LA-ICP-MS zircon U-Pb dating of monzogranite in Bayintolgoi, Gobi-Altay, Mongolia, and its geological implications
-
摘要:
蒙古戈壁阿尔泰省巴音陶勒盖地区地处南戈壁-阿尔泰构造带南缘, 区内构造活动活跃, 中酸性侵入岩比较发育。采用LA-ICP-MS锆石U-Pb测年技术, 对区内二长花岗岩中的锆石进行同位素年龄研究。阴极发光图像显示, 锆石颗粒多为自形-半自形, 且有明显的初始岩浆振荡环带, 少见蚀变微区, 结合较高的Th/U值(0.65~1.79), 断定其为典型的岩浆成因锆石; 30颗锆石的206Pb/238U年龄加权平均值为300.2± 0.9Ma, 显示二长花岗岩成岩时代为晚石炭世, 代表了华力西中期的一次构造-岩浆事件, 为约束南戈壁-阿尔泰构造带晚石炭世深成岩浆活动时限提供了新证据。
-
关键词:
- 二长花岗岩 /
- LA-ICP-MS锆石U-Pb年龄 /
- 南戈壁-阿尔泰 /
- 蒙古
Abstract:Bayintolgoi region in Mongolia is located in the southern South-Gobi-Altay tectonic zone. In this region, tectonic move-ment is active and intermediate-acidic intrusive rocks are well developed. Analysis of LA-ICP-MS zircon U-Pb ages was conduct-ed for zircons from monzogranite in Bayintolgoi, Mongolia. As revealed by the cathodoluminescence images, all the zircons from monzogranite are euhedral-subhedral and have oscillatory zoning, with almost all the zircons having high Th/U ratios. These charac-teristics suggest a magmatic genesis of the analyzed zircons. 30 zircons yielded a weighted mean 206Pb/238U age of 300.2± 0.9Ma. The results show that the monzogranite was formed in Upper Carboniferous and there existed a tectonic-magmatic event in the Middle Variscan. These data provide new evidence for the Upper Carboniferous orogeny in South-Gobi-Altay tectonic zone.
-
Keywords:
- monzogranite /
- LA-ICP-MS zircon U-Pb ages /
- South-Gobi-Altay /
- Mongolia
-
蒙古戈壁阿尔泰省与中国新疆自治区隔国界相望,大地构造位置属于南戈壁-阿尔泰构造带[1-4],毗邻准噶尔弧盆系东缘,由一系列岛弧和增生杂岩带组成。区内广泛发育中酸性侵入岩,多呈深成相的岩基或中小型岩株产出,与准噶尔地区广泛分布的晚古生代侵入岩交相呼应。依据前人获得的大量锆石年代学数据[5-9],准噶尔地区深成岩浆活动集中分布在早石炭世—早二叠世,在晚石炭世末达到高峰,形成古洋盆、洋岛、岛弧、后碰撞等不同构造环境下复杂的岩浆体系[5, 10-12]。在此背景下,同样集中发育晚古生代深成岩的南戈壁-阿尔泰构造带,与准噶尔弧盆系岩浆演化的关联和对比缺乏相关岩体年龄的报道,这也是笔者关注的焦点。本次选择南戈壁-阿尔泰构造带巴音陶勒盖一带的二长花岗岩为研究对象,采用LA-ICP-MS测年技术,获得其锆石U-Pb年龄为300.2±0.9Ma,为区域构造-岩浆活动提供了可靠的年代学数据,同时为约束南戈壁-阿尔泰构造带华力西期造山运动时限提供了新证据。
1. 地质背景及岩石特征
