LA-ICP-MS zircon U-Pb dating of alkali-feldspar granite on the periphery of the Oyu Tolgoi deposit, Mongolia, and its geological significan
-
摘要:
位于蒙古国Oyu Tolgoi超大型斑岩型铜-金矿床南20km的碱长花岗岩区, 构造上处于西伯利亚板块南缘近东西向和北东向深大断裂所挟持的戈壁-天山古生代岛弧带内。利用LA-ICP-MS U-Pb同位素测年法对研究区碱长花岗岩中的锆石进行高精度的年代学测试, 获得206Pb/238U年龄加权平均值为286.00± 0.91Ma, 为早二叠世。研究区具有多期次成岩、成矿特征, 本次定年不仅为该区多期次岩浆活动提供了直接的年龄证据, 也为该区找矿指明了方向。
-
关键词:
- 锆石 /
- 花岗岩 /
- Oyu Tolgoi /
- 蒙古
Abstract:The alkali-feldspar granite of the study area located 20km south of the superlarge Oyu Tolgoi Cu-Au deposit. The tecton-ic setting of the study area belongs to Paleozoic island arc zone of Gobi-Tianshan controlled by intersection of the near-latitudinal fault and an oblique transverse fault on the south margin of Siberian plate. A sample was collected from Onealkali-feldspar granite, and CL characteristics of zircons suggest magmatic origin. LA-ICP-MS U-Pb dating of zircon from the sample shows that the em-placing age is 286.0± 0.91Ma (MSWD=1.4), belonging to Permian period. The study area is characterized by multiperiodic diagenesis and mineralization. The isotope age provides not only the direct evidence for the multiperiodic magmatic activities but also the pros-pecting direction for the study area.
-
Keywords:
- zircon /
- alkali-feldspar granite /
- Oyu Tolgoi /
- Mongolia
-
蒙古戈壁阿尔泰省与中国新疆自治区隔国界相望,大地构造位置属于南戈壁-阿尔泰构造带[1-4],毗邻准噶尔弧盆系东缘,由一系列岛弧和增生杂岩带组成。区内广泛发育中酸性侵入岩,多呈深成相的岩基或中小型岩株产出,与准噶尔地区广泛分布的晚古生代侵入岩交相呼应。依据前人获得的大量锆石年代学数据[5-9],准噶尔地区深成岩浆活动集中分布在早石炭世—早二叠世,在晚石炭世末达到高峰,形成古洋盆、洋岛、岛弧、后碰撞等不同构造环境下复杂的岩浆体系[5, 10-12]。在此背景下,同样集中发育晚古生代深成岩的南戈壁-阿尔泰构造带,与准噶尔弧盆系岩浆演化的关联和对比缺乏相关岩体年龄的报道,这也是笔者关注的焦点。本次选择南戈壁-阿尔泰构造带巴音陶勒盖一带的二长花岗岩为研究对象,采用LA-ICP-MS测年技术,获得其锆石U-Pb年龄为300.2±0.9Ma,为区域构造-岩浆活动提供了可靠的年代学数据,同时为约束南戈壁-阿尔泰构造带华力西期造山运动时限提供了新证据。
1. 地质背景及岩石特征
