Orogenic peridotite and its significance
-
摘要:
造山橄榄岩和蛇绿岩的橄榄岩主要由地幔岩组成,造山橄榄岩代表陆壳下的地幔,蛇绿岩的橄榄岩代表洋壳下的地幔。洋壳下的地幔与陆壳下的地幔在物质组成上大体接近,但产出的构造背景明显不同。介绍了造山橄榄岩的组成、与造山橄榄岩有关的高压-超高压变质作用、地幔流体作用、成矿作用、造山橄榄岩侵位的机制等,以及中国几个可能的造山橄榄岩的基本情况,讨论了造山橄榄岩的演变过程及其与蛇绿岩的橄榄岩的区别。造山橄榄岩的形成大体经历了初期的陆壳减薄和裂谷阶段、晚期的挤压造山2个构造演化阶段。有些地区只发育裂谷阶段,构造演化在裂谷后即夭折了,也称为造山橄榄岩。蛇绿岩与造山橄榄岩之间的区别不在物质组成和地球化学方面,而是在构造背景上。如有没有深海沉积、混杂堆积,有,是蛇绿岩;没有,则是造山橄榄岩。有没有超高压变质作用、地幔交代作用或地幔交代作用是否强烈,有且很强,可能是造山橄榄岩;没有,则可能是蛇绿岩。岩体是冷侵位还是热侵位,冷侵位是蛇绿岩,热侵位是造山橄榄岩。蛇绿岩出现在造山带,代表已经消失的洋盆;造山橄榄岩一般也出现在造山带,但代表的是减薄和撕裂的陆壳下的地幔。
Abstract:Orogenic peridotite and peridotite of ophiolite are mainly composed of mantlerock.Orogenic peridotite represents the mantle beneath the continental crust, and peridotite of ophiolite represents the mantle beneath the oceanic crust.The mantle beneath the oceanic crust is generally close to the mantle beneath the continental crust in terms of material composition, but the tectonic setting is different.This paper briefly introduces the composition of orogenic peridotites, high-pressure and ultrahigh-pressure metamorphism related to orogenic peridotites, mantle fluids, mineralization, and mechanisms of orogenic peridotite emplacement, and also briefly introduces several possible orogenic peridotites in China such as the Songshugou peridotite in the Qinling Mountain, the Raobazhai rock mass in Anhui, several rock masses in the Yidun-type area in western Sichuan, Santai rock mass in western Yunnan, and Dadaoerji rock mass in Gansu.The evolution process of orogenic peridotite and its difference from ophiolite peridotite are discussed.It is pointed out that the difference between ophiolite and orogenic peridotite is not mainly in material composition and geochemistry, but in tectonic setting.Is there no abyssal sediment? Is it mixed up? Yes, it is peridotite of ophiolite; no, it is orogenic peridotite.Is there any UHP metamorphic effect? Is there mantle metasomatism or strong mantle metasomatism? Some are very strong and may be orogenic peridotites; no, they may be peridotites of ophiolite.Cold emplacement is peridotite of ophiolite, and thermal emplacement is orogenic peridotite.It is pointed out in this paper that the formation of orogenic peridotite has generally experienced two stages of tectonic evolution:the initial thinning of the continental crust, the rifting stage, and the late extruding orogenic belt.In some areas, only the rift stage is developed, and the tectonic evolution finished after the rift, also known as orogenic peridotites, such as Zabargad in the Red Sea, Ronda in Spain, Beni Bousera in Morocco, and Yidun peridotite in China.The peridotite of ophiolite appears in the orogenic belt, representing the ocean basin that has disappeared; the orogenic peridotite generally appears in the orogenic belt, but it represents the thinned and torn continental crust.It is necessary to study and demonstrate whether the peridotite that appears in the orogenic belt is ophiolite because their tectonic meanings are different.
-
Keywords:
- orogenic peridotite /
- ophiolite /
- Alps /
- rift /
- ultrahigh pressure metamorphism /
- fluid /
- oceanic crust /
- continental crust
-
