Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications
-
摘要:
藏南错那淡色花岗岩位于喜马拉雅造山带的东部。对其进行LA-MC-ICP-MS锆石U-Pb定年, 结果显示, 结晶年龄为17.7±0.3Ma, 代表中新世的地壳深熔作用。淡色花岗岩样品具有高的SiO2(74.46%~75.57%)、Al2O3(14.07%~14.64%)和K2O(4.19%~4.85%)含量, 高的K2O/Na2O值(1.09~1.31)和A/CNK值(1.15~1.25), 富集Rb、Th和U, 亏损Ba、Nb、Sr、Zr等元素, 显示高的Rb/Sr值(17.75~29.50)和强烈的负Eu异常(δEu=0.18~0.26), 属于壳源成因的高钾钙碱性过铝质S型花岗岩。样品具有高的Isr值(0.78982~0.79276)和低的εNd(t)值(-19.5~-18.2), 可与大喜马拉雅结晶杂岩(GHC)中的变泥质岩对比, 暗示其来自变泥质岩的部分熔融。样品的Isr值较高, 而Sr浓度较低, 且随着Ba浓度的增加, Rb/Sr值逐渐降低, 表明淡色花岗岩是无水条件下白云母部分熔融的产物, 部分熔融可能与藏南拆离系(STDS)伸展拆离导致的构造减压有关。错那淡色花岗岩的形成反映了地壳伸展减薄背景下, 构造减压导致的中下地壳中含水矿物脱水熔融, 并沿STDS上升侵位的动力学过程。
Abstract:The Cuona leucogranite pluton is situated in the east of Himalayan orogen. LA-MC-ICP-MS zircon U-Pb dating re-veals that leucogranites were crystallized at 17.7±0.3Ma, representing the Miocene crustal anataxis. Geochemical studies show that the samples are characterized by high SiO2(74.46%~75.57%), Al2O3(14.07%~14.64%), K2O(4.19%~4.85%), K2O/Na2O ratios(1.09~1.31) and A/CNK values(1.15~1.25), enrichment of Rb, Th, U and depletion of Ba, Nb, Zr, Sr, and high ratios of Rb/Sr(17.75~29.50) with strong negative Eu anomalies(δEu=0.18~0.26). These features suggest that they are crust-derived high potassium calcalkaline and peraluminous S-type granite. The relatively high Isr(0.78982~0.79276) and low εNd(t)(-19.5~-18.2) are well comparable with data of the metapelite from Greater Himalayan Crystalline complex(GHC), indicating that the leucogranites were generated from their partial melting. The features of high Isr and low Sr concentration as well as the decreasing Rb/Sr values with increasing Ba concentration demonstrate that the Cuona leucogranites were derived from muscovite dehydration melting under the water-absent condition, possibly triggered by structural decompression responding to the activity of South Tibetan Detachment system(STDS). It is held that the Cuona leucogranites reflect dynamics of structural decompression, dehydration melting and emplacement of the melt along STDS under the background of crustal extension and thinning.
-
Keywords:
- Cuona leucogranite /
- LA-MC-ICP-MS /
- zircon U-Pb dating /
- Sr-Nd isotopes /
- formation mechanism /
- southern Tibet
-
阿尔金地区是塔里木地块向阿中地块俯冲碰撞产生的韧性变形带,由于洋壳闭合产生了大规模的地壳缩短,造成大量的岩浆侵入,并引发区域上的韧性变形[1]。近年来,阿尔金地区的构造变形已经成为研究的热点[2-4],但长期以来主要集中在对阿尔金主断裂新生代构造运动的研究,对早古生代阿尔金北缘构造变形带的研究较少,尤其是在显微构造变形研究方面更为薄弱,仅在电子背散射衍射技术(EBSD)岩石组构分析方面做过少量研究[4],且未明确提出过阿尔金北缘地区的岩石变形机制。因此,本文着重研究板块俯冲碰撞在阿尔金北缘喀拉大湾地区产生的区域韧性变形,通过X光岩石组构分析对本区构造变形岩石进行研究,反映研究区岩石的韧性变形机制,并为阿尔金北缘地区的区域构造分析,特别是阿尔金北缘构造变形带的变形方式、变形性质和变形环境提供证据。
1. 地质构造背景
阿尔金北缘地处青藏高原北部,北接塔里木地块南缘,南与柴达木盆地相邻,位于阿尔金走滑断裂与阿尔金北缘断裂夹持的地区,是北祁连构造带西段被阿尔金走滑断裂左行切错的部分(图 1)。其中阿尔金北缘断裂总体上近东西向延伸,西起红柳沟,向东经安南坝、阿克塞、肃北至宽滩山一带,由近东西向逐渐过渡为北东东向,构成了太古宙深变质岩系与早古生代浅(未)变质火山-沉积岩系的界线[5-6]。
研究区主要由2套地层组成:①太古宇米兰群,主要为一套中、高温变质的高角闪岩相-麻粒岩相变质岩系,岩性为麻粒岩、变粒岩、钾长片麻岩、斜长角闪岩、条带状混合岩等[7];②早古生代斯米尔布拉克组及卓阿布拉克组浅(未)变质火山沉积岩系,岩性主要为流纹岩、英安岩、安山岩、玄武岩和中酸性火山凝灰岩,以及少量砂砾岩、细砂岩、泥岩、泥灰岩等[4]。同时,斯米尔布拉克组和卓阿布拉克组有较多的早古生代侵入岩,呈近东西向条带状展布,以斯米尔布拉克组最为显著。这些侵入岩主要为辉绿(辉长)岩、花岗闪长岩、花岗岩和闪长岩组合[8-9](图 2)。
