浏览量:  334
  • PDF下载量:  408
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-09-22
  • 修回日期:  2016-01-22
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-04-30

目录

/

返回文章
返回