南戈壁-阿尔泰构造带邻近准噶尔弧盆系(图 1-a),由次级构造单元Transaltay晚古生代岛弧和Nemegt古生代增生楔构成。研究区位于Transaltay岛弧带南缘巴音陶勒盖一带,地理位置属于蒙古戈壁阿尔泰省南部边境地区。区域构造以断裂为主,北西—南东向断裂十分发育,被数条北东—南西向断裂切割,共同组成了区内断块镶嵌的构造环境。区域地层出露下泥盆统Ulgii组(D1ul)、下石炭统Noyonuul组(C1nn)、Sayriinshand组(C1sr)、上白垩统(未分)(K2)、渐新统(未分)(E3)及上新统(未分)(N2),部分被第四系盖层覆盖(图 1-b)。Ulgii组分为上、下两段,上段为巨厚的玄武岩、安山岩、集块凝灰岩、凝灰质砾岩建造,局部可见流纹岩层、砂岩及硅化粉砂岩夹层,下段为碳酸盐岩、酸性凝灰岩建造,夹绿片岩及破碎的硅化灰岩层,主要出露在研究区中部与西南部,与其上的Noyonuul组不整合接触,后者为一套安山岩、玄武岩、凝灰岩、凝灰质砂岩及凝灰质粉砂岩建造,厚约1500m,在区内广泛分布。Sayriinshand组主要为一套未分异的火山岩系,仅出露在研究区东南部,建造组成有安山岩-英安岩、流纹岩-粗面岩、凝灰岩及熔结凝灰岩、凝灰质砂岩、杂砂质砾岩、粉砂岩及泥页岩,夹薄层状灰岩透镜体,与其上的中新生界不整合接触。
Qph—更新统-全新统;Qp—更新统;N2—上新统;E3—渐新统;K2—上白垩统;C1nn—Noyonuul组;D1ul—Ulgii组;1—花岗岩;2—花岗闪长岩;3—闪长岩;4—辉长岩;5—正长花岗岩;6—二长花岗岩;7—断裂;8—整合界线;9—不整合界线;10—采样位置。Ⅰ-3-1—萨吾尔-二台-Hrairhan弧盆带;Ⅰ-3-2—洪古勒楞-阿尔曼太-Baitag弧盆带;Ⅰ-3-3—谢米斯台-库兰喀孜干弧盆带;Ⅰ-3-4—三塘湖弧盆带;Ⅰ-3-5—唐巴勒-喀拉麦里缝合带;Ⅰ-5-1—南戈壁-阿尔泰构造带Figure 1. Tectonic sketch map (a)and geological map (b)of Bayintolgoi, Mongolia此外,研究区沿断裂带两侧发育大面积分布的中酸性侵入岩体,岩性为花岗岩、花岗闪长岩、二长花岗岩、正长花岗岩、闪长岩及少量辉长岩,主要分布在研究区中部与南部地区,与周围地层多呈侵位或断层接触关系。本次选择风化程度较低、新鲜的二长花岗岩作为研究对象,样品(MND202)采自阿尔泰省巴音陶勒盖西南16km处(图 2),坐标位置N44°51′20″、E96°56′09″(图 1)。二长花岗岩风化面呈黄褐色,新鲜面为灰白色、浅肉红色,中粗粒花岗结构,块状构造。矿物成分为:钾长石,呈灰白色、浅肉红色,半自形板柱状,大小1~8mm,含量30%~35%;斜长石,呈灰白色,自形-半自形柱状或板状,聚片双晶发育,大小0.5~6mm,含量25%~30%;石英,为白色透明,他形粒状,大小2~8mm,含量30%~35%;少量暗色矿物黑云母、角闪石,含量小于5%;球形风化较弱,无矿化蚀变。
2. 分析方法
测试样品在河北省廊坊区域地质调查研究所制备。锆石分选方法为浮选和电磁选,在双目镜下挑选出晶形和透明度较好的锆石颗粒,将其粘贴在环氧树脂表面,打磨抛光后制成样靶,并进行透射光、反射光和阴极发光显微观察及照相。
LA-ICP-MS锆石U-Pb同位素测试在天津地质调查中心同位素实验室完成。实验仪器为激光剥蚀多接收器电感耦合等离子体质谱仪,包括Thermo Fisher公司生产的Neptune多接收器电感耦合等离子质谱和ESI公司生产的NEW WAVE193nm FX ArF准分子激光器。实验过程使用193nm激光器对锆石进行剥蚀及U-Pb同位素原位测定,激光剥蚀斑束直径为35μm,采用标准锆石GJ-1作为外标进行同位素分馏校正,数据及图件处理利用ICP-MS DataCal程序[13]和Isoplot程序[14]完成。普通铅据208Pb进行校正,利用NIST SRM610玻璃标样作为外标计算锆石样品中的U、Pb含量。测试结果见表 1。
表 1 蒙古巴音陶勒盖二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素分析结果Table 1. LA-ICP-MS U-Th-Pb isotopic data of zircons from the monzogranite sample in Bayintolgoi, Mongolia测点 Pb/10-6 U/10-6 Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ 年龄/Ma 1σ MND202-1 25 443 1.060 0.04757 0.00035 0.3359 0.0054 0.05122 0.00079 300 2 294 5 251 35 MND202-2 18 306 1.347 0.04776 0.00035 