资料表明,阿尔金北缘断裂与白尖山断裂是本区的板块碰撞带,在阿尔金北缘断裂以南及白尖山断裂附近发育大量的蛇绿混杂岩和侵入岩[10-11],同时二者还是本区地层的分界线。研究区构造呈近东西向展布,构造样式单一,主要为阿尔金北缘韧脆性变形带。其广泛存在于太古宇米兰群和斯米尔布拉克组的各种岩性中,阿尔金北缘韧脆性变形带中糜棱岩面理和矿物拉伸线理均很发育;卓阿布拉克组中的火山沉积岩变质较弱,宏观片理发育,局部线理发育。本文主要针对这2个变形带中的岩石进行X光岩组分析,进一步探讨其变形特点和形成环境。
2. 样品选择与测试
结合区域地层岩石的构造变形特征,布点选取不同构造部位、不同岩性的测试样品,充分认识该区的岩石组构特征,以此推断宏观上的构造变形特征和构造变形环境。所选样品必须满足3个要求:①所选测定矿物在岩石中含量应高于30%;②岩石中矿物颗粒较细,一般以0.0001~1mm的粒度效果最佳;③测试岩石样品要求制成直径20~35mm,厚度小于4mm(2mm左右较好),表面平整的磨光片[12-16]。
根据以上要求,在阿尔金北缘断裂变形带及其附近选取9个样品,岩性为花岗质糜棱岩、变形蚀花岗岩、变形英安质凝灰岩和变形酸性火山岩。根据研究区岩石的构造变形特点,将样品切制成ac片,选定的衍射矿物为石英和绢云母,进行X光岩组测试。测试工作在中国地质科学院地质力学研究所X光组构实验室完成。
3. 变形岩石组构基本特征
将X光衍射测试结果进行投影作图(等面积施氏网上半球投影)后,结合样品的面理、线理产状,与宏观构造变形分析,岩石主要组构特征列于表 1中。X光岩组测试结果显示,4个采样点所选岩石样品均具有定向组构,现分述如下。
表 1 阿尔金北缘地区构造变形岩石X光岩组图特征及解释结果Table 1. X-ray petrofabrics of tectonic deformed rocks from northern Altun area and their interpretations序号 标本号 岩性 样品位置 切片性质 变形面理产状 产状 所测矿物及面网 X光衍射图特征 恢复矿物光轴点极密产状 组构与宏观构造的关系 显微组构解释 切面 切线 1 H01 花岗质糜棱岩 阿尔金北缘断裂变形带 ac 84°/NW80° 295°/NE57° 315°∠0° 石英(10 10) 近于平行ab面弱大圆环带 石英光轴点极密与c轴一致 点极密与运动学c轴一致 中-低温韧性变形,底面型滑移 近于平行bc面弱大圆环带 石英光轴点极密与a轴一致 点极密与运动学a轴一致 中高温韧性变形,Ⅱ级柱面型滑移 2 H02 花岗质糜棱岩 阿尔金北缘断裂变形带 ac 88°/NW82° 145°/SW80° 145°∠0° 石英(10 10) 近于平行ab面的大圆环带 石英光轴点极密与c轴一致 点极密与运动学c轴一致 中-低温韧性变形,底面型滑移 3 H03 花岗质糜棱岩 阿尔金北缘断裂变形带 ac 72°/NW82° 石英(10 10) 近于平行ab面弱大圆环带 石英光轴点极密与c轴一致 点极密与运动学c轴一致 中-低温韧性变形,底面型滑移 近于平行ac面弱大圆环带 石英光轴点极密与b轴一致 点极密与运动学b轴一致 中温韧性变形,Ⅰ级柱面型滑移 4 H04 变形蚀变花岗岩 阿北铅锌矿 ac 290°/SW72° 140°/SW70° 160°∠5° 绢云母(110) 近于平行ab面的大圆环带 环带与东西向变形带一致 中-低温韧性变形,绢云母定向排列 5 H05 片理化蚀变花岗岩 阿北铅锌矿 ac 274°/NE81° 140°/SW82° 155°∠5° 绢云母(110) 近于平行ab面的大圆环带 环带与东西向变形带一致 中-低温韧性变形,绢云母定向排列 6 H06 变形英安质凝灰岩 喀腊大湾剖面中段 ac 280°/SW82° 275°/NE50° 285°∠5° 石英(10 10) 很弱的平行ab面大圆环带 石英光轴点极密与c轴一致 点极密与运动学c轴一致 中-低温韧性变形,底面型滑移 7 H07 变形英安质凝灰岩 喀腊大湾剖面中段 ac 275°/SW75° 石英(10 10) 很弱的平行ab面大圆环带 石英光轴点极密与c轴一致 点极密与运动学c轴一致 中-低温韧性变形,底面型滑移 8 H08 变形酸性火山岩 穷塔格东 ac 60°/NW50° 绢云母(110) 近于平行ab面的大圆环带 环带与东西向变形带一致 中-低温韧性变形,绢云母定向排列 9 H09 变形酸性火山岩 穷塔格东 ac 55°/NW60° 280°/NE75° 100°∠0° 绢云母(110) 近于平行ab面的大圆环带 环带与东西向变形带一致 中-低温韧性变形,绢云母定向排列 3.1 阿尔金北缘构造变形带岩石组构特征
阿尔金北缘构造变形带呈近东西向展布,倾角陡立。构造变形在太古宙深变质岩和早古生代中浅变质火山-沉积岩中均有发育,变形带内各种构造面理(包括糜棱岩面理)非常发育,产状为近东西向(北西西向),倾角近直立,矿物拉伸线理有近于水平,部分向东中等角度倾伏(小于30°~50°),一些花岗岩中也发育比较强烈的构造变形。本次以阿尔金北缘断裂变形带和阿北铅锌矿中5个样品为代表(H01、H02、H03、H04、H05)进行分析,特点分述如下。
(1)阿尔金北缘断裂变形带的花岗质糜棱岩,在X光石英(10 10)极图中,主圆环带近于平行ab面的大圆环带(图 3-A~C),恢复石英光轴点极密与运动学c轴一致,反映中低温韧脆性近底面滑移变形的特点。次级环带为近于平行bc面(H01)和ac面(H03)的大圆环带(图 3-A、C),恢复石英光轴点极密与运动学a轴和b轴一致,反映中-高温韧性Ⅱ级柱面和中温韧性Ⅰ级柱面滑移变形的特点(表 1中1~3)。
(2)阿北铅银矿的变形蚀变花岗岩和片理化蚀变花岗岩X光组构图中,绢云母(110)极图为平行ab面的大圆环带,反映变形过程中,绢云母平行构造面理定向排列,为中-低温韧脆性变形的特点(表 1中4~5;图 3-D、E)。
3.2 喀腊大湾北部变形岩石组构特征
早古生代卓阿布拉克组为一套火山沉积岩,以喀腊大湾北部的2个岩石样品为代表(H06、H07),岩性为变形英安质凝灰岩。喀腊大湾北部,即阿尔金北缘构造带南侧,虽然发生了一定程度的变形,但其变形作用强度较低。在X光石英(10 10)极图中,为不明显的X光组构图,仅有弱的近于平行ab面圆环带,恢复石英光轴点极密近于c轴,反映中低温条件较弱的构造变形(表 1中6~7;图 3-F、G)。
3.3 穷塔格东卓阿布拉克组变形岩石组构特征
穷塔格东位于阿北银铅矿东南8km处,受阿尔金北缘构造带影响较小。但该处酸性火山岩仍发生了一定程度的变形,变形作用强度一般,主要表现为绢云母的动力变质重结晶,且定向排列。在X光绢云母(110)极图中为平行ab面的大圆环带,反映变形过程中绢云母平行构造面理定向排列,为中-低温韧脆性变形(表 1中8~9;图 3-H、I)。
4. X光岩石组构解释及其物化条件
(1)绢云母的(110)极图(H04、H05、H08、H09)表现为近于平行ab面的大圆坏带,即绢云母平行于宏观面理,定向排列,与东西向韧性变形带一致。