南戈壁-阿尔泰构造带邻近准噶尔弧盆系(图 1-a),由次级构造单元Transaltay晚古生代岛弧和Nemegt古生代增生楔构成。研究区位于Transaltay岛弧带南缘巴音陶勒盖一带,地理位置属于蒙古戈壁阿尔泰省南部边境地区。区域构造以断裂为主,北西—南东向断裂十分发育,被数条北东—南西向断裂切割,共同组成了区内断块镶嵌的构造环境。区域地层出露下泥盆统Ulgii组(D1ul)、下石炭统Noyonuul组(C1nn)、Sayriinshand组(C1sr)、上白垩统(未分)(K2)、渐新统(未分)(E3)及上新统(未分)(N2),部分被第四系盖层覆盖(图 1-b)。Ulgii组分为上、下两段,上段为巨厚的玄武岩、安山岩、集块凝灰岩、凝灰质砾岩建造,局部可见流纹岩层、砂岩及硅化粉砂岩夹层,下段为碳酸盐岩、酸性凝灰岩建造,夹绿片岩及破碎的硅化灰岩层,主要出露在研究区中部与西南部,与其上的Noyonuul组不整合接触,后者为一套安山岩、玄武岩、凝灰岩、凝灰质砂岩及凝灰质粉砂岩建造,厚约1500m,在区内广泛分布。Sayriinshand组主要为一套未分异的火山岩系,仅出露在研究区东南部,建造组成有安山岩-英安岩、流纹岩-粗面岩、凝灰岩及熔结凝灰岩、凝灰质砂岩、杂砂质砾岩、粉砂岩及泥页岩,夹薄层状灰岩透镜体,与其上的中新生界不整合接触。
Qph—更新统-全新统;Qp—更新统;N2—上新统;E3—渐新统;K2—上白垩统;C1nn—Noyonuul组;D1ul—Ulgii组;1—花岗岩;2—花岗闪长岩;3—闪长岩;4—辉长岩;5—正长花岗岩;6—二长花岗岩;7—断裂;8—整合界线;9—不整合界线;10—采样位置。Ⅰ-3-1—萨吾尔-二台-Hrairhan弧盆带;Ⅰ-3-2—洪古勒楞-阿尔曼太-Baitag弧盆带;Ⅰ-3-3—谢米斯台-库兰喀孜干弧盆带;Ⅰ-3-4—三塘湖弧盆带;Ⅰ-3-5—唐巴勒-喀拉麦里缝合带;Ⅰ-5-1—南戈壁-阿尔泰构造带Figure 1. Tectonic sketch map (a)and geological map (b)of Bayintolgoi, Mongolia此外,研究区沿断裂带两侧发育大面积分布的中酸性侵入岩体,岩性为花岗岩、花岗闪长岩、二长花岗岩、正长花岗岩、闪长岩及少量辉长岩,主要分布在研究区中部与南部地区,与周围地层多呈侵位或断层接触关系。本次选择风化程度较低、新鲜的二长花岗岩作为研究对象,样品(MND202)采自阿尔泰省巴音陶勒盖西南16km处(图 2),坐标位置N44°51′20″、E96°56′09″(图 1)。二长花岗岩风化面呈黄褐色,新鲜面为灰白色、浅肉红色,中粗粒花岗结构,块状构造。矿物成分为:钾长石,呈灰白色、浅肉红色,半自形板柱状,大小1~8mm,含量30%~35%;斜长石,呈灰白色,自形-半自形柱状或板状,聚片双晶发育,大小0.5~6mm,含量25%~30%;石英,为白色透明,他形粒状,大小2~8mm,含量30%~35%;少量暗色矿物黑云母、角闪石,含量小于5%;球形风化较弱,无矿化蚀变。
2. 分析方法
测试样品在河北省廊坊区域地质调查研究所制备。锆石分选方法为浮选和电磁选,在双目镜下挑选出晶形和透明度较好的锆石颗粒,将其粘贴在环氧树脂表面,打磨抛光后制成样靶,并进行透射光、反射光和阴极发光显微观察及照相。
LA-ICP-MS锆石U-Pb同位素测试在天津地质调查中心同位素实验室完成。实验仪器为激光剥蚀多接收器电感耦合等离子体质谱仪,包括Thermo Fisher公司生产的Neptune多接收器电感耦合等离子质谱和ESI公司生产的NEW WAVE193nm FX ArF准分子激光器。实验过程使用193nm激光器对锆石进行剥蚀及U-Pb同位素原位测定,激光剥蚀斑束直径为35μm,采用标准锆石GJ-1作为外标进行同位素分馏校正,数据及图件处理利用ICP-MS DataCal程序[13]和Isoplot程序[14]完成。普通铅据208Pb进行校正,利用NIST SRM610玻璃标样作为外标计算锆石样品中的U、Pb含量。测试结果见表 1。
表 1 蒙古巴音陶勒盖二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素分析结果Table 1. LA-ICP-MS U-Th-Pb isotopic data of zircons from the monzogranite sample in Bayintolgoi, Mongolia测点 Pb/10-6 U/10-6 Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ 年龄/Ma 1σ MND202-1 25 443 1.060 0.04757 0.00035 0.3359 0.0054 0.05122 0.00079 300 2 294 5 251 35 MND202-2 18 306 1.347 0.04776 0.00035 0.3561 0.0082 0.05406 0.00119 301 2 309 7 374 49 MND202-3 14 244 1.436 0.04738 0.00037 0.3396 0.0088 0.05199 0.00133 298 2 297 8 285 58 MND202-4 37 688 1.065 0.04714 0.00031 0.3408 