0.3561 0.0082 0.05406 0.00119 301 2 309 7 374 49 MND202-3 14 244 1.436 0.04738 0.00037 0.3396 0.0088 0.05199 0.00133 298 2 297 8 285 58 MND202-4 37 688 1.065 0.04714 0.00031 0.3408 0.0040 0.05244 0.00060 297 2 298 3 304 26 MND202-5 29 529 1.098 0.04572 0.00029 0.3933 0.0074 0.06238 0.00115 288 2 337 6 687 39 MND202-6 17 274 1.800 0.04756 0.00032 0.4313 0.0117 0.06577 0.00176 300 2 364 10 799 56 MND202-7 37 672 1.103 0.04862 0.00031 0.3523 0.0037 0.05255 0.00055 306 2 306 3 310 24 MND202-8 40 791 0.779 0.04613 0.00029 0.3410 0.0047 0.05361 0.00072 291 2 298 4 355 30 MND202-9 18 286 1.678 0.04785 0.00032 0.3664 0.0093 0.05553 0.00138 301 2 317 8 434 55 MND202-10 64 1175 0.962 0.04784 0.00031 0.3683 0.0035 0.05583 0.00051 301 2 318 3 446 20 MND202-11 34 626 0.852 0.04768 0.00031 0.3551 0.0045 0.05403 0.00066 300 2 309 4 372 27 MND202-12 25 469 0.883 0.04760 0.00031 0.3406 0.0053 0.05189 0.00078 300 2 298 5 280 35 MND202-13 39 703 1.084 0.04745 0.00031 0.3688 0.0044 0.05637 0.00064 299 2 319 4 467 25 MND202-14 51 943 1.028 0.04451 0.00028 0.5130 0.0089 0.08358 0.00138 281 2 420 7 1283 32 MND202-15 32 622 0.733 0.04742 0.00032 0.3334 0.0049 0.05100 0.00071 299 2 292 4 241 32 MND202-16 34 672 0.654 0.04749 0.00031 0.3341 0.0044 0.05103 0.00066 299 2 293 4 242 30 MND202-17 39 701 1.120 0.04789 0.00038 0.3488 0.0044 0.05282 0.00062 302 2 304 4 321 27 MND202-18 16 289 1.096 0.04804 0.00036 0.3450 0.0089 0.05209 0.00132 302 2 301 8 289 58 MND202-19 42 947 0.063 0.04786 0.00037 0.3526 0.0038 0.05344 0.00050 301 2 307 3 347 21 MND202-20 37 706 0.845 0.04787 0.00036 0.3432 0.0045 0.05201 0.00060 301 2 300 4 286 27 MND202-21 14 263 0.803 0.04789 0.00039 0.3531 0.0099 0.05347 0.00149 302 2 307 9 349 63 MND202-22 38 643 1.289 0.04802 0.00037 0.3484 0.0045 0.05262 0.00064 302 2 304 4 312 28 MND202-23 19 337 1.105 0.04785 0.00034 0.3645 0.0069 0.05525 0.00104 301 2 316 6 422 42 MND202-24 17 309 0.859 0.04805 0.00035 