(2)石英的(10 10)极图(H01、H02、H03、H06、H07)表现为平行ab面的大圆环带,即石英光轴点极密与c轴一致,除此外,还存在1个平行bc面的弱大圆环带和1个平行ac面的弱大圆环带。
根据矿物的结晶学特征和物理性质,石英属于三方晶系,多呈六方柱状,无解理,柱面面网(10 10)、(11 20),具有底面或近底面、柱面Ⅰ型和柱面Ⅱ型3种滑移系[12, 16-17]。石英以底面或近底面滑移系发生变形时,在(10 10)极图中大圆环带平行于ab面;以柱面Ⅰ型滑移系发生变形时,在(10 10)极图中大圆环带平行于ac面;以柱面Ⅱ型滑移系发生变形时,在(10 10)极图中大圆环带平行于bc面。
石英的组构特征可以反映岩石的构造变形条件,因此可以根据石英组构类型和变形滑移系来判定变形时的温压条件。在组构图中,石英光轴点极密与运动学c轴一致是最主要的类型,代表石英是以底面或近底面滑移机制发生变形,运动学指向为(0001)<11 20>,是典型中低温(250~350℃)条件下发生韧-脆性变形的特点。而石英光轴点极密与运动学a轴和b轴一致的只有2个,代表石英以柱面Ⅰ型或Ⅱ型滑移机制发生变形,具典型中-高温(350~450℃)条件下发生韧性变形的特点[18-19]。
同时,同一样品具有2种不同类型组构的叠加情况时,如H01存在石英光轴点极密与运动学c轴和a轴一致2种情况;H03存在石英光轴点极密与运动学c轴和b轴一致2种情况,反映这些变形岩石至少经历了2期构造变形,即中-高温环境下构造变形与中-低温环境下构造变形的叠加[4]。
5. 构造变形特征
(1)阿尔金北缘地区变形岩石的绢云母定向组构较为明显,石英变形较弱,定向组构不明显,这种特征表明,变形过程中绢云母承担了大部分的变形量[14]。根据绢云母和石英的极图特征发现,由北向南二者都出现了变形逐渐减弱的趋势,其中以石英的变形减弱最为明显。
(2)根据X光岩组分析结果看,本区岩石在韧脆性变形过程中,石英的3种滑移系均有出现,即底面或近底面(0001)〈11 20〉滑移系、柱面Ⅰ型(10 10)〈11 20〉滑移系和柱面Ⅱ型(10 10)〈0001〉滑移系,其中主要表现为底面或近底面滑移系,个别样品兼有柱面Ⅰ型和柱面Ⅱ型滑移系。在H02的显微照片(图 4)中也可清楚看到,石英光轴与片理面大角度相交,表现出底面或近底面滑移的特征,佐证了X光岩组分析的结果。
(3)区域内以中-低温的底面或近底面位错滑移为主,在阿尔金北缘断裂变形带和阿北银铅矿附近岩石中(H01、H03)存在底面或近底面滑移,兼柱面Ⅰ型或Ⅱ型滑移系,反映2期构造变形的叠加,即中温(350~450℃)的韧性变形与中-低温(250~350℃)脆韧性变形的叠加。按正常的温压梯度推算,石英中-低温(250~350℃)的韧性变形深度应达到10~15km,围压0.25~0.4GPa。
(4)结合样品的岩组特征、宏观面理的产状及所处的构造位置,根据绢云母的变形特征及石英颗粒长轴与变形面理的锐交角,判定阿尔金北缘韧性变形带的宏观运动方向为右行逆冲。
6. 讨论
X光射线衍射技术与EBSD技术是目前测定石英矿物组构常用的2种方法。X光衍射技术反映面积统计结果,因此当样品中矿物颗粒过大时,会影响统计结果;其次部分矿物晶体的面网存在相似性,通常也会干扰测试结果。EBSD技术统计的是测试样品中的矿物颗粒数目,可以准确鉴定样品中特定矿物的晶粒取向特征,而不受其他矿物的干扰[4, 16]。也就是说,EBSD是单个矿物颗粒组构特征的统计,而X光组构反映的是一定面积内某种矿物所记录的组构特征。因此,本文实验结果与陈柏林等[4]2014年所做的EBSD组构特征存在一定的差异,主要是石英颗粒大小的差异造成的,如图 4(细小的石英颗粒包围大的石英颗粒)。在EBSD测试中,大的石英颗粒仅被统计了一次;而在X光岩组面积统计中,大的石英颗粒占据的面积相当于很多细粒石英的面积,使其统计结果的局限性大大升高。另一个原因可能是岩石样品中其他矿物面网干扰的结果。
最新测年资料表明,阿尔金北缘地区中酸性侵入岩经历了3期岩浆活动,即碰撞前(520~500Ma)、碰撞期(490~470Ma)和碰撞后(440~410Ma)岩浆活动。碰撞前岩浆活动形成的花岗岩的最大特点是存在韧性变形,而碰撞后岩浆活动花岗岩通常未发生变形。本次采样的阿北银铅矿岩体SHRIMP U-P测年结果为514±6Ma,因此阿尔金北缘地区的韧脆性变形应该晚于514±6Ma,早于417±5Ma[4, 20]。区域大地构造资料表明,板块汇聚碰撞期,发生了大规模的岩浆活动,并伴随大规模的地壳缩短和韧性变形,因此本区韧性变形很可能形成于板块碰撞期,即490~470Ma。这个结果与该韧脆性变形带向西延伸的大平沟韧性剪切带型金矿床的形成时间(485±10Ma)一致[21-23]。X光岩石组构图反映的2期构造变形,很可能是板块俯冲碰撞由中-高温向中-低温转变过程中形成的2期韧性变形。
本区X光岩组结果表明,阿尔金北缘地区的变形为中-低温韧性变形,运动方向为右行逆冲,这与阿尔金北缘大平沟地区的韧性变形方式及运动方式基本一致[24]。根据张建新等[25]的研究成果,研究区西部恰什坎萨依发育的榴辉岩和蓝片岩,代表了较高的变形温压条件,即中-高温变形环境。而在本区始终未发现榴辉岩和蓝片岩出露,与本区X光岩组反映的中-低温韧性变形的结果基本吻合。
7. 结论
(1)阿尔金北缘地区变形岩石X光组构结果显示,变形蚀变花岗岩、花岗质糜棱岩、变形酸性火山岩和变形英安质凝灰岩中的鳞片状绢云母定向排列,并平行于东西向变形构造带的面理方向,属于中-低温韧性变形。
(2)石英以中-低温韧性变形的底面(0001)〈11 20〉滑移系为主,兼有中-高温韧性变形的柱面Ⅰ型(10 10)〈11 20〉滑移和柱面Ⅱ型(10 10)〈0001〉滑移。
(3)本区岩石变形机制以中-低温条件下(10~15km、250~350℃、0.25~0.40GPa)的底面或近底面(0001)〈11 20〉滑移产生的韧性变形为主。
(4)结合样品的宏观面理产状与石英光轴点极密产状推断,阿尔金北缘喀拉大湾地区韧性变形带的宏观运动方式主要为右行逆冲。
致谢: 样品前处理得到北京大学地球与空间科学学院朱文萍工程师的帮助,LA-MC-ICPMS锆石U-Pb同位素和全岩Rb-Sr、Sm-Nd同位素测试得到天津地质矿产研究所耿建珍和崔玉荣工程师的指导和帮助,审稿人对论文进行了详细审阅并提出宝贵的修改意见,在此一并表示衷心的感谢。 -
图 1 喜马拉雅造山带中东段地质简图(据参考文献[35]修改)
GCT—大反冲断层;STDS—藏南拆离系;MCT—主中央逆冲断裂;MBT—主边界逆冲断裂;MFT—主前锋逆冲断裂;NHGD—北喜马拉雅片麻岩穹窿
Figure 1. Sketch geological map of the middle and east Himalayan orogen
图 5 藏南错那淡色花岗岩的SiO2-K2O (a)、A/CNK-A/NK分类图解(b)及原始地幔标准化蛛网图(c)和球粒陨石标准化稀土元素配分模式图(d) (原始地幔和球粒陨石数值据参考文献[41])
