Copper isotopic characteristics of the water system in the Dexing copper deposit, Jiangxi Province, and their geological significance
-
摘要:
江西德兴铜矿水系样的δ65Cu值具有极大的变化范围(-5.8‰~+24.4‰), 是迄今为止已报道发现的最大的Cu同位素分馏值。水体中铜的来源可分为黄铜矿源和黄铁矿源, 二者具有明显不同的Cu同位素特征。根据水体的Cu同位素值分布特征, 圈出了流经矿体(矿体上方)水、矿体外围水和尾矿库水3个源区。水体中的Cu主要以离子态和微粒态存在, 二者具有明显不同的65Cu特征, 尾矿库中黄铁矿65Cu对水体的Cu同位素组成具有较大的影响作用。Cu同位素在示踪找矿及地质环境监测方面具有良好的应用潜力
Abstract:The stream water from the Dexing copper deposit has a wide range of copper isotope values(-5.8‰to +24.4‰), which are the highest reported values of the copper isotopic fractionation ever found. The mineral sources of copper dissolved in the water can be divided into chalcopyrite and pyrite with significantly different copper isotopic characteristics. According to the distribution of copper isotope values, three drainage sources were identified, i.e., orebody flowing water, orebody peripheral water and tailings water. Copper exists mainly as ions and particulate copper with different copper isotopic characteristics. The copper isotope values of the pyrite from tailings water have a great impact on the copper isotopic composition in stream water. Copper isotope has a good potential in tracing geological prospecting and monitoring the environment.
-
Keywords:
- copper isotope /
- tracer application /
- Dexing copper deposit /
- geological environment /
- tailings
-
致谢: 在野外工作中得到了江西赣东北地质大队罗平总工程师和魏英文高级工程师,以及江西铜业集团德兴矿业有限公司地质测量中心张映红主任的大力支持,审稿人对本文提供了宝贵的意见,在此一并表示感谢。
-
表 1 德兴铜矿水系样的Cu同位素数值与铜铁离子含量
Table 1 Copper isotope values and copper and iron concentrations of the Dexing copper deposit
样品号 采样 δ65Cu/‰ Cu/10-6 Fe/10-6 δ65Cu/‰ Cu/10-6 Fe/10-6 过滤后 未过滤 S2 29°01′4″ 117°42′33" 2.36 1.00 0.05 2.14 1.34 < 0.05 S3 29°01′17″ 117°42′32" -0.44 0.34 0.05 n.a. 0.56 < 0.05 S4 29°01′17" 117°42′33" 6.19 3.80 < 0.05 n.a. 3.72 < 0.05 S5 29°01′26" 117°42′35" 3.10 n.a. < 0.05 n.a. 0.92 n.a. S6 29°01′39″ 117°42′34" 9.20 n.a. < 0.05 n.a. 1.24 n.a. S7 29°01′34" 117°42′49" -5.85 2.04 0.03 1.85 2.71 < 0.01 S8 29°01′53" 117°42′39" 3.10 1.58 0.52 n.a. 1.35 < 0.01 S9 29°02′20" 117°42′38" 8.09 33.00 0.63 1.45 30.39 < 0.01 S10 29°02′20" 117°42′21" 1.77 212.71 2.57 2.26 226.58 2.42 S11 29°03′32" 117°41′48" -0.74 5.80 6.68 2.17 6.56 2.53 S12 29°04′39" 117°40′55" 12.71 n.a. 0.15 n.a. 0.25 n.a. S13 29°00′58" 117°42′31" 4.12 10.32 0.13 n.a. 10.28 0.08 S14 29°02′9" 117°41′56" 24.40 0.24 0.53 n.a. n.a. n.a. S16 29°01′16" 117°43′35" 2.38 415.28 22.30 1.62 411.36 22.98 S17 29°00′54" 117°42′46" 4.28 n.a. 0.42 n.a. 0.32 n.a. S18 29°00′52" 117°42′47" 9.58 n.a. 0.76 3.83 1.99 n.a. S19 29°00′42" 117°42′26" 8.30 < 0.01 0.00 n.a. 0.30 < 0.01 S20 29°00′43" 117°42′21" 0.99 n.a. < 0.05 n.a. 0.29 n.a. S21 29°01′36" 117°42′46" 11.01 < 0.01 0.11 7.65 0.32 0.01 S22 29°01′31" 117°42′30" 10.41 < 0.01 0.01 n.a. 0.26 0.04 S27 28°59′11" 117°44′26" -0.10 n.a. 28.16 2.78 33.88 n.a. S28 28°59′16" 117°44′14" 2.96 9.83 4.05 2.94 10.23 2.85 S29 28°58′24" 117°44′09" 1.60 n.a. 0.54 0.05 6.57 n.a. S30 29°02′22" 117°46′13" 12.24 n.a. < 0.01 n.a. < 0.01 n.a. S31 29°02′28" 117°46′20" 6.61 < 0.01 < 0.01 n.a. < 0.01 < 0.01 S32 29°03′13" 117°46′15" 11.00 0.04 0.04 10.04 < 0.01 < 0.01 S33 29°03′44" 117°45′51" 34.42 < 0.05 < 0.05 n.a. n.a. n.a. S34 29°04′36" 117°40′08" 10.37 < 0.01 0.09 n.a. < 0.01 0.14 注:Cu同位素在美国亚利桑那大学地质系同位素实验室完成,仪器为Nu Plasma HR型多接受电感耦合质谱仪(MC-ICP-MS),分析精度为±0.15‰ -
Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geo-chemical exploration, 2009, 102(1):1-6. Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geo-chemical exploration, 2009, 102(1):1-6.