0.3234 0.0075 0.04881 0.00111 303 2 285 7 139 53 MND202-25 12 202 1.193 0.04693 0.00032 0.3455 0.0116 0.05339 0.00175 296 2 301 10 346 74 MND202-26 41 818 0.879 0.04389 0.00028 0.3536 0.0084 0.05842 0.00137 277 2 307 7 546 51 MND202-27 9 161 1.257 0.04711 0.00033 0.3511 0.0138 0.05406 0.00205 297 2 306 12 373 85 MND202-28 41 811 0.966 0.04422 0.00030 0.3543 0.0056 0.05812 0.00082 279 2 308 5 534 31 MND202-29 24 454 0.936 0.04735 0.00039 0.3476 0.0062 0.05324 0.00086 298 2 303 5 339 37 MND202-30 47 845 1.077 0.04768 0.00034 0.3853 0.0046 0.05862 0.00062 300 2 331 4 553 23 3. 分析结果
3.1 锆石CL特征
通过阴极发光(CL)图像(图 3)观察,锆石表面较干净,粒径大小90~200μm,多呈长柱状、短柱状、不规则次棱角状,自形-半自形发育。CL图像显示,锆石颗粒多具有明显的初始岩浆特征的振荡环带,部分存在核-边结构,个别锆石的边部环带弱化,有热液蚀变迹象。测定的锆石中,除1粒锆石外,其余锆石Th/U值介于0.65~1.79之间,远高于临界值0.1或0.4[15-17],热液活动未破坏锆石U-Pb体系的封闭性,整体显示典型的岩浆锆石特征。
3.2 锆石U-Pb测年结果
锆石测点在阴极发光图像初选的基础上, 尽量避开内部裂隙和包裹体, 选择30颗锆石进行原位测定,获得的年龄数据如表 1所示。锆石测点多位于清楚的岩浆环带上,206Pb/ 238U年龄为279±2 ~306±2Ma,年龄加权平均值为300.2±0.9Ma(MSWD=1.15,n=25),置信度95%,投影在206Pb/238U-207Pb/235U图上表现出良好的谐和性(图 4),指示所测锆石未遭受后期热事件改造,无或仅有少量铅丢失[6]。此外,锆石Pb、U含量变化范围分别为9×10-6~64×10-6和161×10-6~1175×10-6,Th/U值为0.65~1.79,除19号锆石(Th/U=0.063)外,均在岩浆锆石序列范围内。结合锆石CL图像特征,认为样品的LA-ICPMS锆石U-Pb年龄在误差范围内可信,300.2±0.9Ma的年龄加权平均值反映了二长花岗岩的成岩时代,即岩浆侵位地层分异结晶的年龄。19号锆石的206Pb/ 238U年龄值为301±2Ma,也在岩体的成岩时限内,CL图像中锆石核部黝黑,环带狭窄且见疑似变质增生边,较低的Th/U值暗示,锆石形成过程中封闭体系受到部分扰动,可能是分异结晶过程的不稳定,也可能是后期热液活动的改造,但作用微弱,未破坏锆石U-Pb体系的封闭性,也不具有代表性。
4. 讨论
蒙古戈壁阿尔泰省巴音陶勒盖一带地质工作程度较低,精确的岩体锆石年龄对解析区域基础地质问题意义重大。区内发育的二长花岗岩锆石具有明显的振荡环带,结合较高的Th/U值,显示典型的岩浆锆石特征,个别锆石有微弱的变质迹象,但属性参数没有变化,显示后期受到一定的热液活动影响,但未改变锆石U-Pb体系对岩浆分异结晶时限的制约。年龄直方图(图 5)中,30个锆石测点的年龄峰值十分单一,多集中在295~300Ma之间,显示锆石成因单一,300.2±0.9Ma的谐和年龄代表了二长花岗岩的成岩时代。对比准噶尔弧盆系,区内晚石炭世同样发生了深成岩浆构造活动。