Figure 5. TAS diagram (a), A/CNK-A/NK diagram (b), primitive mantle-normalized trace element spider diagram (c) and chondrite-normalized REE patterns (d) of Cuona leucogranites, southern Tibet
表 1 藏南错那淡色花岗岩样品(CN-06)LA-MC-ICP-MS锆石U-Th-Pb同位素测试数据
Table 1 LA-MC-ICP-MS zircon U-Th-Pb isotopic data of the leucogranite sample CN-06 from Cuona, southern Tibet
分析点号 Pb Th U Th/U 同位素比值 表观年龄/Ma 10-6 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 01 2598 339 8357 0.04 0.0170 0.0009 0.00255 0.00013 0.00108 0.00006 17.1 0.9 16.4 0.8 21.9 1.3 02 2687 208 8481 0.02 0.0177 0.0009 0.00275 0.00014 0.00087 0.00010 17.8 0.9 17.7 0.9 17.6 2.0 03 2716 213 8475 0.03 0.0181 0.0010 0.00279 0.00014 0.00086 0.00009 18.2 0.9 17.9 0.9 17.5 1.9 04 2889 226 8970 0.03 0.0175 0.0009 0.00267 0.00013 0.00085 0.00007 17.7 0.9 17.2 0.9 17.3 1.3 05 2612 275 8418 0.03 0.0174 0.0009 0.00270 0.00014 0.00086 0.00007 17.5 0.9 17.4 0.9 17.5 1.4 06 2944 309 8375 0.04 0.0201 0.0010 0.00284 0.00014 0.00177 0.00011 20.2 1.0 18.3 0.9 35.7 2.3 07 2826 187 8499 0.02 0.0185 0.0011 0.00287 0.00015 0.00166 0.00027 18.6 1.1 18.5 1.0 33.6 5.4 08 2630 298 8395 0.04 0.0177 0.0009 0.00275 0.00014 0.00083 0.00006 17.9 0.9 17.7 0.9 16.7 1.1 09 2634 350 8344 0.04 0.0180 0.0009 0.00267 0.00014 0.00103 0.00007 18.1 0.9 17.2 0.9 20.9 1.3 10 2747 207 8481 0.02 0.0182 0.0010 0.00283 0.00014 0.00111 0.00010 18.3 1.0 18.2 0.9 22.4 2.0 11 3001 250 8433 0.03 0.0202 0.0011 0.00277 0.00014 0.00284 0.00022 20.3 1.1 17.9 0.9 57.3 4.5 12 2707 439 8254 0.05 0.0181 0.0010 0.00264 0.00014 0.00136 0.00010 18.2 1.0 17.0 0.9 27.4 2.1 13 2834 371 8321 0.04 0.0195 0.0010 0.00257 0.00013 0.00232 0.00015 19.6 1.0 16.5 0.9 46.8 2.9 14 2721 354 8336 0.04 0.0181 0.0009 0.00274 0.00014 0.00102 0.00007 18.2 0.9 17.6 0.9 20.7 1.4 15 2719 193 8496 0.02 0.0182 0.0009 0.00277 0.00014 0.00117 0.00012 18.3 0.9 17.8 0.9 23.7 2.4 16 3128 225 8456 0.03 0.0192 0.0019 0.00275 0.00014 0.00430 0.00048 19.3 1.9 17.7 0.9 86.7 9.6 17 2612 192 8501 0.02 0.0174 0.0010 0.00271 0.00014 0.00090 0.00025 17.5 1.0 17.4 0.9 18.3 5.0 18 2699 337 8354 0.04 0.0185 0.0010 0.00276 0.00014 0.00106 0.00008 18.6 1.0 17.8 0.9 21.4 1.6 19 2704 278 8412 0.03 0.0187 0.0010 0.00282 0.00014 0.00112 0.00009 18.8 1.0 18.1 0.9 22.7 1.7 20 2832 305 8379 0.04 0.0188 0.0010 0.00294 0.00015 0.00100 0.00009 18.9 1.0 18.9 1.0 20.2 1.8 21 3020 198 8483 0.02 0.0181 0.0010 0.00292 0.00015 0.00300 0.00024 18.2 1.0 18.8 1.0 60.6 4.8 22 2760 400 8290 0.05 0.0178 0.0009 0.00279 0.00014 0.00126 0.00011 18.0 0.9 18.0 0.9 25.4 2.3 23 2677 509 8186 0.06 0.0182 0.0011 0.00265 0.00014 0.00158 0.00022 18.3 1.1 17.1 0.9 32.0 4.4 表 2 藏南错那淡色花岗岩全岩主量、微量和稀土元素测试数据
Table 2 Whole-rock major, trace and rare earth element analyses of the Cuona leucogranites in southern Tibet