0.0040 0.05244 0.00060 297 2 298 3 304 26 MND202-5 29 529 1.098 0.04572 0.00029 0.3933 0.0074 0.06238 0.00115 288 2 337 6 687 39 MND202-6 17 274 1.800 0.04756 0.00032 0.4313 0.0117 0.06577 0.00176 300 2 364 10 799 56 MND202-7 37 672 1.103 0.04862 0.00031 0.3523 0.0037 0.05255 0.00055 306 2 306 3 310 24 MND202-8 40 791 0.779 0.04613 0.00029 0.3410 0.0047 0.05361 0.00072 291 2 298 4 355 30 MND202-9 18 286 1.678 0.04785 0.00032 0.3664 0.0093 0.05553 0.00138 301 2 317 8 434 55 MND202-10 64 1175 0.962 0.04784 0.00031 0.3683 0.0035 0.05583 0.00051 301 2 318 3 446 20 MND202-11 34 626 0.852 0.04768 0.00031 0.3551 0.0045 0.05403 0.00066 300 2 309 4 372 27 MND202-12 25 469 0.883 0.04760 0.00031 0.3406 0.0053 0.05189 0.00078 300 2 298 5 280 35 MND202-13 39 703 1.084 0.04745 0.00031 0.3688 0.0044 0.05637 0.00064 299 2 319 4 467 25 MND202-14 51 943 1.028 0.04451 0.00028 0.5130 0.0089 0.08358 0.00138 281 2 420 7 1283 32 MND202-15 32 622 0.733 0.04742 0.00032 0.3334 0.0049 0.05100 0.00071 299 2 292 4 241 32 MND202-16 34 672 0.654 0.04749 0.00031 0.3341 0.0044 0.05103 0.00066 299 2 293 4 242 30 MND202-17 39 701 1.120 0.04789 0.00038 0.3488 0.0044 0.05282 0.00062 302 2 304 4 321 27 MND202-18 16 289 1.096 0.04804 0.00036 0.3450 0.0089 0.05209 0.00132 302 2 301 8 289 58 MND202-19 42 947 0.063 0.04786 0.00037 0.3526 0.0038 0.05344 0.00050 301 2 307 3 347 21 MND202-20 37 706 0.845 0.04787 0.00036 0.3432 0.0045 0.05201 0.00060 301 2 300 4 286 27 MND202-21 14 263 0.803 0.04789 0.00039 0.3531 0.0099 0.05347 0.00149 302 2 307 9 349 63 MND202-22 38 643 1.289 0.04802 0.00037 0.3484 0.0045 0.05262 0.00064 302 2 304 4 312 28 MND202-23 19 337 1.105 0.04785 0.00034 0.3645 0.0069 0.05525 0.00104 301 2 316 6 422 42 MND202-24 17 309 0.859 0.04805 0.00035 0.3234 0.0075 0.04881 0.00111 303 2 285 7 139 53 MND202-25 12 202 1.193 0.04693 0.00032 0.3455 0.0116 0.05339 0.00175 296 2 301 10 346 74 MND202-26 41 818 0.879 0.04389 0.00028 0.3536 0.0084 0.05842 0.00137 277 2 307 7 546 51 MND202-27 9 161 1.257 0.04711 0.00033 0.3511 0.0138 0.05406 0.00205 297 2 306 12 373 85 MND202-28 41 811 0.966 0.04422 0.00030 0.3543 0.0056 0.05812 0.00082 279 2 308 5 534 31 MND202-29 24 454 0.936 0.04735 0.00039 0.3476 0.0062 0.05324 0.00086 298 2 303 5 339 37 MND202-30 47 845 1.077 0.04768 0.00034 0.3853 0.0046 0.05862 0.00062 300 2 331 4 553 23 3. 分析结果