南戈壁-阿尔泰构造带在区域上位于准噶尔弧盆系东侧,西伯利亚板块、哈萨克斯坦板块和准噶尔板块的结合部,主要分布在蒙古境内,由Transaltay晚古生代岛弧和Nemegt古生代增生楔构成[1-4]。Transaltay岛弧通过Bulga断裂带从North Gobi超地体中分离出来,分布在Suman Hairhan与Aj Bogd山地区,由晚泥盆世—晚石炭世火山岩和广泛分布的硅酸盐岩-陆源碎屑岩,以及凝灰岩-陆源碎屑杂岩建造组成。Nemegt增生楔地体为一个厚层的蛇绿混合岩带(中奥陶世—中泥盆世),西南与Gurvan Saihan地体毗邻,从Seruun Hairhan山脉边缘开始,向东沿Ongon Ulaan山脉,穿过Nogoon Tsav荒地,延伸至Nemegt、Sevrei和Deng Nuruu山脉甚至更远。相比工作程度较低的南戈壁-阿尔泰构造带,其西侧的准噶尔弧盆系岩浆演化研究北较系统,锆石年龄数据丰富,众多学者在此进行了详细研究[5-12, 17-25],形成有后碰撞岩浆运动[5]、洋内俯冲岛弧[8]、洋脊俯冲[11]等多种构造及成因模式,深成岩浆活动集中在早石炭世—早二叠世[5]。依据最近的中蒙国际合作成果,李俊建等[1-2]、Tumurtogoo等[3-4]将准噶尔弧盆系划分为萨吾尔-二台-Hrairhan弧盆带、洪古勒楞-阿尔曼太-Baitag弧盆带、谢米斯台-库兰喀孜干弧盆带、三塘湖弧盆带和唐巴勒-喀拉麦里缝合带,并将其与南戈壁-阿尔泰构造带划归同一构造演化体系。与准噶尔弧盆系晚石炭世集中发育深成岩浆岩相似,地处Transaltay岛弧带南缘的巴音陶勒盖地区同样发育晚石炭世深成岩。结合周边广泛产出晚石炭世岩浆岩的事实[3-4],可以推断Transaltay岛弧带与准噶尔弧盆系具有相似的岩浆发育活跃期,侧面印证了2个相邻构造带岩浆演化统一体系的结论。
5. 结论
(1)巴音陶勒盖地区二长花岗岩锆石为典型的岩浆锆石,206Pb/238U年龄加权平均值为300.2±0.9Ma,表明其成岩时代为晚石炭世。
(2)巴音陶勒盖二长花岗岩形成于外阿尔泰晚古生代岛弧带。与准噶尔弧盆系类似,该区晚石炭世深成岩浆活动比较发育。
致谢: 野外工作期间得到蒙古地质调查局Otgonbaatar B,Tushigmaa Ch,Altankhundaga B等专家的协助,测试过程中中国地质调查局天津地质调查中心耿建珍工程师给予支持,在此一并表示感谢。 -
表 1 蒙古Oyu Tolgoi外围碱长花岗岩LA-ICP-MS锆石U-Th-Pb分析测试结果
Table 1 LA-ICP-MS U-Th-Pb analytical data for zircons from alkalifeldspar granite on the periphery of Oyu Tolgoi, Mongolia
样品号 含量/10-6 Th/U 同位素比值 年龄/Ma MND105
TW1Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 13 252 1.1015 0.0452 0.0003 0.3256 0.0050 0.0522 0.0008 0.0110 0.0000 1.1015 0.0033 285 2 286 4 294 35 2 14 273 1.0760 0.0455 0.0002 0.3267 0.0080 0.0520 0.0013 0.0100 0.0001 1.0760 0.0037 287 2 287 7 287 55 3 8 143 0.9685 0.0489 0.0003 0.5628 0.0220 0.0835 0.0033 0.0151 0.0002 0.9685 0.0008 308 2 453 18 1282 76 4 16 297 1.3339 0.0454 0.0002 0.4120 0.0052 0.0658 0.0009 0.0107 0.0000 1.3339 0.0043 286 2 350 4 801 28 5 15 261 1.5262 0.0454 0.0003 0.4954 0.0052 0.0792 0.0008 0.0109 0.0001 1.5262 0.0229 286 2 409 4 1177 19 6 35 590 1.4658 0.0454 0.0003 0.5424 0.0058 0.0866 0.0007 0.0125 0.0001 1.4658 0.0233 286 2 440 5 1351 16 7 8 155 0.9604 0.0454 0.0003 0.3134 0.0076 0.0500 0.0012 0.0100 0.0001 0.9604 0.0033 286 2 277 7 196 56 8 14 165 1.0349 0.0454 0.0003 0.7935 0.0119 0.1267 0.0018 0.0418 0.0007 1.0349 0.0185 286 2 593 9 2053 25 9 12 221 0.8357 0.0454 0.0002 0.3254 0.0062 