兴蒙造山系位于中国内蒙古—东北地区,是由前南华纪—震旦纪裂解的古地块和古生代多岛弧盆系及一系列结合带镶嵌组成的复杂构造域(图 1-a)[1-3]。其早古生代的构造演化对于了解亲西伯利亚陆块群与华北陆块群的拼合过程及构造演化历史具有重要意义,因此被中外地质学家所关注[3-12]。铜山组作为内蒙北疆兴安地层大区早古生代最早的沉积记录(除小面积出露于伊尔施东苏呼河的早寒武世苏中组外)[10],其成岩环境、物质来源和成岩时代的研究是认识兴蒙造山系早期构造演化的理想窗口。
图 1 内蒙古中部及邻区构造地质简图(a,据参考文献[4]修改)、内蒙古阿拉坦合力地区奥陶系分布简图(b)和瓦窑地区铜山组地质简图(c)1—板块或克拉通;2—微陆块或块体;3—缝合带(推测)及俯冲方向;4—铜山组一段;5—铜山组二段;6—铜山组三段;7—上石炭统宝力高庙组;8—中生代地层;9—上新统宝格达乌拉组;10—第四系;11—石炭纪侵入岩;12—早石炭世二长花岗岩;13—晚石炭世碱长花岗岩;14—脉岩;15—产状;16—火山口;17—同位素年龄样品点;18—化石点Figure 1. Simplified tectonic map of middle Inner Mongolia and adjacent areas (a), geological map of the Ordovician in Alatanheli area, Inner Mongolia (b), and geological map of the Tongshan Formation in Wayao area (c)铜山组主要分布于黑龙江、内蒙古等地,为一套灰黑色板岩、黄色杂砂质砂砾岩、中粗粒杂砂质长石砂岩、流纹质凝灰砾岩、凝灰岩等构成的复理石或火山复理石建造。在地层时代方面,1981年陈德森在黑龙江境内创建该组时[5],依据黑色粉砂岩中的笔石及浅色粗碎屑岩中的腕足类化石,将其时代确定为中奥陶世。1993年铜山组(Ot)引入内蒙古境内,层型位于科尔沁右翼前旗十七大桥北,底界未见,上界为多宝山组火山岩整合覆盖,区域上与黑龙江省铜山组可对比[6],但并未给出明确的地质时代。1:25万东乌旗幅区域地质调查①将研究区瓦窑及南部汗贝布敦昭出露的奥陶系划为铜山组,并根据汗贝布敦昭一带的Camerell sp.,Leptelloid ea sp.,Spheiochus sp.等化石将铜山组时代定为早—中奥陶世;2013年,叶琴等通过对汗贝布敦昭奥陶系岩性组合、沉积环境及化石的研究,将其从铜山组中划离,重新厘定为上奥陶统裸河组(O3l)[4](图 1-b),因此,铜山组在研究区乃至内蒙地区至今尚无确切的年代学资料。
此外,内蒙古铜山组的沉积环境也存有争议。前人研究认为,该组在内蒙古地区含火山物质明显减少,为一套浅海相正常沉积的碎屑岩沉积[2, 6],但研究区铜山组中发育大量深水重力流沉积,显示其为深水环境。
针对研究区铜山组目前在地质时代、沉积环境及大地构造背景方面存在的问题与争议,本文通过对东乌旗瓦窑铜山组的细致研究,以期为兴安地层区奥陶纪地层的研究和对比提供有价值的基础资料,同时对探讨西伯利亚板块南缘早古生代地质构造演化起到积极作用。
1. 地质概况
研究区位于北部西伯利亚板块与南部华北板块所夹持的中亚造山带中段[13](图 1-a),地理位置位于内蒙古东乌旗阿拉坦合力苏木以西约10km处(图 1-b),出露地层主要有中—下奥陶统铜山组(O2-3t)、上奥陶统裸河组(O3l)、上石炭统宝力高庙组(C2bl)及中生界。
区内铜山组分布于瓦窑一带(图 1-c),出露面积约24km2。地层总体走向近东西向,其下部未见底,上部与宝力高庙组呈角度不整合接触,同时被石炭纪二长花岗岩、钾长花岗岩侵入破坏,出露最大厚度为1047.7m。总体表现为一套自下而上凝灰质增多、粒度变粗的碎屑岩、泥岩构成的复理石建造,发育典型的浊积岩鲍马序列。综合野外调查及剖面实测资料,依据地层层序、岩石组合、接触关系等特征,铜山组可进一步划分为3个岩性段,各段之间为整合接触关系。
铜山组一段(O2-3t1):总厚度大于361m,主要岩性为灰绿色粉砂质板岩、灰黑色凝灰质板岩、灰黑色绢云母板岩,夹青灰色变质细砂岩、变质粉砂岩等,见水平层理、交错层理、包卷层理、槽模等。
铜山组二段(O2-3t2):整体为一向上变粗的沉积序列,主要由灰色变凝灰质杂砂岩与灰黑色凝灰质板岩、粉砂质板岩组成,厚约410m,变砂岩中发育块状层理、平行层理和小型交错层理。
铜山组三段(O2-3t3):厚约324m,岩性以灰黄色变凝灰质复成分砂砾岩、变质中粗粒岩屑杂砂岩为主,夹少量变质凝灰质粉砂岩、板岩及凝灰岩,发育粒序层理、平行层理等。
2. 铜山组沉积环境
铜山组的岩性主要为灰绿色、深灰色板岩、变质粉砂岩、杂砂岩、含砾砂岩、砾岩等。镜下特征显示,砾岩、含砾砂岩中的砾石成分以砂岩、石英岩、安山岩及凝灰岩为主;砂岩多为杂砂岩,杂基含量15%~35%,成分成熟度低,分选性差,磨圆呈次圆状-棱角状,凝灰质及云母类矿物含量较多(图 2-h、i)。同时,6件砂岩样品的岩石薄片粒度分析(表 1)表明,砂岩标准偏差介于1.25~2.02之间,粒度概率累计曲线斜率较小,多为三段式或多段式,表现为分选性很差的类型。综合以上分析可知,铜山组碎屑岩应为快速沉积、未及分选的重力流沉积。
表 1 铜山组砂岩粒度参数(括号内为图解法)Table 1. Grain size parameters of sandstones in Tongshan Formation序号 平均值(Mz) 标准偏差(σ) 偏度(SK) 峰度(K) b0220-1-2 1.93 (1.84) 1.55 (1.34) 1.53 (-0.23) 8.41 (0.99) b0220-4-1 2.70 (2.42) 1.49 (1.40) 2.81 (0.37) 10.77 (3.13) b0220-8-2 1.78 (1.55) 1.72 (1.77) 2.33 (0.23) 9.45 (1.95) b0220-8-3 2.47 (2.25) 1.30 (0.70) 3.20 (0.04) 14.63 (1.03) b0222-12-1 2.24 (1.86) 2.02 (2.01) 1.73 (0.15) 6.09 (2.23) b0222-12-2 1.92 (1.75) 1.25 (0.65) 3.58 (0.09) 18.54 (1.01) 注:江汉油田实验室测试 根据铜山组岩性组合、沉积构造等特征,依照前人对浊积相的划分方案[14-19],在铜山组可识别出的浊积相有砾岩和含砾砂岩相(A)、砂岩相(B)、砂岩与泥岩复合相(C)、粉砂岩与泥岩复合相(D)和泥岩、粉砂岩复合相(E)。
Anne等[20]根据沉积相和地震资料,将浊积扇分为4个单元,分别为海底谷(峡谷或冲沟)、砂质水道、水下堤和透镜状砂,它们主要由浊积扇不同部位的沉积特点决定。在浊积相分析的基础上,通过对研究区铜山组剖面各浊积相在垂向序列上组合的分析,识别出3种相组合,分别为浊积扇外扇相组合、中扇朵叶体浊积相组合及中扇水道相组合(图 2),描述如下。
2.1 浊积扇外扇沉积相组合
铜山组一段(剖面14~16层)为浊积扇外扇沉积相,岩性为灰绿色-灰黑色凝灰质砂质板岩、粉砂质板岩、板岩,发育水平层理、交错层理、包卷层理、槽模等(图 2-b、c)。多显示缺底的鲍玛序列,以Tde与Tcde为主,局部可见Tbcd(图 2-a、d、e)。其发育的浊积相主要为D相和E相,下部由泥岩夹粉砂岩(E相)组成,向上过渡为主要由粉砂岩夹泥岩(D相)组成的自下而上变厚、变粗的序列。从其成因看,该序列可能是由于朵叶体的进积作用而形成的,这与方爱民等[19]、Mutti等[21]报道的海底扇外扇沉积具有明显相似的特征。