3.1 锆石CL特征
通过阴极发光(CL)图像(图 3)观察,锆石表面较干净,粒径大小90~200μm,多呈长柱状、短柱状、不规则次棱角状,自形-半自形发育。CL图像显示,锆石颗粒多具有明显的初始岩浆特征的振荡环带,部分存在核-边结构,个别锆石的边部环带弱化,有热液蚀变迹象。测定的锆石中,除1粒锆石外,其余锆石Th/U值介于0.65~1.79之间,远高于临界值0.1或0.4[15-17],热液活动未破坏锆石U-Pb体系的封闭性,整体显示典型的岩浆锆石特征。
3.2 锆石U-Pb测年结果
锆石测点在阴极发光图像初选的基础上, 尽量避开内部裂隙和包裹体, 选择30颗锆石进行原位测定,获得的年龄数据如表 1所示。锆石测点多位于清楚的岩浆环带上,206Pb/ 238U年龄为279±2 ~306±2Ma,年龄加权平均值为300.2±0.9Ma(MSWD=1.15,n=25),置信度95%,投影在206Pb/238U-207Pb/235U图上表现出良好的谐和性(图 4),指示所测锆石未遭受后期热事件改造,无或仅有少量铅丢失[6]。此外,锆石Pb、U含量变化范围分别为9×10-6~64×10-6和161×10-6~1175×10-6,Th/U值为0.65~1.79,除19号锆石(Th/U=0.063)外,均在岩浆锆石序列范围内。结合锆石CL图像特征,认为样品的LA-ICPMS锆石U-Pb年龄在误差范围内可信,300.2±0.9Ma的年龄加权平均值反映了二长花岗岩的成岩时代,即岩浆侵位地层分异结晶的年龄。19号锆石的206Pb/ 238U年龄值为301±2Ma,也在岩体的成岩时限内,CL图像中锆石核部黝黑,环带狭窄且见疑似变质增生边,较低的Th/U值暗示,锆石形成过程中封闭体系受到部分扰动,可能是分异结晶过程的不稳定,也可能是后期热液活动的改造,但作用微弱,未破坏锆石U-Pb体系的封闭性,也不具有代表性。
4. 讨论
蒙古戈壁阿尔泰省巴音陶勒盖一带地质工作程度较低,精确的岩体锆石年龄对解析区域基础地质问题意义重大。区内发育的二长花岗岩锆石具有明显的振荡环带,结合较高的Th/U值,显示典型的岩浆锆石特征,个别锆石有微弱的变质迹象,但属性参数没有变化,显示后期受到一定的热液活动影响,但未改变锆石U-Pb体系对岩浆分异结晶时限的制约。年龄直方图(图 5)中,30个锆石测点的年龄峰值十分单一,多集中在295~300Ma之间,显示锆石成因单一,300.2±0.9Ma的谐和年龄代表了二长花岗岩的成岩时代。对比准噶尔弧盆系,区内晚石炭世同样发生了深成岩浆构造活动。
南戈壁-阿尔泰构造带在区域上位于准噶尔弧盆系东侧,西伯利亚板块、哈萨克斯坦板块和准噶尔板块的结合部,主要分布在蒙古境内,由Transaltay晚古生代岛弧和Nemegt古生代增生楔构成[1-4]。Transaltay岛弧通过Bulga断裂带从North Gobi超地体中分离出来,分布在Suman Hairhan与Aj Bogd山地区,由晚泥盆世—晚石炭世火山岩和广泛分布的硅酸盐岩-陆源碎屑岩,以及凝灰岩-陆源碎屑杂岩建造组成。Nemegt增生楔地体为一个厚层的蛇绿混合岩带(中奥陶世—中泥盆世),西南与Gurvan Saihan地体毗邻,从Seruun Hairhan山脉边缘开始,向东沿Ongon Ulaan山脉,穿过Nogoon Tsav荒地,延伸至Nemegt、Sevrei和Deng Nuruu山脉甚至更远。相比工作程度较低的南戈壁-阿尔泰构造带,其西侧的准噶尔弧盆系岩浆演化研究北较系统,锆石年龄数据丰富,众多学者在此进行了详细研究[5-12, 17-25],形成有后碰撞岩浆运动[5]、洋内俯冲岛弧[8]、洋脊俯冲[11]等多种构造及成因模式,深成岩浆活动集中在早石炭世—早二叠世[5]。依据最近的中蒙国际合作成果,李俊建等[1-2]、Tumurtogoo等[3-4]将准噶尔弧盆系划分为萨吾尔-二台-Hrairhan弧盆带、洪古勒楞-阿尔曼太-Baitag弧盆带、谢米斯台-库兰喀孜干弧盆带、三塘湖弧盆带和唐巴勒-喀拉麦里缝合带,并将其与南戈壁-阿尔泰构造带划归同一构造演化体系。与准噶尔弧盆系晚石炭世集中发育深成岩浆岩相似,地处Transaltay岛弧带南缘的巴音陶勒盖地区同样发育晚石炭世深成岩。结合周边广泛产出晚石炭世岩浆岩的事实[3-4],可以推断Transaltay岛弧带与准噶尔弧盆系具有相似的岩浆发育活跃期,侧面印证了2个相邻构造带岩浆演化统一体系的结论。