样品号 CN-01 CN-02 CN-03 CN-04 CN-05 SiO2 74.59 74.58 74.46 74.87 75.57 Al2O3 14.48 14.64 14.60 14.31 14.07 Fe2O3 0.70 0.83 0.90 0.77 0.69 MgO 0.08 0.09 0.10 0.07 0.08 CaO 0.51 0.53 0.59 0.64 0.67 Na2O 3.69 3.64 3.51 3.90 3.84 K2O 4.85 4.68 4.41 4.48 4.19 TiO2 0.02 0.03 0.04 0.03 0.03 P2O5 0.20 0.19 0.18 0.18 0.15 MnOz 0.04 0.04 0.06 0.05 0.04 烧失量 0.8 0.7 1.1 0.7 0.7 合计 99.16 99.25 98.85 99.30 99.33 A/NK 1.28 1.32 1.38 1.27 1.30 A/CNK 1.18 1.22 1.25 1.15 1.16 Na2O+K2O 8.54 8.32 7.92 8.38 8.03 K2O/Na2O 1.31 1.29 1.26 1.15 1.09 CaO/Na2O 0.14 0.15 0.17 0.16 0.17 Be 7 12 10 16 14 Sc 3 3 4 3 3 Co 0.4 0.2 0.4 0.5 1.1 Ni 0.1 0.1 0.3 0.2 0.2 Zn 5 9 13 11 9 Ga 16.9 18.5 20.8 18.9 19.5 Rb 377.6 413.5 381.7 353.8 353.0 Sr 12.8 23.3 18.2 15.3 15.2 Y 9.7 12.8 20.1 13.3 11.2 Zr 32.6 39.9 52.9 41.0 25.2 Nb 14.2 17.7 20.5 18.3 18.0 Cs 25.3 30.9 31.2 25.7 23.7 Ba 17 47 37 24 23 La 3.4 5.5 6.8 5.2 4.0 Ce 7.2 11.2 14.9 10.0 8.9 Pr 0.86 1.37 1.79 1.17 0.99 Nd 3.6 3.5 6.4 3.3 3.3 Sm 1.03 1.43 2.15 1.55 1.28 Eu 0.09 0.14 0.14 0.13 0.10 Gd 1.29 1.83 2.57 1.49 1.42 Tb 0.27 0.39 0.56 0.35 0.32 Dy 1.39 2.07 3.24 1.95 1.93 Ho 0.26 0.36 0.63 0.41 0.36 Er 0.78 1.11 1.78 1.09 0.92 Tm 0.12 0.19 0.30 0.20 0.15 Yb 0.86 1.28 1.94 1.18 1.11 Lu 0.13 0.19 0.28 0.19 0.16 Hf 1.0 1.3 2.3 1.7 1.3 Ta 4.0 4.4 5.4 6.1 4.8 Pb 6.3 6.7 7.2 6.3 6.7 Th 2.4 3.4 5.0 2.9 2.4 U 5.4 5.7 8.1 4.1 4.2 Sn 14 17 20 14 12 Rb/Sr 29.50 17.75 20.97 23.12 23.22 LREE 16.18 23.14 32.18 21.35 18.57 HREE 5.10 7.42 11.30 6.86 6.37 TREE 21.28 30.56 43.48 28.21 24.94 (La/Sm)w 2.13 2.49 2.04 2.17 2.02 (Gd/Yb)N 1.24 1.18 1.10 1.04 1.06 (La/Yb)N 2.84 3.08 2.52 3.16 2.59 δEu 0.24 0.26 0.18 0.26 0.23 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6;A/NK=摩尔Al2O3/ (Na2O+K2O),A/ CNK=摩尔Al2O3/ (CaO+Na2O+K2O);δEu=2EuN/ (SmN+GdN),其中N为球粒陨石标准化值[41] 表 3 藏南错那淡色花岗岩全岩Rb-Sr和Sm-Nd同位素测试数据
Table 3 Whole-rock Rb-Sr and Sm-Nd isotopic compositions of the Cuona leucogranites in southern Tibet
样品号 t/Ma Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr 2σ Isr Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd 2σm TDM2/Ma εNd(t) CN-01 18.0 377.6 12.8 83.3240 0.81406 0.00020 0.79276 1.03 3.60 0.181524 0.511636 0.000004 2372 -19.5 CN-02 18.0 413.5 23.3 50.1266 0.81431 0.00006 0.80150 1.43 3.50 0.259220 0.511652 0.000004 2469 -19.4 CN-04 18.0 353.8 15.3 65.3153 0.80910 0.00001 0.79241 1.55 3.30 0.298001 0.511654 0.000004 2452 -19.4 CN-05 18.0 353.0 15.2 65.5963 0.80659 0.00001 0.78982 1.28 3.30 0.246091 0.511709 0.000006 2390 -18.2 注:87Rb/86Sr和147Sm/144Nd通过ICP-MS测试的微量元素Rb、Sr、Sm和Nd计算所得,计算公式为87Rb/86Sr=Rb/Sr×2.981,147Sm/144Nd=Sm/Nd×[0.531497+0.142521×(143Nd/144Nd)s]。ISr=(87Sr/86Sr)s+87Rb/86Sr(eλt–1),143Nd/144Nd(t)=(143Nd/144Nd)s+147Sm/144Nd (eλt-1);εNd(t)=[ (143Nd/144Nd)s/ (143Nd/144Nd)CHUR-1]×104。(143Nd/144Nd)CHUR=0.512638,(147Sm/144Nd)CHUR=0.1967,(143Nd/144Nd)DM=0.51315,(147Sm/144Nd)DM=0.2137;λRb=1.42×10-12/年[42],λSm=6.54×10-12/年[43];二阶段模式年龄TDM2的计算见参考文献[41] -
吴福元, 刘志超, 刘小驰, 等.喜马拉雅淡色花岗岩[J].岩石学报, 2015, 31(1):1-36. Searle M P, Godin L.The South Tibetan Detachment system and the Manaslu leucogranite:a structural re-interpretation and restoration of the Annapurna Manaslu Himalaya, Nepal[J]. Journal of Geology, 2003, 111(5):505-523. Searle M P, Godin L.The South Tibetan Detachment system and the Manaslu leucogranite:a structural re-interpretation and restoration of the Annapurna Manaslu Himalaya, Nepal[J]. Journal of Geology, 2003, 111(5):505-523.