2.2 中扇朵叶体浊积相组合
铜山组二段为中扇朵叶体浊积沉积(剖面9~13层),浊积相B、C相较发育,主要岩性为凝灰质长石岩屑杂砂岩夹粉砂岩、泥岩,发育平行层理(图 2-f)、交错层理等,向上粒度变粗,以浊积相B相为主。常见的鲍马序列组合有Tbe和Tbce组合。
2.3 中扇水道相组合
铜山组三段为中扇水道相(剖面1~8层),其浊积相以B相为主,少量浊积相为C相。岩性主要为中粗粒、中细粒长石石英杂砂岩、凝灰质复成分砂砾岩夹砾岩透镜体及粉砂质板岩、板岩组合。发育的沉积构造有粒序层理、平行层理、交错层理,常见的鲍马序列有Tab、Tbde和Tce组合(图 2-g)。该相整体表现为平行层理广泛发育,鲍马序列的b段非常普遍,在水道部分发育少量浊积相A相。
3. 铜山组沉积时代
奥陶纪时期,内蒙古地区火山活动具有弱-强-弱的演化趋势,自下而上发育铜山组、多宝山组和裸河组[12]。铜山组沉积以凝灰质泥砂质细碎屑岩为主,间夹火山沉积,向上陆源碎屑逐渐减少,火山沉积增加,并从酸性向中酸性和中性过渡,至多宝山组达到火山活动的高峰,以中性-中基性火山岩和火山凝灰岩为主,随后停止了火山活动[2, 9],至裸河组逐渐开始有正常沉积物的出现[3]。瓦窑奥陶系主要由凝灰质砂板岩与变质凝灰质砂砾岩组成,自下而上粗碎屑岩及凝灰质物质增多,为一套半深海的浊流沉积,明显区别于多宝山期及裸河期沉积。
本次在瓦窑铜山组下部发现灰绿色英安质晶屑凝灰岩夹层,并对凝灰岩样品进行了测试分析(采样点地理坐标为北纬45°20′26″、东经115°37′32″)。
锆石的阴极发光(CL)图像能反映锆石的成因。岩浆锆石通常具有典型的振荡环或扇形分带结构,晶形通常为半自形-自形,粒径为20~250μm [22, 23]。本次研究的锆石均显示典型的岩浆锆石特征,晶体干净,晶形较好,锆石粒径在30~200μm之间(图 3)。
大量研究表明,不同成因锆石有不同的Th、U含量及Th/U值。岩浆锆石的Th、U含量较高、Th/U值较大(一般大于0.4);变质锆石的Th、U含量低,Th/U值小(一般小于0.1)[22, 24-25]。此次样品的30个测点中U含量介于174×10-6~1249×10-6之间,Th含量介于174×10-6~1249×10-6之间,Th/U平均值为0.52(表 2),均显示岩浆锆石特征。
表 2 瓦窑铜山组英安质晶屑凝灰岩LA-ICP-MS锆石U-Th-Pb同位素数据Table 2. LA-ICP-MS zircon U-Th-Pb isotope data for dacite volcanic tuffs of Tongshan Formation from Wayao area分析点号 含量/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 206Pb/238U 1σ 207Pb/235U 1σ 1 18 193 0.57 0.0581 0.0009 0.657 0.010 0.0821 0.0007 0.0332 0.0005 509 4 513 8 2 16 174 0.45 0.0607 0.0019 0.680 0.023 0.0812 0.0014 0.0401 0.0017 504 9 527 18 3 61 810 0.27 0.0567 0.0006 0.581 0.006 0.0743 0.0011 0.0305 0.0002 462 7 465 5 4 60 772 0.36 0.0581 0.0007 0.590 0.008 0.0736 0.0007 0.0325 0.0010 458 5 471 6 5 67 785 0.36 0.0577 0.0005 0.654 0.006 0.0821 0.0007 0.0340 0.0010 509 4 511 5 6 23 258 0.80 0.0587 0.0012 0.594 0.014 0.0735 0.0008 0.0330 0.0004 457 5 473 11 7 62 835 0.24 0.0546 0.0006 0.556 0.006 0.0738 0.0008 0.0319 0.0003 459 5 449 5 8 53 599 0.28 0.0613 0.0007 0.709 0.009 0.0839 0.0008 0.0474 0.0011 519 5 544 7 9 52 686 0.26 0.0562 0.0006 0.580 0.006 0.0748 0.0009 0.0329 0.0002 465 5 465 5 10 48 592 0.48 0.0587 0.0013 0.590 0.016 0.0729 0.0011 0.0343 0.0005 453 7 471 12 11 41 485 0.25 0.0562 0.0026 0.630 0.033 0.0814 0.0010 0.0453 0.0022 504 6 496 26 12 108 808 0.97 0.0596 0.0025 0.689 0.036 0.0838 0.0008 0.0677 0.0006 519 5 532 28 13 52 545 0.51 0.0598 0.0012 0.684 0.014 0.0830 0.0011 0.0448 0.0015 514 7 529 11 14 16 189 0.66 0.0555 0.0018 0.571 0.020 0.0747 0.0008 0.0296 0.0005 464 5 459 16 15 23 269 0.60 0.0602 0.0012 0.601 0.013 0.0724 0.0006 0.0342 0.0006 450 4 478 10 16 22 205 0.59 0.1185 0.0041 1.524 0.058 0.0933 0.0013 0.0361 0.0010 575 8 940 35 17 32 343 0.47 0.0623 0.0026 0.700 0.035 0.0814 0.0012 0.0435 0.0010 504 8 538 27 18 29 196 0.74 0.0602 0.0009 0.672 0.012 0.0809 0.0009 0.0315 0.0003 502 6 522 9 19 92 196 0.67 0.0692 0.0010 0.884 0.017 0.0926 0.0011 0.0374 0.0010 571 7 643 12 20 49 193 0.39 0.0670 0.0007 0.687 0.009 0.0743 0.0010 0.0299 0.0006 462 6 531 7 21 68 174 0.40 0.0642 0.0006 0.659 0.007 0.0744 0.0010 0.0375 0.0011 463 6 514 5 22 35 810 0.61 0.0559 0.0010 0.570 0.013 0.0739 0.0011 0.0261 0.0006 460 7 458 10 23 67 187 0.35 0.0605 0.0014 0.618 0.019 0.0741 0.0015 0.0308 0.0006 461 9 488 15 24 22 785 1.31 0.0745 0.0016 0.748 0.018 0.0727 0.0008 0.0294 0.0004 453 5 567 