Yanqiang Ling ophiolitic remnants has been discovered in Duolong ore concentration area, Gêrzê County, Tibet
-
摘要:
西藏班公湖-怒江缝合带北缘多龙矿集区是青藏高原新近发现的具有超大型远景的、典型的富金斑岩型铜矿集区,其成岩成矿地质背景是解决班公湖-怒江洋构造演化的关键问题之一。近年来的区域地质调查研究发现,多龙矿集区南侧出露岩墙岭蛇绿岩残片,应该是班公湖-怒江蛇绿岩带的重要组成部分。岩墙岭蛇绿岩主要由席状岩墙群、枕状玄武岩和硅质岩组成,整体呈棱形或透镜体状断续分布于侏罗系复理石沉积内,构成典型的网结状构造。糜棱岩普遍发育在岩墙岭蛇绿岩和围岩的接触部位。综合前人研究成果,初步认为多龙矿集区早白垩世成岩成矿作用应该形成于增生楔之上伸展拉张的构造环境。岩墙岭蛇绿岩的发现和确定进一步约束了多龙矿集区成岩成矿地质背景,同时为班公湖-怒江缝合带的延伸及其构造演化的研究提供了新的线索。
Abstract:The Duolong ore concentration area, located on the northern margin of Bangong Co-Nujiang River suture zone, possesses giant prospective typical gold-rich porphyry copper deposits in Tibet. The petrogenesis of the intrusions and the ore-forming processes of the Duolong ore concentration area are the key points for solving the tectonic evolution of Bangong Co-Nujiang River Ocean. Recently, Yanqiang Ling ophiolite belonging to Bangong Co-Nujiang River ophiolite belt was discovered on the southern side of the Duolong ore concentration area. Yanqiang Ling ophiolite which was tectonically emplaced in the Jurassic flysch sediments mainly consists of sheeted dykes, pillow basalt and silica rock. Mylonite is widely developed in the contact area between the country rock and the Yanqiang Ling ophiolite. Combined with previous studies, the authors hold that the Duolong ore concentration area developed on the basis of accretionary wedge and was in extensional setting during the Early Cretaceous. The discovery and determination of Yanqiang Ling ophiolite further constraint the geological setting of the Duolong ore concentration area and provide a new clue for extension and study of Bangong Co-Nujiang River suture zone.
-
多龙矿集区位于青藏高原改则县西北约100km处,大地构造位置处于班公湖-怒江缝合带北缘、南羌塘地块最南缘、日土-多不杂岩浆弧东段,主要由多不杂、波龙、拿顿、拿若、铁格龙、尕尔勤、地堡那木岗等矿体组成,是新近探明具有超大型远景的、典型的富金斑岩型铜矿区,同时也是班公湖-怒江成矿带最大的斑岩型铜金矿区[1-2]。目前,关于多龙矿集区的成岩成矿地质背景依然存在争议:①曲晓明等[3]认为,其形成于大陆碰撞地壳隆升阶段;②佘宏全等[4]暗示,其成岩成矿作用与洋脊俯冲有关;③大多数学者均赞同,多龙矿集区是典型的岛弧型斑岩型铜金矿区,其成岩成矿作用与班公湖-怒江新特提斯洋的北向俯冲密切相关[5-13];④段志明等[14-15]和符家骏等[16]进一步强调,多龙斑岩型铜矿是发育在增生楔体系之上的岛弧型斑岩型铜金矿床。本文基于区域地质调查研究,在多龙矿集区新厘定出岩墙岭蛇绿岩残片,对揭示班公湖-怒江缝合带西段构造格架、班公湖-怒江洋的演化历史及多龙矿集区成岩成矿地质背景具有重要的地质意义。
1. 地质背景