5. 结论
(1)巴音陶勒盖地区二长花岗岩锆石为典型的岩浆锆石,206Pb/238U年龄加权平均值为300.2±0.9Ma,表明其成岩时代为晚石炭世。
(2)巴音陶勒盖二长花岗岩形成于外阿尔泰晚古生代岛弧带。与准噶尔弧盆系类似,该区晚石炭世深成岩浆活动比较发育。
致谢: 在中国地质调查局天津地质调查中心实验过程和后期数据处理中,得到同位素实验室耿建珍高级工程师和王家松工程师的悉心指导和热情帮助;蒙古野外路线地质调查期间,得到蒙古矿产资源管理局地质调查局、地质信息中心Deegir D、Enkhbat T、Oyuntuya N工程师等的支持和帮助,谨此一致表达衷心的感谢。 -
图 1 蒙古巴音陶勒盖一带大地构造简图(a)及地质图(b)(据参考文献[1, 3]修改)
Qph—更新统-全新统;Qp—更新统;N2—上新统;E3—渐新统;K2—上白垩统;C1nn—Noyonuul组;D1ul—Ulgii组;1—花岗岩;2—花岗闪长岩;3—闪长岩;4—辉长岩;5—正长花岗岩;6—二长花岗岩;7—断裂;8—整合界线;9—不整合界线;10—采样位置。Ⅰ-3-1—萨吾尔-二台-Hrairhan弧盆带;Ⅰ-3-2—洪古勒楞-阿尔曼太-Baitag弧盆带;Ⅰ-3-3—谢米斯台-库兰喀孜干弧盆带;Ⅰ-3-4—三塘湖弧盆带;Ⅰ-3-5—唐巴勒-喀拉麦里缝合带;Ⅰ-5-1—南戈壁-阿尔泰构造带
Figure 1. Tectonic sketch map (a)and geological map (b)of Bayintolgoi, Mongolia
表 1 蒙古巴音陶勒盖二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1 LA-ICP-MS U-Th-Pb isotopic data of zircons from the monzogranite sample in Bayintolgoi, Mongolia
测点 Pb/10-6 U/10-6 Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ 年龄/Ma 1σ MND202-1 25 443 1.060 0.04757 0.00035 0.3359 0.0054 0.05122 0.00079 300 2 294 5 251 35 MND202-2 18 306 1.347 0.04776 0.00035 0.3561 0.0082 0.05406 0.00119 301 2 309 7 374 49 MND202-3 14 244 1.436 0.04738 0.00037 0.3396 0.0088 0.05199 0.00133 298 2 297 8 285 58 MND202-4 37 688 1.065 0.04714 0.00031 0.3408 0.0040 0.05244 0.00060 297 2 298 3 304 26 MND202-5 29 529 1.098 0.04572 0.00029 0.3933 0.0074 0.06238 0.00115 288 2 337 6 687 39 MND202-6 17 274 1.800 0.04756 0.00032 0.4313 0.0117 0.06577 0.00176 300 2 364 10 799 56 MND202-7 37 672 1.103 0.04862 0.00031 0.3523 0.0037 0.05255 0.00055 306 2 306 3 310 24 MND202-8 40 791 0.779 0.04613 0.00029 0.3410 0.0047 0.05361 0.00072 291 2 298 4 355 30 MND202-9 18 286 1.678 0.04785 0.00032 0.3664 0.0093 0.05553 0.00138 301 2 317 8 434 55 MND202-10 64 1175 0.962 0.04784 0.00031 0.3683 0.0035 0.05583 0.00051 301 2 318 3 446 20 MND202-11 34 626 0.852 0.04768 0.00031 0.3551 0.0045 0.05403 0.00066 300 2 309 4 372 27 MND202-12 25 469 0.883 0.04760 0.00031 0.3406 0.0053 0.05189 0.00078 300 2 298 5 280 35 MND202-13 39 703 1.084 0.04745 0.00031 0.3688 0.0044 0.05637 0.00064 299 