14 25 62 258 0.50 0.0644 0.0013 0.6450 0.015 0.0732 0.0009 0.0348 0.0010 455 6 508 12 26 60 835 0.29 0.0590 0.0007 0.605 0.007 0.0744 0.0007 0.0326 0.0006 462 4 480 5 27 53 599 0.73 0.0572 0.0007 0.642 0.009 0.0815 0.0007 0.0261 0.0004 505 4 504 7 28 80 686 0.35 0.0677 0.0007 1.264 0.013 0.1354 0.0014 0.0490 0.0016 819 8 830 8 29 54 592 0.48 0.0594 0.0006 0.607 0.006 0.0741 0.0012 0.0282 0.0004 461 7 482 4 30 167 242 1.44 0.0908 0.0052 1.048 0.074 0.0837 0.0015 0.0433 0.0016 518 9 728 52 样品0221-14共测试30个点,除个别测点落在谐和曲线外,大部分测点均位于谐和线上或附近。获得2组206Pb/238U年龄加权平均值,分别为458.5±2.6Ma和510±4Ma(图 3)。结合锆石的CL图像和Th/U值,458.5±2.6Ma应代表铜山组凝灰岩的沉积年龄,该年龄是目前铜山组中首次利用火山岩锆石U-Pb定年方法取得的高精度年龄,而510±4Ma代表岩浆第一次分离结晶年龄,为继承锆石的结晶年龄。结合区域地层及古生物资料[12],笔者认为,将研究区铜山组的地质时代置于中奥陶世晚期—晚奥陶世早期较适宜。
4. 地球化学特征及其构造背景判别
5件砂岩样品的岩石地球化学分析结果见表 3。主量元素分析结果显示,样品中SiO2含量为62.79% ~83.33%,平均值为76.84%;Al2O3含量为7.99%~10.77%,平均值为9.21%;TiO2含量为0.15%~0.26%,平均值为0.22%;TFe2O3+MgO含量为1.3%~2.8%,利用SiO2/Al2O3和Na2O/K2O的砂岩分类方法[26],对铜山组砂岩数据进行投图,投点均落于杂砂岩区域内(图 4-a),显示其为一套分选中等、成熟度较低的碎屑岩,属典型杂砂岩类,与野外及显微镜下的认识一致。
表 3 瓦窑铜山组中砂岩地球化学数据Table 3. Geochemical data of sandstones from the Tongshan Formation in Wayao area元素 SiO2 TiO2 AI2O3 Fe2O3 FeO MgO MnO TFe CaO K2O P2O5 Na2O 烧失量 Rb Sr Ba Nb Zr Hf Th Cr Co Ni Sc La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y V HF0220-1-2 78.29 0.26 9.80 0.51 1.33 0.95 0.05 1.84 2.02 3.65 0.12 2.17 0.85 143.8 161.8 678.8 5.97 156.3 5.19 10.71 25.3 3.62 11.59 4.62 23.16 45.68 5.35 20.69 4.05 0.68 3.87 0.59 3.55 0.7 2.01 0.31 2.01 0.32 19.32 29.83 HF0220-5-2 62.79 0.68 17.34 1.83 4.38 2.94 0.11 6.21 0.36 5.59 0.10 1.18 2.70 233.5 70.25 594.8 14.17 225.9 6.50 14.05 76.2 10.52 52.71 17.44 51.92 98.62 11.74 44.67 8.58 1.21 7.00 1.23 6.96 1.3 3.68 0.59 4.02 0.61 36.50 103.7 HF0220-8-3 77.29 0.25 10.77 0.85 0.90 0.65 0.06 1.75 1.62 4.10 0.10 2.50 0.91 138.2 171.3 795.6 6.48 135.5 4.38 9.58 26.2 3.05 11.42 4.70 26.20 42.64 5.70 20.80 3.97 0.78 3.55 0.59 3.34 0.66 1.95 0.35 2.02 0.30 19.48 28.81 HF0220-9-1 82.50 0.21 8.28 1.59 0.37 0.85 0.10 1.96 3.23 0.52 0.09 1.24 1.02 17.76 307.3 450.3 5.27 120.4 3.92 8.25 25.9 3.16 16.95 3.75 16.07 30.06 3.75 14.60 2.70 0.66 2.51 0.43 2.59 0.55 1.58 0.27 1.68 0.26 14.31 26.89 HF0222-12-2 83.33 0.15 7.99 0.17 0.77 0.39 0.05 0.94 0.85 3.46 0.05 1.70 1.09 75.89 120.0 660.1 8.61 105.6 3.52 7.67 18.4 3.15 11.92 3.94 15.00 29.60 3.41 12.95 2.45 0.62 2.19 0.35 2.19 0.44 1.28 0.20 1.35 0.22 11.53 20.42 注:主量元素含量单位为%,微量和稀土元素含量为10-6 4.1 物源分析
稀土元素(REE)和高场强元素及部分过渡金属元素(如Co)通常被认为是沉积过程中最稳定的元素,利用这些元素能有效判别碎屑沉积岩源区成分[27-28]。在Hf -La/Th图(图 4-b)中[29],铜山组样品投点多落于酸性岛弧物源区,部分落于长英质和基性混合物源区。
4.2 构造环境分析
与陆源沉积物形成有关的主要因素,如物源类型、风化条件、搬运过程、成岩后生作用等,主要受沉积盆地的构造环境控制[29],可以利用陆源沉积物的化学组成研究板块构造及沉积盆地构造环境[30-31]。因此,沉积岩的主量和微量元素在判别古代沉积盆地的构造性质中具有重要作用。
形成于岛弧及大陆边缘的现代砂岩,其化学成分变化较大,尤其是Fe2O3+MgO,Al2O3/SiO2,K2O/Na2O等。Bhatia[30]利用这个化学变异特征,区分出大陆岛弧、大洋岛弧、活动大陆边缘和被动大陆边缘4种不同的构造背景。对铜山组砂岩样品分析数据进行投图(图 5),多数砂岩样品落于成熟岛弧物源区,少数落入活动大陆边缘物源区。
图 5 瓦窑铜山组砂岩K2O/Na2O-SiO2/Al2O3构造环境判别图解[30]Figure 5. Tectonic discrimination diagram for the major elements of Tongshan Formation sandstones from Wayao area沉积岩中的微量元素,尤其是La、Ce、Y、Th、Zr、Hf、Ti、Sc等活动性较弱,且在海水中停留时间较短,元素能定量地转移到碎屑沉积物中,受其他地质因素的影响较少,能良好地反映母岩性质和沉积盆地的构造环境[33]。因而可以利用一些微量元素判别参数和图解对其形成环境进行判别[30-32]。利用La-Th-Sc、Th-Sc-Zr/10及Th-Co-Zr/10三角形构造环境判别图对铜山组砂岩样品进行投图(图 6),投点主要落入大陆岛弧区活动大陆边缘区,少量落于被动大陆边缘区。考虑到区域上铜山组中普遍富含火山物质,且上覆多宝山组多以弧火山岩为主体。笔者认为,将瓦窑地区铜山组碎屑沉积的构造环境置于活动大陆边缘更合适。