班公湖-怒江缝合带横亘于青藏高原中部,向西延伸到克什米尔,向东南沿怒江河谷延伸出西藏,在中国境内延伸2500km 以上,是班公湖-怒江洋消亡闭合后的遗迹,是分割北拉萨地块和南羌塘地块的重要地质界线,同时也是青藏高原一条重要的多金属成矿带[2, 17]。班公湖-怒江洋的构造演化一直是地学界争论的焦点之一,主流观点认为其闭合时间为晚侏罗世—早白垩世[18-22],但越来越多的资料指示,班公湖-怒江洋在早白垩世仍具有一定规模[23-28]。
多龙矿集区位于班公湖-怒江缝合带西段,南羌塘地块最南缘日土-多不扎岩浆弧东段,受控于班公湖-怒江洋北向俯冲、消减、碰撞等动力学过程,构造地质特征极其复杂,同时具有良好的成矿条件(图 1-a)。矿集区出露的主体地层为下侏罗统曲色组和中侏罗统色哇组(图 1-b),岩性组成包括石英砂岩、长石岩屑杂砂岩、粉砂岩、页岩、泥岩、灰岩等,砂页岩韵律互层现象明显,砂岩的矿物成熟度和结构成熟度均较差,并发育底面印模构造和完整的鲍玛序列,是一套深水-半深水环境的复理石沉积①②(①吉林大学地质调查院.中华人民共和国1∶5 万多不扎幅区域地质调查报告.2015.②四川省地质调查院.中华人名共和国1∶25 万物玛幅区域地质调查报告.2004.)(待发表)。下白垩统美日切错组火山岩沉积地层角度不整合于下伏地层之上(图 1-b),岩石组合以杂色安山岩和安山质角砾岩为主,次为流纹岩、流纹质凝灰岩、玄武岩等,表现出多期次旋回性喷发的特点(待发表)。上白垩统阿布山组大面积分布于矿集区西北部,不整合于下伏地层之上(图 1-b),岩性主要为中厚-巨厚层状红褐色细砾岩、细-粗角砾岩与中厚层状含砾粗砂岩及中细砂岩,其中砾石成分包括橄榄岩、辉长岩、灰岩、砂岩、火山岩等,为班公湖-怒江洋闭合后的一套山间磨拉石沉积①(①吉林大学地质调查院.中华人民共和国1∶5 万多不扎幅区域地质调查报告.2015.)。
图 1 青藏高原构造简图(a)及班公湖-怒江缝合带西段多龙矿集区地质简图①(①吉林大学地质调查院.中华人民共和国1∶5 万多不扎幅区域地质调查报告.2015.)(b)KMKSZ—康西瓦-玛沁-昆仑山构造带;JSSZ—金沙江构造带;LSSZ—龙木错-双湖缝合带;BNSZ—班公湖-怒江缝合带;SNMZ—狮泉河-纳木错蛇绿混杂岩带;LMF—洛巴堆-米拉山断裂带;IYZSZ—印度河-雅鲁藏布缝合带;ATF—阿尔金断裂Figure 1. Tectonic framework of the Tibetan Plateau (a) and simplified geologicalmap of the Duolong ore concentration area in the westernsegment of Bangong-Nujiang River suture zone岩浆岩在矿集区分布广泛,岩石类型复杂多样,包括中酸性侵入体、基性岩墙群等,均侵入于侏罗系内(图 1-b)。酸性岩浆活动最为强烈,主要岩性为花岗闪长斑岩、花岗斑岩、二长花岗岩、石英斑岩等;中性岩浆活动较弱,主要岩性为闪长岩、闪长玢岩等,侵入体规模较小,均为小型岩株及岩瘤,成群、成带分布,在横截面上多呈近圆形、椭圆形或纺锤状;基性岩浆活动较强,表现为近东西向展布的基性岩墙群,主要岩性为辉长岩。多项矿产普查和专题研究工作表明,区内优势矿种为铜和金,铜资源量超过1300×104t,金资源量超过400t[29],花岗闪长斑岩和花岗斑岩是区内斑岩型铜金矿主要的成矿岩体。大量的年代学资料表明,中酸性侵入体的形成时代集中在116~128Ma 之间[1, 3-13],矿体的成矿时代为118~119Ma[4, 6-7],侵入于侏罗纪增生楔体系内的基性岩墙群的形成时代为126~127Ma(图 1-b),表明多龙矿集区的成岩-成矿时代基本一致,同时指示多龙矿集区在早白垩世应处于伸展拉张的构造环境[30]。近年来的区域地质调查研究表明,多龙矿集区南侧出露一套岩石组合特征鲜明的岩墙岭蛇绿岩残片。
2. 蛇绿岩残片基本地质特征
蛇绿岩残片整体呈近东西向分布于矿集区岩墙岭地区(图 1-b),组成端元包括席状岩墙群、玄武岩及硅质岩,因后期构造肢解而缺失堆晶杂岩和地幔橄榄岩端元。岩墙岭蛇绿岩残片的各端元呈棱形或透镜体状断续分布于侏罗系,构成典型的网结状构造。糜棱岩普遍发育在岩墙岭蛇绿岩残片各端元和围岩的接触部位,为岩墙岭蛇绿岩属性的进一步确定提供了重要证据。各个岩性端元详细描述如下。
(1)席状岩墙群是岩墙岭蛇绿岩残片的重要组成端元,主体岩性为辉长岩,在一个露头上可见上百条岩墙呈平行的席状产出,部分岩墙呈直立状(图版Ⅰ-A),部分岩墙因后期构造作用呈斜坡状,单个岩墙的宽度一般在0.5~1m 之间,个体独立产出,且个体之间可见冷凝边和烘烤边。岩石风化面呈灰褐色、红褐色,新鲜面呈灰绿色、灰黑色,发育典型的辉长结构,由针柱状、板状斜长石和半自形辉石构成(图版Ⅰ-B),块状构造。
(2)玄武岩是岩墙岭蛇绿岩残片的另一组成端元,其中枕状玄武岩出露最为广泛,次为杏仁状玄武岩、气孔状玄武岩,枕状玄武岩的枕状构造保存完整(图版Ⅰ-C),单个岩枕呈椭圆形,长轴一般在0.2~0.5m 之间,部分不与岩墙群直接接触,部分直接覆盖于岩墙群之上(图版Ⅰ-D)。岩石风化面呈灰黑、红褐色,新鲜面为灰绿色、灰黑色。气孔状玄武岩构造破碎严重,多呈小岩块混杂在片理化砂岩内(图版Ⅰ-E)。杏仁状玄武岩发育斑状结构,由0.5~1.5mm 的椭圆状-圆状杏仁体和基质组成(图版Ⅰ-F)。