2 319 4 467 25 MND202-14 51 943 1.028 0.04451 0.00028 0.5130 0.0089 0.08358 0.00138 281 2 420 7 1283 32 MND202-15 32 622 0.733 0.04742 0.00032 0.3334 0.0049 0.05100 0.00071 299 2 292 4 241 32 MND202-16 34 672 0.654 0.04749 0.00031 0.3341 0.0044 0.05103 0.00066 299 2 293 4 242 30 MND202-17 39 701 1.120 0.04789 0.00038 0.3488 0.0044 0.05282 0.00062 302 2 304 4 321 27 MND202-18 16 289 1.096 0.04804 0.00036 0.3450 0.0089 0.05209 0.00132 302 2 301 8 289 58 MND202-19 42 947 0.063 0.04786 0.00037 0.3526 0.0038 0.05344 0.00050 301 2 307 3 347 21 MND202-20 37 706 0.845 0.04787 0.00036 0.3432 0.0045 0.05201 0.00060 301 2 300 4 286 27 MND202-21 14 263 0.803 0.04789 0.00039 0.3531 0.0099 0.05347 0.00149 302 2 307 9 349 63 MND202-22 38 643 1.289 0.04802 0.00037 0.3484 0.0045 0.05262 0.00064 302 2 304 4 312 28 MND202-23 19 337 1.105 0.04785 0.00034 0.3645 0.0069 0.05525 0.00104 301 2 316 6 422 42 MND202-24 17 309 0.859 0.04805 0.00035 0.3234 0.0075 0.04881 0.00111 303 2 285 7 139 53 MND202-25 12 202 1.193 0.04693 0.00032 0.3455 0.0116 0.05339 0.00175 296 2 301 10 346 74 MND202-26 41 818 0.879 0.04389 0.00028 0.3536 0.0084 0.05842 0.00137 277 2 307 7 546 51 MND202-27 9 161 1.257 0.04711 0.00033 0.3511 0.0138 0.05406 0.00205 297 2 306 12 373 85 MND202-28 41 811 0.966 0.04422 0.00030 0.3543 0.0056 0.05812 0.00082 279 2 308 5 534 31 MND202-29 24 454 0.936 0.04735 0.00039 0.3476 0.0062 0.05324 0.00086 298 2 303 5 339 37 MND202-30 47 845 1.077 0.04768 0.00034 0.3853 0.0046 0.05862 0.00062 300 2 331 4 553 23 -
李俊建, 张锋, 任军平, 等.中蒙边界地区构造单元划分[J].地质通报, 2015, 34(4):636-662. 李俊建, 刘新秒, 王国明, 等.蒙古地质矿产概况[M].天津:天津科学技术出版社, 2013:1-273. Tomurtogoo O, Badarch G. Mongolia geological map of Mongolia (at the Scale 1:1000,000) and its explanatory note[M]. Mineral Re-sources Authority of Mongolia and Mongolian Academy of Sciences (MRAM-MAS), Ulaanbaatar, 1998:4-20. Tomurtogoo O, Badarch G. Mongolia geological map of Mongolia (at the Scale 1:1000, 000) and its explanatory note[M]. Mineral Re-sources Authority of Mongolia and Mongolian Academy of Sciences (MRAM-MAS), Ulaanbaatar, 1998:4-20.