图 6 瓦窑铜山组砂岩微量元素的构造环境判别图[30]Figure 6. Tectonic discrimination diagrams for the trace elements of Tongshan Formation sandstones from Wayao area5. 结论
(1)岩石学特征、岩性组合及沉积序列表明,研究区铜山组为一套以浊流为主的半深海浊积扇沉积。
(2)在内蒙古地区铜山组中首次获得火山岩高精度锆石U-Pb年龄458.5±2.6Ma,结合区域地层资料,认为东乌旗瓦窑铜山组的沉积时代为中奥陶世晚期—晚奥陶世早期。
(3)碎屑岩地球化学分析揭示,铜山组物源区主要具活动大陆边缘和大陆岛弧特征,结合区域地质资料,推测其为活动大陆边缘环境下浊积扇沉积的产物。
致谢: 感谢中国地质科学院地质研究所任纪舜院士、牛宝贵研究员和西北大学陈立辉教授对本文的评论和建议,感谢审稿专家对本文的评审及建议 -
图 1 造山橄榄岩的全球分布[21]
图a:TI—Tinaquillo, 委内瑞拉北部; Ho—Horoman, 日本,北海道; DS—Dabie-大别,苏鲁超高压变质,中国; Q—秦岭超高压变质带,中国; ANQ—柴达木北缘-阿尔金超高压变质带,中国; ZA—Zabargad岛, 红海,埃及;
图b:WGR—西区片麻岩带,挪威西南部; B—Bohemian地块, 捷克中部、德国东部、奥地利北部及波兰南部; V—Vosges, 法国东部; AA—Alpe Arami, 中阿尔卑斯、瑞士南部; M—Val Malenco, 阿尔卑斯中东部,意大利北部; I—Ivrea带(Finero, Balmuccia, and Baldissero), 西阿尔卑斯,意大利西北部; L—Lanzo, 西阿尔卑斯,意大利西北部; VG—Voltri群(Erro-Tobbio橄榄岩), 利古里亚西部,意大利西北部; EL—外利古里亚橄榄岩,利古里亚东部,意大利西北部; PYR—Pyrenees, 法国南部; RO—Ronda, Betic Cordillera, 西班牙南部; BB—Beni Bousera, 裂谷,摩洛哥北部; CO—Cabo Ortegal, 西班牙北部Figure 1. Location of the main orogenic peridotite occurrences in the world
图 2 造山橄榄岩、蛇绿岩和深海橄榄岩组成[21]
Figure 2. Modal compositions of orogenic, ophiolitic, and abyssal peridotites
图 3 西地中海新生代构造演化示意图[68]
Figure 3. Sketch map of Cenozoic tectonic evolution of the western Mediterranean
图 4 西班牙Ronda岩体底部剖面图(展示了从岩体底部向下变质程度逐渐降低的变化[54]; a、b、c分别表示原作者详细研究部位,本文在此省略; 蓝色星号表示原作者取样位置)
Figure 4. Schematic cross section of the crustal footwall of the Ronda peridotites at Sierra Alpujata showing the location of the studied mylonitic samples
图 5 超镁铁岩-麻粒岩组合侵位模式[96]
a—西班牙Betic裂谷带;b—比利牛斯山北部;i—伸展阶段,地壳减薄,地幔上涌,出现热异常;ii—地壳破裂阶段,地壳撕裂,橄榄岩侵入;iii—压缩阶段
Figure 5. Emplacement model of ultramafic-granuliticas sociations
图 6 造山橄榄岩(义敦型岩体)形成模式之一:裂谷模式[5]
Figure 6. Model 1:the gift model of the orogenic peridotite(Yidun type body)
图 7 造山橄榄岩形成模式之二:陆壳基底剥蚀抬升模式[5]
Figure 7. Model 2:the erosion of continental crustal basement uplift model of the orogenic peridotite
图 8 中国北秦岭松树沟超镁铁质岩体地质略图[27]
Figure 8. Simplified geological map of the Songshugou area in the Qinling Range, China
图 9 饶拨寨岩体地质图[113]
1—纯橄岩;2—方辉橄榄岩和二辉橄榄岩;3—糜棱岩化橄榄岩;4—角闪橄榄岩;5—石榴子石辉石岩;6—花岗岩;7—断层。角图中:1—元古宙-太古宙岩石;2—新元古代岩石
Figure 9. eological map of the Raobazhai peridotite
图 10 四川白玉县擦哈柯地质草图[3]
Figure 10. Sketch geological map and profile map of the Cahake Yidun-type body in Baiyu County, Sichuan
图 12 大道尔吉岩体地质示意图[122]
1—蛇纹石化纯橄岩;2—含矿纯镁橄岩;3—顽辉镁橄岩;4—辉石岩;5—条带状透辉橄榄岩;6—铬铁矿体;7—辉长岩;8—石英闪长岩;9—花岗闪长岩;10—第四系;11—条带状硅质灰岩、千枚岩及砂砾岩;12—断层;13—地质界线;14—透辉石岩相;15—富镁纯橄岩相;16—含矿纯橄岩相
Figure 12. Geological map of the Dadaoerji body
-
张旗, 张魁武, 李达周.横断山区基性-超基性岩的类型[J].岩石学报, 1987, (3):46-53. 张旗, 李达周, 张魁武, 等.义敦型镁铁-超镁铁岩的主要特征及其与蛇绿岩的对比[J].岩石学报, 1990, 6(3):33-42. 张旗, 张魁武, 李达周.横断山区镁铁-超镁铁岩[M].北京:科学出版社, 1992. 张旗, 周德进, 赵大升, 等.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论[J].岩石学报, 1996, 12(1):17-28 张旗.镁铁-超镁铁岩的分类及其构造意义[J].地质科学, 2014, 49(3):982-1017 张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001:1-182. Nicolas A, Jackson E D.Repartition en deux province des peridotites des chaines alpines longeant la Mediterranee:implications geotectoniques[J].Schweiz.Petrogr.Mitt., 1972, 52:479-495.