0.0520 0.0009 0.0156 0.0003 0.8357 0.0063 286 2 286 5 285 42 10 12 229 0.9812 0.0454 0.0003 0.4411 0.0077 0.0705 0.0012 0.0114 0.0001 0.9812 0.0065 286 2 371 6 943 36 11 14 247 1.5680 0.0454 0.0003 0.6633 0.0153 0.1059 0.0027 0.0104 0.0001 1.5680 0.0079 286 2 517 12 1731 46 12 9 142 0.8280 0.0454 0.0003 0.8101 0.0245 0.1295 0.0036 0.0220 0.0003 0.8280 0.0054 286 2 603 18 2091 49 13 11 195 1.3956 0.0453 0.0003 0.6111 0.0141 0.0979 0.0022 0.0110 0.0001 1.3956 0.0059 286 2 484 11 1584 43 14 11 212 0.9225 0.0455 0.0003 0.3264 0.0052 0.0520 0.0009 0.0106 0.0001 0.9225 0.0016 287 2 287 5 286 38 15 10 197 0.9360 0.0455 0.0003 0.3268 0.0054 0.0521 0.0009 0.0105 0.0001 0.9360 0.0091 287 2 287 5 289 40 16 9 191 0.3169 0.0454 0.0003 0.4219 0.0102 0.0674 0.0016 0.0111 0.0001 0.3169 0.0008 286 2 357 9 849 48 17 10 204 0.9624 0.0452 0.0003 0.3257 0.0058 0.0523 0.0009 0.0102 0.0001 0.9624 0.0134 285 2 286 5 298 39 18 6 122 1.1580 0.0458 0.0003 0.3252 0.0091 0.0515 0.0014 0.0106 0.0001 1.1580 0.0066 288 2 286 8 265 63 19 7 176 0.0628 0.0457 0.0003 0.3245 0.0067 0.0515 0.0011 0.0105 0.0001 0.0628 0.0003 288 2 285 6 261 48 20 7 145 0.9518 0.0455 0.0003 0.3269 0.0091 0.0522 0.0014 0.0105 0.0001 0.9518 0.0045 287 2 287 8 292 63 21 10 187 1.1754 0.0457 0.0003 0.3286 0.0066 0.0522 0.0010 0.0108 0.0000 1.1754 0.0031 288 2 288 6 294 45 22 8 165 1.0351 0.0443 0.0002 0.3760 0.0076 0.0616 0.0012 0.0094 0.0001 1.0351 0.0174 279 2 324 7 661 43 注: 表中所列误差均为 1σ误差; 2,1,2,4-21号点 206Pb/238U表面年龄加权平均值 287±1Ma -
Perelló J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia:Siluro-Devonian porphyry Cu-Au-(Mo) and high sulfidation Cu mineral-ization with a Cretaceous chalcocite blanket[J]. Economic Geology, 2001, 96:1407. Perelló J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia:Siluro-Devonian porphyry Cu-Au-(Mo) and high sulfidation Cu mineral-ization with a Cretaceous chalcocite blanket[J]. Economic Geology, 2001, 96:1407.