(3)硅质岩作为岩墙岭蛇绿岩残片的上覆岩系,代表着远洋深海沉积物,在矿集区内呈一系列构造块体分布于侏罗系内,天然露头较好,风化面呈黄白色、灰白色,新鲜面呈灰白色、灰色,条带状构造明显(图版Ⅰ-G)。
(4)糜棱岩主要发育在硅质岩、玄武岩与围岩的接触部位,由韧性基质(40%)和变斑晶(60%)组成,发育典型的眼球状构造(图版Ⅰ-H),这既明确了岩墙岭蛇绿岩与侏罗系间的构造接触关系,也为岩墙岭蛇绿岩构造属性的确定提供了重要依据。
3. 意义及结论
岩墙岭蛇绿岩残片主要由席状岩墙群、玄武岩及硅质岩组成,整体呈棱形或透镜体状断续分布于侏罗系中,两者共同组成多龙矿集区的增生楔体系。结合前人研究成果,笔者支持多龙矿集区是发育在增生楔体系之上的观点,早白垩世基性岩墙群的确定进一步指示,多龙矿集区早白垩世成岩成矿作用形成于增生楔之上伸展拉张的地质背景。岩墙岭蛇绿岩残片位于班公湖-怒江缝合带的北缘,应该是班公湖-怒江蛇绿岩带的重要组成部分,因此,它的发现为班公湖-怒江缝合带的延伸及其构造演化的研究提供了新的线索。
致谢: 野外工作得到吉林大学解超明讲师、吴浩、刘一鸣博士,以及吉林大学青藏高原地学研究中心各位成员的帮助,在此一并表示衷心的感谢。 -
图 1 青藏高原构造简图(a)及班公湖-怒江缝合带西段多龙矿集区地质简图①(①吉林大学地质调查院.中华人民共和国1∶5 万多不扎幅区域地质调查报告.2015.)(b)
KMKSZ—康西瓦-玛沁-昆仑山构造带;JSSZ—金沙江构造带;LSSZ—龙木错-双湖缝合带;BNSZ—班公湖-怒江缝合带;SNMZ—狮泉河-纳木错蛇绿混杂岩带;LMF—洛巴堆-米拉山断裂带;IYZSZ—印度河-雅鲁藏布缝合带;ATF—阿尔金断裂
Figure 1. Tectonic framework of the Tibetan Plateau (a) and simplified geologicalmap of the Duolong ore concentration area in the westernsegment of Bangong-Nujiang River suture zone
-
李金祥,李光明,秦克章,等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代对成矿构造背景的制约[J]. 岩石学报,2008,24(3):531-543. 耿全如,潘桂堂,王立全,等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报,2011,30(8):1261-1274. 曲晓明,辛洪波.西藏班公湖斑岩铜矿带的形成时代与成矿构造环境[J]. 地质通报,2006,5(7):792-799. 佘宏全,李进文,马东方,等.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质,2009,28(6):737-746. 陈华安,朱向平,马东方,等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报,2013,87(10):1593-1611. 祝向平,陈华安,马东方,等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J]. 岩石学报,2011,27(7):2159-2164. Zhu X P,Li G M,Chen H A,et al. Zircon U-Pb, Molybdenite Re-Os and K-feldspar 40Ar/39Ar Dating of the Bolong Porphyry Cu-Au Deposit,Tibet,China[J]. Resource Geology,2015,65:122-135. Zhu X P,Li G M,Chen H A,et al. Zircon U-Pb, Molybdenite Re-Os and K-feldspar 40Ar/39Ar Dating of the Bolong Porphyry Cu-Au Deposit,Tibet,China[J]. Resource Geology,2015,65:122-135.
Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198/199:77-91. Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198/199:77-91.
Li J X,Li G M,Qin K Z,et al. Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc,northern Tibet[J]. Resource Geology,2012,62:19-41. Li J X,Li G M,Qin K Z,et al. Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc,northern Tibet[J]. Resource Geology,2012,62:19-41.
Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:evidence from U-Pb geochronology,petrochemistry and Sr-Nd-Hf-O isotope characteristics[J]. Lithos,2013,160/161:216-227. Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:evidence from U-Pb geochronology,petrochemistry and Sr-Nd-Hf-O isotope characteristics[J]. Lithos,2013,160/161:216-227.
Li J X,Qin K Z,Li G M,et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt,Tibet:evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences,2011, 41(6):525-536. Li J X,Qin K Z,Li G M,et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt,Tibet:evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences,2011, 41(6):525-536.
吕立娜.西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型[D]. 中国地质科学院硕士学位论文,2012. 李兴奎,李才,王明.藏北班公湖-怒江缝合带中-西段康穷地区发现铬铁矿[J]. 地质通报,2014,33(11):1815-1819. 段志明,李光明,张晖,等.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束[J]. 地质通报,2013,32(5):742-750. 段志明,李光明,张晖,等.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束[J]. 吉林大学学报, 2013,43(6):1865-1877. 符家骏,赵元艺,郭硕.西藏多龙矿集区花岗闪长斑岩地球化学特征及其意义[J]. 岩石矿物学杂志,2014,33(6):1039-1051. 史仁灯.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报,2007,52(2):223-227. Kapp P,Muupy K A,Yin A,et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003,22(4):3-23. Kapp P,Muupy K A,Yin A,et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003,22(4):3-23.
邱瑞照,周素,邓晋福,等.西藏班公湖"怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J]. 中国地质,2004,31(3):262-268. 陈国荣,刘鸿飞,蒋光武,等.西藏班公湖-怒江结合带中段沙木罗组的发现[J]. 地质通报,2004,23(2):192-193. Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane,Tibet[J]. Gondwana Research,2014,26(2):449-463. Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane,Tibet[J]. Gondwana Research,2014,26(2):449-463.
Zhu D C,Li S M,Cawood P A,et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,2016,245:7-17. Zhu D C,Li S M,Cawood P A,et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,2016,245:7-17.
Liu W L,Xia B,Zhong Y,et al. Age and composition of the Rebang Co and Julu ophiolites,central Tibet:Implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review,2014,56:430-447. Liu W L,Xia B,Zhong Y,et al. Age and composition of the Rebang Co and Julu ophiolites,central Tibet:Implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review,2014,56:430-447.
Xu M J,Li C,Zhang X Z,et al. Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology,geochemistry,and geochronology[J]. International Geology Review,2014, 56(9):1072-1096. Xu M J,Li C,Zhang X Z,et al. Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology,geochemistry,and geochronology[J]. International Geology Review,2014, 56(9):1072-1096.
Fan J J,Li C,Liu Y M,et al. Age and nature of the late Early Cretaceous Zhaga Formation,northern Tibet:constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed[J]. International Geology Review,2015,597(3):342-353. Fan J J,Li C,Liu Y M,et al. Age and nature of the late Early Cretaceous Zhaga Formation,northern Tibet:constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed[J]. International Geology Review,2015,597(3):342-353.
朱弟成,潘桂棠,莫宣学,等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J]. 地质学报,2006,80(9):1312-1328. Fan J J,Li C,Xie C M,et al. Petrology,geochemistry,and geochronology of the zhonggang ocean island,gaize county,northern Tibet:implications for the evolution of the Bangongco-Nujiang ocean[J]. International Geology Review,2014,56:1504-1520. Fan J J,Li C,Xie C M,et al. Petrology,geochemistry,and geochronology of the zhonggang ocean island,gaize county,northern Tibet:implications for the evolution of the Bangongco-Nujiang ocean[J]. International Geology Review,2014,56:1504-1520.
Xu W,Xu M J,Wu Y W,et al. Petrology,Geochemistry and Geochronology of Boninitic Dykes from the Kangqiong Ophiolite:Implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet[J]. International Geology Review, 2015,57(16):1-16. Xu W,Xu M J,Wu Y W,et al. Petrology,Geochemistry and Geochronology of Boninitic Dykes from the Kangqiong Ophiolite:Implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet[J]. International Geology Review, 2015,57(16):1-16.
宋扬,唐菊兴,曲晓明,等.西藏班公湖-怒江成矿带研究进展及一些新认识[J].地球科学进展,2014,2(70):795-809. Xu W,Li C,Wang M,et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit,western Tibet[J]. Gondwana Research, 2015, doi: 10.1016/j.gr.2015.09.010. ①吉林大学地质调查院.中华人民共和国1:5万多不扎幅区域地质调查报告.2015. ②四川省地质调查院.中华人名共和国1:25万物玛幅区域地质调查报告.2004. Xu W,Li C,Wang M,et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit,western Tibet[J]. Gondwana Research, 2015, doi: 10.1016/j.gr.2015.09.010.