Menzies M A.Chemical and isotopic heterogeneities in orogenic and ophiolitic peridotites[C]//Ophiolites and Oceanic Lithosphere.Blackwell Sci., Pnbl., Oxford, London, 1984: 231-240.
Lorand J P, Schmidt G, Palme H, et al.Highly siderophile element geochemistry of the Earth's mantle:new data for the Lanzo(Italy) and Ronda(Spain) orogenic peridotite bodies[J].Lithos, 2000, 53:149-164. doi: 10.1016/S0024-4937(00)00017-7
Doblas M, Oyarzun M."Mantle core complexes" and Neogene extensional detachment tectonics in the western Betic Cordilleras, Spain:an alternative model for the emplacement of the Ronda peridotite[J].EPSL, 1989, 93:76-84. doi: 10.1016/0012-821X(89)90185-4
Den Tex E.Origin of ultramafic rocks, their tectonic settings and history:A contribution to the discussion of the paper "The origin of ultramafic and ultrabasic rocks" by P J Wyllie[J].Tectonophy, 1969, 7:457-488. doi: 10.1016/0040-1951(69)90016-X
Ernst W G.Petrochemical Study of Lherzolitic Rocks from the Western Alps[J].Journal of Petology, 1978, 19:341-392. doi: 10.1093/petrology/19.3.341
Nicolas A.Lherzolites of the western Alps: a stracturalreview[C]//Kimberlites, II: The Mantle and Crust-mantle relationship, Elsevier, Amstedam, 1984: 333-346.
Trommsdorff V, Hermann J, Muntener O, et al.Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigma[J].Journal of Geodynamics, 2000, 30:77-92. doi: 10.1016/S0264-3707(99)00028-9
Bonatti E, Michael P J.Mantle peridotites from continental rifts to ocean basins to subduction zones[J].Earth and Planetary Science Letters, 1989, 91:297-311. doi: 10.1016/0012-821X(89)90005-8
Gueddari K, Piboule M, Amosse J.Differentiation of platinum-group elements(PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range(Ronda and Beni Bousera)[J].Chemical Geology, 1996, 134:181-197. doi: 10.1016/S0009-2541(96)00085-X
Snow J E, Schmidt G.Proterozoic melting in the northern peridotite massif, Zabargad island:Os isotopic evidence[J].Terra Nova, 1999, 11:45-50. doi: 10.1046/j.1365-3121.1999.00223.x
Boudier F, Nicolas A, Ji S, et al.The gneiss of Zabargad Island—deep crust of a rift[J].Tectonophysics, 1988, 150: 209-227. doi: 10.1016/0040-1951(88)90302-2
Lorand J P, Bodinier J L, Dupuy C, et al.Abundances and distribution of gold in the orogenic-type spinel peridotites from Arie'ge(Northeastern Pyrenees, France)[J].Geochimica et Cosmochimica Acta, 1989, 53:3085-3090. doi: 10.1016/0016-7037(89)90188-9
Muntener O, Piccardo G B, Polino R, et al.Revisiting the Lanzo peridotite(NW-Italy):'Asthenospherization' of ancient mantle lithosphere[J].Ofioliti, 2005, 30:111-124.
Bodinier J L, Godard M.Orogenic, ophiolitic, and abyssal peridotites[C]//Holland H D, Turekian K K.Treatise on Geochemistry.2nd ed.Amsterdam: Elsevier, 2014, 103-167.