Annen C, Scaillet B, Sparks R S J. Thermal constraints on the em-placement rate of a large intrusive complex:The Manaslu leucogranite, Nepal Himalaya[J]. Journal of Petrology, 2006, 47(1):71-95. Annen C, Scaillet B, Sparks R S J. Thermal constraints on the em-placement rate of a large intrusive complex:The Manaslu leucogranite, Nepal Himalaya[J]. Journal of Petrology, 2006, 47(1):71-95.
Cottle J M, Jessup M J, Newell D L, et al. Structural insights into the early stages of exhumation along an orogen-scale detachment:The South Tibetan Detachment system, Dzakaa Chu section, eastern Himalaya[J]. Journal of Structural Geology, 2007, 29(11):1781-1797. Cottle J M, Jessup M J, Newell D L, et al. Structural insights into the early stages of exhumation along an orogen-scale detachment:The South Tibetan Detachment system, Dzakaa Chu section, eastern Himalaya[J]. Journal of Structural Geology, 2007, 29(11):1781-1797.
Yang X Y, Zhang J J, Qi G W, et al. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment[J]. Science in China(Series D), 2009, 52(8):1046-1058. Yang X Y, Zhang J J, Qi G W, et al. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment[J]. Science in China(Series D), 2009, 52(8):1046-1058.
Larson K P, Godin L, Davis J D, et al. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination, south central Tibet[J]. Tectonics, 2010, 29(4):1-30. Larson K P, Godin L, Davis J D, et al. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination, south central Tibet[J]. Tectonics, 2010, 29(4):1-30.
Leloup P H, Maheo G, Arnaud N, et al. The South Tibet detach-ment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 2010, 292(1/2):1-16. Leloup P H, Maheo G, Arnaud N, et al. The South Tibet detach-ment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 2010, 292(1/2):1-16.
Chambers J, Parrish R R, Argles T, et al. A short-duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan:Alternating channel flow and critical taper mechanics of the eastern Himalaya[J]. Tectonics, 2011, 30(2):TC2005. Doi: 10.1029/2010TC002784. Chambers J, Parrish R R, Argles T, et al. A short-duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan:Alternating channel flow and critical taper mechanics of the eastern Himalaya[J]. Tectonics, 2011, 30(2):TC2005. Doi: 10.1029/2010TC002784.
Liu X B, Liu X H, Leloup P H, et al. Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications, in Nyalam area, Southern Tibet[J]. Chinese Science Bulletin, 2012, 57(26):3469-3481. Liu X B, Liu X H, Leloup P H, et al. Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications, in Nyalam area, Southern Tibet[J]. Chinese Science Bulletin, 2012, 57(26):3469-3481.
Mitsuishi M, Simon R W, Aoya M, et al. E-W extension at 19 Ma in the Kung Co area, S.Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 325/326:10-20. Mitsuishi M, Simon R W, Aoya M, et al. E-W extension at 19 Ma in the Kung Co area, S.Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 325/326:10-20.
Yan D P, Zhou M F, Robinson P T, et al. Constraining the midcrustal channel flow beneath the Tibetan Plateau:Data from the Nielaxiongbo gneiss dome, SE Tibet[J]. International Geology Re-view, 2012, 54(6):615-632. Yan D P, Zhou M F, Robinson P T, et al. Constraining the midcrustal channel flow beneath the Tibetan Plateau:Data from the Nielaxiongbo gneiss dome, SE Tibet[J]. International Geology Re-view, 2012, 54(6):615-632.
莫宣学, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 2003, 10(3):135-148. Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4):939-960. Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4):939-960.
Wang X X, Zhang J J, Liu J, et al. Middle-Miocene transforma-tion of tectonic regime in the Himalayan orogen[J]. Chinese Science Bulletin, 2013, 58(1):108-117. Wang X X, Zhang J J, Liu J, et al. Middle-Miocene transforma-tion of tectonic regime in the Himalayan orogen[J]. Chinese Science Bulletin, 2013, 58(1):108-117.
Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the KhulaKangrigranite[J]. Geology, 1997, 25(6):543-546. Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the KhulaKangrigranite[J]. Geology, 1997, 25(6):543-546.
Coleman M E. U-Pb constraints on Oligocene-Miocene deforma-tion and anatexis within the Central Himalaya, Marsyandi valley, Nepal[J]. American Journal of Science, 1998, 298(7):553-571. Coleman M E. U-Pb constraints on Oligocene-Miocene deforma-tion and anatexis within the Central Himalaya, Marsyandi valley, Nepal[J]. American Journal of Science, 1998, 298(7):553-571.
Harrison T M, Grove M, Lovera O M, et al. A model for the ori-gin of Himalayan anatexis and inverted metamorphism[J]. Journal of Geophysical Research, 1998, 103(B11):27017-27032. Harrison T M, Grove M, Lovera O M, et al. A model for the ori-gin of Himalayan anatexis and inverted metamorphism[J]. Journal of Geophysical Research, 1998, 103(B11):27017-27032.
Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet[J]. Geology, 1999, 27(9):831-834. Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet[J]. Geology, 1999, 27(9):831-834.
Schneider D, Edwards M, Kidd W S F, et al. Early Miocene anatex-is identified in the western syntaxis, Pakistan Himalaya[J]. Earth and Planetary Science Letters, 1999, 167(3/4):121-129. Schneider D, Edwards M, Kidd W S F, et al. Early Miocene anatex-is identified in the western syntaxis, Pakistan Himalaya[J]. Earth and Planetary Science Letters, 1999, 167(3/4):121-129.
Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28(5):403-406. Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28(5):403-406.
Kellett D A, Godin L. Pre-Miocene deformation of the Himalayan superstructure, Hidden valley, central Nepal[J]. Journal of the Geo-logical Society, 2009, 166(2):261-275. Kellett D A, Godin L. Pre-Miocene deformation of the Himalayan superstructure, Hidden valley, central Nepal[J]. Journal of the Geo-logical Society, 2009, 166(2):261-275.