Kirwin D J, Forster C N, Kavalierj S I, et al. The Oyu Tolgoi cop-per-gold deposit,South Gobi,Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Spe-cial Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:155-174. Kirwin D J, Forster C N, Kavalierj S I, et al. The Oyu Tolgoi cop-per-gold deposit, South Gobi, Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Spe-cial Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:155-174.
Wainwright A J. Volcanostrigraphic framework and magmatic evolu-tion of the Oyu Tolgoi Porphyry Cu-Au district[D].Vacouver:Uni-versity of British Columbia, 2008:272. Wainwright A J. Volcanostrigraphic framework and magmatic evolu-tion of the Oyu Tolgoi Porphyry Cu-Au district[D].Vacouver:Uni-versity of British Columbia, 2008:272.
Watanabe Y, Stein H J. Re-Os ages for the Erdenet and Tsagaan Su-varga porphyry Cu-Mo deposits, Mongolia, and tectonic implica-tions[J]. Economic Geology, 2000, 95:1537-1542. Watanabe Y, Stein H J. Re-Os ages for the Erdenet and Tsagaan Su-varga porphyry Cu-Mo deposits, Mongolia, and tectonic implica-tions[J]. Economic Geology, 2000, 95:1537-1542.
Dejidmaa G, Badarch G. Summary of preaccretiobary and accretion-ary metallogenic belts of Mongolia[C]//Seltmann R, Gerel O, Kir-win D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:25-30. Dejidmaa G, Badarch G. Summary of preaccretiobary and accretion-ary metallogenic belts of Mongolia[C]//Seltmann R, Gerel O, Kir-win D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:25-30.
Dejidmaa G. Mineral Resources and Metallogenic Belts in southern-Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11,London, 2005:149-153 Dejidmaa G. Mineral Resources and Metallogenic Belts in southern-Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:149-153
Dejidmaa G, Dorjgotov D, Gerel O, et al. Preliminary description of mineral deposit models (types) for Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guide-book Series 11, London, 2005:31-52. Dejidmaa G, Dorjgotov D, Gerel O, et al. Preliminary description of mineral deposit models (types) for Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guide-book Series 11, London, 2005:31-52.
李俊建, 张峰, 任军平, 等.中蒙边界地区构造单元划分[J].地质通报, 2015, 34(4):636-662. Vladykin N V, Kovalenko V I, Dorfman M D. Mineralogy and Geochemistry of the Khan Bogd Alkali Granitoid Pluton (People's Republic of Mongolia)[M]. Nauka, Moscow, 1981. Vladykin N V, Kovalenko V I, Dorfman M D. Mineralogy and Geochemistry of the Khan Bogd Alkali Granitoid Pluton (People's Republic of Mongolia)[M]. Nauka, Moscow, 1981.
Durante M V, Zonenshain L P, Goreglyad A V, et al. Geological Position of the Khan Bogd Alkaline Pluton in People's Republic of Mongolia[J]. Byull. Mosk. Ova Ispyt. Prir., Otd. Geol., 1976, 4:85-104. Durante M V, Zonenshain L P, Goreglyad A V, et al. Geological Position of the Khan Bogd Alkaline Pluton in People's Republic of Mongolia[J]. Byull. Mosk. Ova Ispyt. Prir., Otd. Geol., 1976, 4:85-104.
Sandimirova G P, Plyusnin G S, Kovalenko V I, et al. Rb-Sr Dat-ing of Alkali Granites in the Khan Bogd Pluton in the People's Re-public of Mongolia[J]. Geol. Geofiz.,1980, 21(2):150-154. Sandimirova G P, Plyusnin G S, Kovalenko V I, et al. Rb-Sr Dat-ing of Alkali Granites in the Khan Bogd Pluton in the People's Re-public of Mongolia[J]. Geol. Geofiz., 1980, 21(2):150-154.