Crespo E, Luque F J, Rodas M, et al.Graphite-sulfide deposits in Ronda and Beni Bousera peridotites(Spain and Morocco) and the origin of carbon in mantle-derived rocks[J].Gondwana Research, 2006, 9:279-290. doi: 10.1016/j.gr.2005.10.003
Gonzalez-Jimenez J M, Marchesi C, Griffin W L, et al.Zircon recycling and crystallization during formation of chromite-and Ni-arsenide ores in the subcontinental lithospheric mantle(Serranía de Ronda, Spain)[J].Ore Geology Reviews, 2017, 90:193-209. doi: 10.1016/j.oregeorev.2017.02.012
Tubía J.The Ronda peridotites(Los Reales nappe):An example of the relationship between lithospheric thickening by oblique tectonics and late extensional deformation within the Betic Cordillera(Spain)[J].Tectonophysics, 1994, 238:381-398. doi: 10.1016/0040-1951(94)90065-5
Ishiwatari A.Alpine ophiolites:product of low-degree mantle melting in a Mesozoic transcurrent rift zone[J].EPSL, 1985, 76:93-108. doi: 10.1016/0012-821X(85)90151-7
Bodinier J L, Menzies M A, Thirlwall M.Continental to oceanic mantle transition—REE and Sr-Nd isotopic geochemistry of the Lanzo lherzolite massif.Orogenic lherzolites and mantle processes[J].Journal of Petrology, 1991, 20:191-210. doi: 10.1007/978-94-015-8979-6_29
苏犁, 宋述光, 周鼎武.秦岭造山带松树沟纯橄岩体成因:地球化学和岩浆包裹体的制约[J].中国科学:地球科学, 2005, 35(1):38-47. Dong Y P, Zhou M F, Zhang G W, et al.The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China:Implications for the tectonic evolution of the Qinling orogenic belt[J].Journal of Asian Earth Sciences, 2008, 32:325-335. doi: 10.1016/j.jseaes.2007.11.010
Nie H, Yang J Z, Zhou G Y, et al.Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China[J].Lithos, 2019, 344/345:207-216. doi: 10.1016/j.lithos.2019.06.029
Cao Y, Song S G, Su L, et al.Highly refractory peridotites in Songshugou, Qinling orogen:Insights into partial melting and melt/fluid-rock reactions in forearc mantle[J].Lithos, 2016, 252/253:234-254. doi: 10.1016/j.lithos.2016.03.002
Sun S S, Dong Y P, Sun Y L, et al.Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China[J].Gondwana Research, 2019, 70:71-87. doi: 10.1016/j.gr.2018.12.016
Tang L, Santosha A, Dong Y P, et al.Early Paleozoic tectonic evolution of the North Qinling orogenic belt:Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J].Gondwana Research, 2016, 30:48-64. doi: 10.1016/j.gr.2014.10.006
李晔, 周汉文, 钟增球, 等.北秦岭早古生代两期变质作用:来自松树沟基性岩岩石学及锆石U-Pb年代学的记录[J].地球科学, 2012, 37(增刊):111-124. 刘良, 廖小莹, 张成立, 等.北秦岭高压-超高压岩石的多期变质时代及其地质意义[J].岩石学报, 2013, 29(5):1634-1656. Yu H, Zhang H F, Santosh M.Mylonitized peridotites of Songshugou in the Qinling orogen, central China:A fragment of fossil oceanic lithosphere mantle[J].Gondwana Research, 2017, 52:1-17. doi: 10.1016/j.gr.2017.08.007
张宏福, 于红.造山带橄榄岩岩石学与构造过程:以松树沟橄榄岩为例[J].地球科学, 2019, 44(4):1057-1066. 钱加慧, 杨秀清, 刘良, 等.北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义[J].岩石学报, 2013, 29(9):3087-3098. 陈丹玲, 任云飞, 宫相宽, 等.北秦岭松树沟榴辉岩的确定及其地质意义[J].岩石学报, 2015, 31(7):1841-1854. 郑永飞, 赵子福, 陈伊翔.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用[J].科学通报, 2013, 58:2233-2239. 郑永飞, 陈伊翔, 戴立群, 等.发展板块构造理论:从洋壳俯冲带到碰撞造山带[J].中国科学:地球科学, 2015, 45:711-735. 郑建平, 熊庆, 赵伊, 等.俯冲带橄榄岩及其记录的壳幔相互作用[J].中国科学:地球科学, 2019, 49:1037-1058. 陈意, 苏斌, 郭顺.大别-苏鲁造山带橄榄岩:进展和问题[J].中国科学:地球科学, 2015, 45(9):1245-1269. 陈意, 苏斌, 郭顺.造山带橄榄岩起源和大陆俯冲带壳幔相互作用[J].地球科学, 2019, 44(12):4086-4094. 陈仁旭, 尹壮壮, 夏春鹏.大别-苏鲁造山带橄榄岩记录的碰撞造山过程中地幔楔的地壳交代作用[J].矿物岩石地球化学通报, 2019, 38(3):459-484. 陈仁旭, 郑永飞.造山带橄榄岩记录的大陆俯冲带多期壳幔相互作用[J].地球科学, 2019, 44(12):4095-4101. Zheng Y F.Metamorphic chemical geodynamics in continental subduction zones[J].Chemical Geology, 2012, 328:5-48. doi: 10.1016/j.chemgeo.2012.02.005
Zheng Y F.Subduction zone geochemistry[J].Geoscience Frontiers, 2019, 10:1223-1254. doi: 10.1016/j.gsf.2019.02.003
Beccaluva L, Piccardo G B, Serri G.Petrology of northern Apennian ophiolites and comparison with other Tethyan ophiolites[C]//Ophiolites.Proc, Inter, Ophi, Symp, Cyprus, 1980: 314-331.
Lemoine M, Tricart P, Boillot G.Ultramafic and gabbroic ocean floor of the Ligurian Tethys(Alps, Corsica, Apennines):in search of a genetic model[J].Geology, 1987, 15:622-625. doi: 10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2
Li X H, Faure M, Lin W, et al.New isotopic constraints on age and magma genesis of an embryonic oceanic crust:the Chenaillet Ophiolite in the Western Alps[J].Lithos, 2013, 160/161:283-291. doi: 10.1016/j.lithos.2012.12.016
Li X H, Faure M, Rossi P, et al.Age of Alpine Corsica ophiolites revisited:Insights from in situ zircon U-Pb age and O-Hf isotopes[J].Lithos, 2015, 220/223:179-190. doi: 10.1016/j.lithos.2015.02.006
O'Hara M J.Mineral parageneses in ultramafic rocks[C]//Wyllie P J.Ultramafic and Related Rocks, New York: Wiley, 1967: 393-403.