Sachan H K, Kohn M J, Saxena A, et al. The Malari leucogranite, Garhwal Himalaya, northern India:Chemistry, age, and tectonic implications[J]. Geological Society of American Bulletin, 2010, 122(11/12):1865-1876. Sachan H K, Kohn M J, Saxena A, et al. The Malari leucogranite, Garhwal Himalaya, northern India:Chemistry, age, and tectonic implications[J]. Geological Society of American Bulletin, 2010, 122(11/12):1865-1876.
Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite(Himalaya, Nepal):Inferences of the age and source of Hi-malayan leucogranites[J]. Contributions to Mineralogy and Petrology, 1987, 96(1):78-92. Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite(Himalaya, Nepal):Inferences of the age and source of Hi-malayan leucogranites[J]. Contributions to Mineralogy and Petrology, 1987, 96(1):78-92.
Harris N, Inger S. Trace element modeling of pelite-derived gran-ites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1):46-56. Harris N, Inger S. Trace element modeling of pelite-derived gran-ites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1):46-56.
Harris N, Massey J. Decompression and anatexis of Himalayan metapelites[J]. Tectonics, 1994, 13(6):1537-1546. Harris N, Massey J. Decompression and anatexis of Himalayan metapelites[J]. Tectonics, 1994, 13(6):1537-1546.
Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J].Lithos, 1995, 35(3/4):221-234. Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J].Lithos, 1995, 35(3/4):221-234.
杨晓松, 金振民, Huenges E, 等.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示[J].科学通报, 2001, 46(3):246-250. Guo Z F, Wilson M. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2):360-376. Guo Z F, Wilson M. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2):360-376.
Harris N, Ayres M, Massey J. Geochemistry of granitic melts pro-duced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magma[J]. Journal of Geophysical Research, 1995, 100(B8):15767-15777. Harris N, Ayres M, Massey J. Geochemistry of granitic melts pro-duced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magma[J]. Journal of Geophysical Research, 1995, 100(B8):15767-15777.
Harrison T M, Lovera O M, Grove M. New insights into the ori-gin of two contrasting Himalayan granite belts[J]. Geology, 1997, 25(10):899-902. Harrison T M, Lovera O M, Grove M. New insights into the ori-gin of two contrasting Himalayan granite belts[J]. Geology, 1997, 25(10):899-902.
Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Hi-malayan leucogranite[J]. Tectonophysics, 1987, 134(1/2/3):39-57. Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Hi-malayan leucogranite[J]. Tectonophysics, 1987, 134(1/2/3):39-57.
Davidson C, Grujic D E, Hollister L S, et al. Metamorphic reac-tions related to decompression and synkinematic intrusion of leuco-granite,High Himalayan Crystallines, Bhutan[J]. Journal of Meta-morphic Geology, 1997, 15(5):593-612. Davidson C, Grujic D E, Hollister L S, et al. Metamorphic reac-tions related to decompression and synkinematic intrusion of leuco-granite, High Himalayan Crystallines, Bhutan[J]. Journal of Meta-morphic Geology, 1997, 15(5):593-612.
Harrison T M, Grove M, McKeegan K D, et al. Origin and epi-sodic emplacement of the Manaslu intrusive complex, central Hi-malaya[J]. Journal of Petrology, 1999, 40(1):3-19. Harrison T M, Grove M, McKeegan K D, et al. Origin and epi-sodic emplacement of the Manaslu intrusive complex, central Hi-malaya[J]. Journal of Petrology, 1999, 40(1):3-19.
Nabelek P I, Liu M. Petrologic and thermal constraints on the ori-gin of leucogranites in collisional orogens[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2004, 95:73-85. Nabelek P I, Liu M. Petrologic and thermal constraints on the ori-gin of leucogranites in collisional orogens[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2004, 95:73-85.
张进江.北喜马拉雅及藏南伸展构造综述[J].地质通报, 2007, 26(6):639-649. Aikman A B, Harrison T M, Ding L. Evidence for early(>44Ma) Himalayan crustal thickening, Tethyan Himalaya, southern Tibet[J]. Earth 牡?瑤栠敐?瑡敮捥?瑡潲湹椠捓?敩癥潮汣略琠楌潥湴?潥晲?琬栠攲‰匰漸甬琠栲?吴椨戱支琲愩渺??椭洲愳氮愼祢慲嬾?崳??吠斋捓瑈漬渠椠換獟???パら???金??咷??セキ自??ㄠ?二??活动时代[J]. 大地构造与成矿学, 2015, 39(2):250-259. Aikman A B, Harrison T M, Ding L. Evidence for early( > 44Ma) Himalayan crustal thickening, Tethyan Himalaya, southern Tibet[J]. Earth and Planetary Science Letters, 2008, 274(1/2):14-23.
王晓先, 张进江, 闫淑玉, 等.藏南康马拆离断层的构造特征及其活动时代[J].大地构造与成矿学, 2015, 39(2):250-259. Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Spe-cial Publication, 2003, 4:1-70. Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recy-cling-induced melt-peridotite interaction in the Trans-North China Orogen U-Pb dating, Hf isotopes and trace elements in zir-con from mantle xezoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571.
Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569. Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Spe-cial Publication, 2003, 4:1-70.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J]. Geological Society of London Special Publication, 1989, 42(1):313-345. Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569.
Steiger R H, Jäger E. Subcommission on geochronology:Convention on the use of decay constants in geochronology and cosmo-chronology[J]. Earth and Planetary Science Letters, 1977, 36(3):359-362. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J]. Geological Society of London Special Publication, 1989, 42(1):313-345.
Lugmair G W, Harti K. Lunar initial 143Nd/144Nd:Differential evo-lution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3):349-357. Steiger R H, Jäger E. Subcommission on geochronology:Convention on the use of decay constants in geochronology and cosmo-chronology[J]. Earth and Planetary Science Letters, 1977, 36(3):359-362.
Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramaf-ic intrusions of the northern Dabie complex, central China[J]. Chemistry Geology, 1999, 157(1/2):119-146. Lugmair G W, Harti K. Lunar initial 143Nd/144Nd:Differential evo-lution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3):349-357.
Harrison T M, Mckeegan K D, LeFort P. Detection of inherited monazite in the Manaslu leukogranite by 208Pb/232Th ion micro-probe dating-crystallization age and tectonic implication[J]. Earth and Planetary Science Letters, 1995, 133(3/4):271-282. Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramaf-ic intrusions of the northern Dabie complex, central China[J]. Chemistry Geology, 1999, 157(1/2):119-146.