Tomurtogoo O. Tectonical Map of Mongolia Boundary Area[M]. Ulaanbaatar, 2002. Tomurtogoo O. Tectonical Map of Mongolia Boundary Area[M]. Ulaanbaatar, 2002.
韩宝福, 季建清, 宋彪, 等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J].岩石学报, 2006, 22(5):1077-1086. 苏玉平, 唐红峰, 侯广顺, 等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学, 2006, 35(1):55-67. 童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619-641. Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb ages and tectonic im-plications of Paleozoic plutons in northern West Junggar, North Xin-jiang, China[J]. Lithos, 2010, 115(1/4):137-152. Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb ages and tectonic im-plications of Paleozoic plutons in northern West Junggar, North Xin-jiang, China[J]. Lithos, 2010, 115(1/4):137-152.
Ma C, Xiao W J, Windley B F, et al. Tracing a subducted ridgetransform system in a Late Carboniferous accretionary prism of the southern Altaids:Orthogonal sanukitoid dyke swarms in western Junggar, NW China[J]. Lithos, 2012, 140/141:152-165. Ma C, Xiao W J, Windley B F, et al. Tracing a subducted ridgetransform system in a Late Carboniferous accretionary prism of the southern Altaids:Orthogonal sanukitoid dyke swarms in western Junggar, NW China[J]. Lithos, 2012, 140/141:152-165.
Xiao W J, Kusky T. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts:Introduction[J]. Gond-wana Research, 2009, 16(2):167-169. Xiao W J, Kusky T. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts:Introduction[J]. Gond-wana Research, 2009, 16(2):167-169.
Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4):364-389. Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4):364-389.
Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China):Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012, 21(4):1037-1049. Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China):Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012, 21(4):1037-1049.
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronolog-ical Center, 2003:1-71. Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronolog-ical Center, 2003:1-71.
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zir-con dating by IOM Microprobe:Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Ber-lin Heidelberg, Germany, 2000:373-400. Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zir-con dating by IOM Microprobe:Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Ber-lin Heidelberg, Germany, 2000:373-400.
Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with im-plications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5):1307-1320 Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with im-plications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5):1307-1320
宋彪, 李锦轶, 张进, 等.西准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄——托里断裂左行走滑运动开始的时间约束[J].地质通报, 2011, 30(1):19-25. 张招崇, 闫升好, 陈柏林, 等.新疆东准噶尔北部俯冲花岗岩的SHRIMP U-P锆石定年[J].科学通报, 2006, 51(13):1565-1574. 肖文交, 韩春明, 袁超, 等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报, 2006, 22(5):1062-1076. 徐学义, 马中平, 夏祖春, 等.天山石炭-二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪[J].西北地质, 2005, 38(2):1-18. 周涛发, 袁峰, 范裕, 等.西准噶尔萨吾尔地区A型花岗岩的地球动力学意义:来自岩石地球化学和锆石SHRIMP定年的证据[J].中国科学(D辑), 2006, 36(1):39-48. 安芳, 朱永峰.新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义[J].岩石学报, 2009, 25(6):1437-1445. 高睿, 肖龙, 王国灿, 等.西准噶尔晚古生代岩浆活动和构造背景[J].岩石学报, 2013, 29(10):3413-3434. 尹继元, 袁超, 王毓婧, 等.新疆西准噶尔晚古生代大地构造演化的岩浆活动记录[J].大地构造与成矿学, 2013, 35(2):278-291. 李俊建, 陈安蜀, 唐文龙, 等.中蒙边界1: 100万系列地质图件编制与相关地质问题研究成果报告.天津地质调查中心. 2013.