Mathur R, Munk L, Nguyen M, et al. Modern and Paleofluid Path-ways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska[J]. Economic Geology, 2013, 108(3):529-541. Mathur R, Munk L, Nguyen M, et al. Modern and Paleofluid Path-ways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska[J]. Economic Geology, 2013, 108(3):529-541.
王跃, 朱祥坤, 毛景文, 等.铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的Cu同位素地球化学行为初步研究[J].地质学报, 2014, 88(12):2413-2422. Mathur R, Ruiz J, Titley S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(22):5233-5246. Mathur R, Ruiz J, Titley S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(22):5233-5246.
Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implica-tions for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1/4):139-149. Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implica-tions for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1/4):139-149.
Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ra-tios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23):6801-6813. Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ra-tios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23):6801-6813.
Borrok D M, Nimick D A, Wanty R B, et al. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining[J]. Geochimica et Cosmochimica Acta, 2008, 72(2):329-344. Borrok D M, Nimick D A, Wanty R B, et al. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining[J]. Geochimica et Cosmochimica Acta, 2008, 72(2):329-344.
Hu X, Ding Z. Lead/Cadmium Contamination and Lead Isotopic Ratios in Vegetables Grown in Peri-Urban and Mining/Smelting Contaminated Sites in Nanjing, China[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(1):80-84. Hu X, Ding Z. Lead/Cadmium Contamination and Lead Isotopic Ratios in Vegetables Grown in Peri-Urban and Mining/Smelting Contaminated Sites in Nanjing, China[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(1):80-84.
Jouvin D, Weiss D J, Mason T F M, et al. Stable Isotopes of Cu and Zn in Higher Plants:Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Process-es[J]. Environmental Science & Technology, 2012, 46(5):2652-2660. Jouvin D, Weiss D J, Mason T F M, et al. Stable Isotopes of Cu and Zn in Higher Plants:Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Process-es[J]. Environmental Science & Technology, 2012, 46(5):2652-2660.
Kimball B E, Mathur R, Dohnalkova A C, et al. Copper isotope fractionation in acid mine drainage[J]. Geochimica et Cosmochimica Acta, 2009, 73(5):1247-1263. Kimball B E, Mathur R, Dohnalkova A C, et al. Copper isotope fractionation in acid mine drainage[J]. Geochimica et Cosmochimica Acta, 2009, 73(5):1247-1263.
Pokrovsky O S, Viers J, Emnova E E, et al. Copper isotope frac-tionation during its interaction with soil and aquatic microorgan-isms and metal oxy(hydr)oxides:Possible structural control[J]. Geo-chimica et Cosmochimica Acta, 2008, 72(7):1742-1757. Pokrovsky O S, Viers J, Emnova E E, et al. Copper isotope frac-tionation during its interaction with soil and aquatic microorgan-isms and metal oxy(hydr)oxides:Possible structural control[J]. Geo-chimica et Cosmochimica Acta, 2008, 72(7):1742-1757.
朱训, 黄崇轲, 芮宗瑶, 等.德兴斑岩铜矿[M].北京:地质出版社, 1983:1-15. Mathur R, Titley S, Hart G, et al. The history of the United States cent revealed through copper isotope fractionation[J]. Journal of Ar-chaeological Science, 2009,36(2):430-433. Mathur R, Titley S, Hart G, et al. The history of the United States cent revealed through copper isotope fractionation[J]. Journal of Ar-chaeological Science, 2009, 36(2):430-433.
Bigalke M, Weyer S, Kobza J, et al. Copper Isotope Fractionation during Complexation with Insolubilized Humic Acid[J]. Environ-mental Science & Technology, 2010,44(14):5496-5502. Bigalke M, Weyer S, Kobza J, et al. Copper Isotope Fractionation during Complexation with Insolubilized Humic Acid[J]. Environ-mental Science & Technology, 2010, 44(14):5496-5502.
Mathur R, Jin L, Prush V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Hunt-ingdon County, Pennsylvania(USA)[J]. Chemical Geology, 2012, 304/305:175-184. Mathur R, Jin L, Prush V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Hunt-ingdon County, Pennsylvania(USA)[J]. Chemical Geology, 2012, 304/305:175-184.
Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn iso-topes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009,264(1):1-12. Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn iso-topes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 264(1):1-12.
Wall A J, Mathur R, Post J E, et al. Cu isotope fractionation during bornite dissolution:An in situ X-ray diffraction analysis[J]. Ore Ge-ology Reviews, 2011, 42(1):62-70. Wall A J, Mathur R, Post J E, et al. Cu isotope fractionation during bornite dissolution:An in situ X-ray diffraction analysis[J]. Ore Ge-ology Reviews, 2011, 42(1):62-70.
Sherman D M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes:Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta, 2013, 118:85-97. Sherman D M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes:Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta, 2013, 118:85-97.
Mathur R, Munk L, Nguyen M, et al. Modern and Paleofluid Path-ways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska[J]. Economic Geology, 2013, 108(3):529-541. Mathur R, Munk L, Nguyen M, et al. Modern and Paleofluid Path-ways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska[J]. Economic Geology, 2013, 108(3):529-541.
Mathur R, Munk L A, Townley B, et al. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu iso-tope fractionation[J]. Applied Geochemistry, 2014, 51:109-115. Mathur R, Munk L A, Townley B, et al. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu iso-tope fractionation[J]. Applied Geochemistry, 2014, 51:109-115.
Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 264(1/4):1-12. Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 264(1/4):1-12.
Pribil M J, Wanty R B, Ridley W I, et al. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition[J]. Chemical Geology, 2009, 272(1/4):49-54. Pribil M J, Wanty R B, Ridley W I, et al. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition[J]. Chemical Geology, 2009, 272(1/4):49-54.