Searle M P, Parrish R R, Hodges K V. Shisha Pangma leucogran-ite, south Tibetan Himalaya:Field relations, geochemistry, age, ori-gin, and emplacement[J]. Journal of Geology, 1997, 105(5):295-317. Harrison T M, Mckeegan K D, LeFort P. Detection of inherited monazite in the Manaslu leukogranite by 208Pb/232Th ion micro-probe dating-crystallization age and tectonic implication[J]. Earth and Planetary Science Letters, 1995, 133(3/4):271-282.
Hodges K, Bowring S, Davidek K, et al. Evidence for rapid dis-placement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J]. Geology, 1998, 26(6):483-486. Searle M P, Parrish R R, Hodges K V. Shisha Pangma leucogran-ite, south Tibetan Himalaya:Field relations, geochemistry, age, ori-gin, and emplacement[J]. Journal of Geology, 1997, 105(5):295-317.
于俊杰, 曾令森, 刘静, 等.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义[J]. 岩石学报, 2011, 27(7):1961-1972. Hodges K, Bowring S, Davidek K, et al. Evidence for rapid dis-placement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J]. Geology, 1998, 26(6):483-486.
于俊杰, 曾令森, 刘静, 等.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义[J].岩石学报, 2011, 27(7):1961-1972. Kellett D A, Grujic D, Warren C, et al. Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system, Bhutan Himalaya[J]. Journal of Metamorphic Geology, 2010, 28(8):785-808. Imayama T, Takeshita T, Yi K, et al. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crys-talline Sequence in the far-eastern Nepal Himalaya[J]. Lithos, 2012, 134/135:1-22.
杨晓松, 金振民.西藏亚东淡色花岗岩Rb-Sr和Sm-Nd同位素研究:关于其年龄和源岩的证据[J]. 地质评论, 2001,47(3):294-300. Kellett D A, Grujic D, Warren C, et al. Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system, Bhutan Himalaya[J]. Journal of Metamorphic Geology, 2010, 28(8):785-808.
杨晓松, 金振民.西藏亚东淡色花岗岩Rb-Sr和Sm-Nd同位素研究:关于其年龄和源岩的证据[J].地质评论, 2001, 47(3):294-300. Ahmad T, Harris N, Bickle M, et al. Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya[J]. Geological Society of America Bulletin, 2000,112(3):467-477. Knesel K M, Davidson J P. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J]. Science, 2002, 296(5576):2206-2208.
Miller C, Thoni M, Frank W, et al. The early Paleozoic magmatic event in the Northwest Himalaya, India:Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3):237-251. Ahmad T, Harris N, Bickle M, et al. Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya[J]. Geological Society of America Bulletin, 2000, 112(3):467-477.
Richards A, Argles T, Harris N, et al. Himalayan architecture con-strained by isotopic tracers from clastic sediments[J]. Earth and Plan-etary Science Letters, 2005, 236(3/4):773-796. Miller C, Thoni M, Frank W, et al. The early Paleozoic magmatic event in the Northwest Himalaya, India:Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3):237-251.
Gao L E, Zeng L S. Fluxed melting of metapelite and the forma-tion of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimicaet Cosmochimica Acta, 2014, 130:136-155. Richards A, Argles T, Harris N, et al. Himalayan architecture con-strained by isotopic tracers from clastic sediments[J]. Earth and Plan-etary Science Letters, 2005, 236(3/4):773-796.
Gehrels G E, DeCelles P G, Ojha T P, et al.Geological and U-Pb geochronological evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 25(4/5/6):385-408. Gao L E, Zeng L S. Fluxed melting of metapelite and the forma-tion of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimicaet Cosmochimica Acta, 2014, 130:136-155.
张宏飞, Harris N, Parrish R, 等. 北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及构造意义[J]. 地球科学, 2005, 30(3):275-288. Gehrels G E, DeCelles P G, Ojha T P, et al.Geological and U-Pb geochronological evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 25(4/5/6):385-408.
张宏飞, Harris N, Parrish R, 等.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及构造意义[J].地球科学, 2005, 30(3):275-288. 王晓先, 张进江, 闫淑玉, 等.北喜马拉雅恰芒巴二云母花岗岩的年龄及形成机制[J].地质科学, 2015, 50(3):708-727. Zeng L S, Asimow P, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope sys-tematics of anatectic melts from a metasedimentary source[J]. Geo-chimicaet Cosmochimica Acta, 2005, 69(4):3671-3682. PatiñoDouce A, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.
Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickening lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4):251-266. Zeng L S, Asimow P, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope sys-tematics of anatectic melts from a metasedimentary source[J]. Geo-chimicaet Cosmochimica Acta, 2005, 69(4):3671-3682.
Inger S, Harris N. Geochmical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya[J]. Journal of Petrolo-gy, 1993, 34(2):345-368. Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickening lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4):251-266.
Liu Z C, Wu F Y, Ji W Q, et al. Petrogenesis of the Rambaleuco-granite in the Tethyan Himalayan and constraints on the channel flow model[J]. Lithos, 208/209:118-136. Inger S, Harris N. Geochmical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya[J]. Journal of Petrolo-gy, 1993, 34(2):345-368.
Lee J, Whitehouse M. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircons age[J]. Geology, 2007, 35(1):45-48. Liu Z C, Wu F Y, Ji W Q, et al. Petrogenesis of the Rambaleuco-granite in the Tethyan Himalayan and constraints on the channel flow model[J]. Lithos, 208/209:118-136.
King J, Harris N, Argles T, et al. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin, 2011, 123(1/2):218-239. Lee J, Whitehouse M. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircons age[J]. Geology, 2007, 35(1):45-48.
高利娥, 曾令森, 侯可军, 等. 藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用[J]. 科学通报, 2013, 58(27):2810-2822. King J, Harris N, Argles T, et al. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin, 2011, 123(1/2):218-239.
高利娥, 曾令森, 侯可军, 等.藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用[J].科学通报, 2013, 58(27):2810-2822. Cottle J M, Jessup M J, Newell D L, et al. Geochronology of granu-litized eclogite from the AmaDrime Massif:implications fo Catlos E J, Harrison T M, Manning C E, et al. Records of the evo-lution of the Himalayan orogen from in situ Th-Pb ion micro-probe dating of monazite:eastern Nepal and western Garhwal[J]. Journal of Asian Earth Science, 2002, 20(5):459-479.
Cottle J M, Jessup M J, Newell D L, et al. Geochronology of granu-litized eclogite from the AmaDrime Massif:implications for the tec-tonic evolution of the South Tibetan Himalaya[J]. Tectonics, 2009, 28(TC1002):1-25.