Yarmolyuk V V, Durante M V, Kovalenko V I, et al. Age of co-mendite-alkali granite rock association in southern Mongolia[M]. Izv. Akad. Nauk SSSR, Ser. Geol.,1981, 9:40-48. Yarmolyuk V V, Durante M V, Kovalenko V I, et al. Age of co-mendite-alkali granite rock association in southern Mongolia[M]. Izv. Akad. Nauk SSSR, Ser. Geol., 1981, 9:40-48.
Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ab-lation ICP-MS by Addation of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1093-1101. Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ab-lation ICP-MS by Addation of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1093-1101.
李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-ICP-MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 1(增刊):77. Claesson S V, Vertin B, Ayanova H D. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:a record of geo-logical evolution from the Archaen the Palaeozoic[J]. Lithos, 2000, 51:95-108. Claesson S V, Vertin B, Ayanova H D. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:a record of geo-logical evolution from the Archaen the Palaeozoic[J]. Lithos, 2000, 51:95-108.
Mineral Resources Authority of Mongolia and Mongolian Acade-my of Sciences (MRAM-MAS). Geological Map of Mongolia(at the Scale 1:1000000) and its explanatory note[M]. Ulaanbaatar, 1998:4-20. Mineral Resources Authority of Mongolia and Mongolian Acade-my of Sciences (MRAM-MAS). Geological Map of Mongolia(at the Scale 1:1000000) and its explanatory note[M]. Ulaanbaatar, 1998:4-20.
Kirwin D J, Wilson C C, Turmagnai D, et al. Exploration history, geology and mineralization of the Kharmagtai gold-copper porphy-ry district, South Gobi region, Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guide-book Series 11, London, 2005:175-192. Kirwin D J, Wilson C C, Turmagnai D, et al. Exploration history, geology and mineralization of the Kharmagtai gold-copper porphy-ry district, South Gobi region, Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guide-book Series 11, London, 2005:175-192.
Wainwright A J, Tosdal R M, Wooden J L, et al. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Pa-leozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia[J]. Gondwana Research, 2011, 19:764-787. Wainwright A J, Tosdal R M, Wooden J L, et al. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Pa-leozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia[J]. Gondwana Research, 2011, 19:764-787.
Batkhishig B, Lizumi S. Petrographical, petrochemical and geochro-nological study of the Carboniferous Shuteen complex in South Mongolia[J]. Mongolian Geol., 2001, 2:135-145. Batkhishig B, Lizumi S. Petrographical, petrochemical and geochro-nological study of the Carboniferous Shuteen complex in South Mongolia[J]. Mongolian Geol., 2001, 2:135-145.
Kovalenko V I, Yarmoluyk V V, Sal'nikova E B. Geology, Geo-chronology and Geodynamics of the Khan Bogd Alkali Granite Plu-ton in Southern Mongolia[J]. Geotectonics, 2006, 40(6):450-466. Kovalenko V I, Yarmoluyk V V, Sal'nikova E B. Geology, Geo-chronology and Geodynamics of the Khan Bogd Alkali Granite Plu-ton in Southern Mongolia[J]. Geotectonics, 2006, 40(6):450-466.
Gerel O, Oyungerel S, Minjin Ch. Intrusive magmatism of South Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series11, London, 2005:131-147. Gerel O, Oyungerel S, Minjin Ch. Intrusive magmatism of South Mongolia[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series11, London, 2005:131-147.
Bignall G, Batkhishig B, Tsuchiya. The Shuteen Cu-Au porphyry deposit[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:193-202. Bignall G, Batkhishig B, Tsuchiya. The Shuteen Cu-Au porphyry deposit[C]//Seltmann R, Gerel O, Kirwin D J. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 2005:193-202.
Stein H J. Oyut Tolgoi PIMA study. Report to Ivanhoe Mines Limited.2003.