Frey F A, Suen C J, Stockman H W.The Ronda high temperature peridotite:Geochemistry and petrogenesis[J].Geochimica et Cosmochimica Acta, 1985, 49:2469-2491. doi: 10.1016/0016-7037(85)90247-9
Bartoli O, Acosta-Vigil A, Tajcmanová L, et al.Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites(Betic Cordillera, S Spain)[J].Lithos, 2016, 256/257:282-299. doi: 10.1016/j.lithos.2016.03.016
Acosta-Vigil A, Rubatto D, Bartoli O, et al.Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain[J].Lithos, 2014, 210/211:147-167. doi: 10.1016/j.lithos.2014.08.018
Su B, Chen Y, Guo S, et al.Origins of orogenic dunites:petrology, geochemistry and implications[J].Gondwana Research, 2016, 29:41-59. doi: 10.1016/j.gr.2015.08.001
Su B, Chen Y, Mao Q, et al.Minor elements in olivine inspect the petrogenesis of orogenic peridotites[J].Lithos, 2019, 344/345:207-216. doi: 10.1016/j.lithos.2019.06.029
Weyer S, Munker C, Mezger K.Nb/Ta, Zr/Hf and REE in the depleted mantle:implications for the differentiation history of the crust-mantle system[J].EPSL, 2003, 205:309-324. doi: 10.1016/S0012-821X(02)01059-2
Mazzucchelli M, Zanetti A, Rivalenti G, et al.Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body:Insights into the Paleozoic-Mesozoic evolution of the Southern Alps[J].Lithos, 2010, 119:485-500. doi: 10.1016/j.lithos.2010.08.002
Gervilla F, Leblanc M.Magmatic ores in high-temperature alpine-type lherzolite massifs(Ronda, Spain, and Beni Bousera, Morocco)[J].Econ.Geol., 1990, 85:112-132. doi: 10.2113/gsecongeo.85.1.112
Beslier M O, Girardeau J, Boillot G.Kinematics of peridotite emplacement during North Atlantic continental rifting, Galicia, northwestern Spain[J]Tectonophysics, 1990, 184:321-343. doi: 10.1016/0040-1951(90)90446-F
Imai A, Ozawa K.Tectonic implications of the hydrated garnet peridotites near Mt Kinabalu, Sabah, East Malaysia[J].Journal of Southeast Asian Earth Sciences, 1991, 6:431-445. doi: 10.1016/0743-9547(91)90086-D
Morishita T, Arai S, Ishida Y.Occurrence and chemical composition of amphiboles and related minerals in corundum-bearing mafic rock from the Horoman Peridotite Complex, Japan[J].Lithos, 2007, 95:425-440. doi: 10.1016/j.lithos.2006.09.006
Leblanc M, Temagoult A.Chromite pods in a lherzolite massif(Collo, Algeria):Evidence of oceanic-type mantle rocks along the West Mediterranean Alpine Belt[J].Lithos, 1989, 23:153-162. doi: 10.1016/0024-4937(89)90002-9
Tubia J M, Cuevas J, Ibarguchi J I G.Sequential development of the metamorphic aureole beneath the Ronda peridotites and its beating on the tectonic evolution of the Betic Cordillera[J].Tectonophysics, 1997, 279:227-252. doi: 10.1016/S0040-1951(97)00124-8
Zhang R Y, Liou J G, Yang J S, et al.Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China[J].Journal of Metamorphic Geology, 2000, 18:149-166. doi: 10.1046/j.1525-1314.2000.00248.x
Marchesi C, Garrido C, Bosch D, et al.Mantle refertilization by melts of crustal-derived garnet pyroxenite:Evidence from the Ronda peridotite massif, southern Spain[J].EPSL, 2013, 362:66-75. doi: 10.1016/j.epsl.2012.11.047
Hidas K, Booth-Rea G, Garrido CJ, et al.Backarc basin inversion and subcontinental mantle emplacement in the crust:kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle(Betic Cordillera, southern Spain)[J].J.Geol.Soc., 2013, 170:47-55. doi: 10.1144/jgs2011-151
Tubía J M, Cuevas J, Esteban J J.Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites(Betic Cordilleras, southern Spain)[J].Journal of Structural Geology, 2013, 50:148-160. doi: 10.1016/j.jsg.2012.06.010
Morishita T, Arai S, Gervilla F.High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain:significance of sapphirine-and corundum-bearing mineral assemblages[J].Lithos, 2001, 57:143-161. doi: 10.1016/S0024-4937(01)00036-6
Bailey E, Holloway J R.Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones[J].EPSL, 2000, 183:487-498. doi: 10.1016/S0012-821X(00)00288-0
Liu C Z, Wu F Y, Wilde S A, et al.Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite(southwestern Tibetan Plateau) formed by hydrous melt metasomatism[J].Lithos, 2010, 114:413-422. doi: 10.1016/j.lithos.2009.10.008
Wang J X, Zhou H Y, Salters V, et al.Mantle melting variation and refertilization beneath the Dragon Bone amagmatic segment(53°E SWIR):Major and trace element compositions of peridotites at ridge flanks[J].Lithos, 2019, 324/325:325-339. doi: 10.1016/j.lithos.2018.11.014
Nozaka T.Metasomatic hydration of the Oeyama forearc peridotites:Tectonic implications[J].Lithos, 2014, 184/187:346-360. doi: 10.1016/j.lithos.2013.11.012
Woodland A B, Komprobst J, McPherson E, et al.Metasomatic interactions in the lithospheric mantle:petrologic evidence from the Lherz massif, French Pyrenees[J].Chemical Geology, 1996, 134:83-112 doi: 10.1016/S0009-2541(96)00082-4
Agrinier P, Mével C, Bosch D, et al.Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island(Red Sea)[J].EPSL, 1993, 120:187-205. doi: 10.1016/0012-821X(93)90239-6
McPherson E, Thirlwall I M F, Parkinson I J.Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif[J].Chemical Geology, 1996, 134:135-157. doi: 10.1016/S0009-2541(96)00084-8
Grieco G, Ferrario A, Mathez E A.The effect of metasomatism on the Cr-PGE mineralization in the Finero Complex, Ivrea Zone, Southern Alps[J].Ore Geology Reviews, 2004, 24:299-314. doi: 10.1016/j.oregeorev.2003.05.004
Beccaluva L, Bianchini G, Bonadiman C, et al.Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera(southern Spain)[J].Lithos, 2004, 75:67-87. doi: 10.1016/j.lithos.2003.12.015
Lucassen F, Franz T G, Viramonte J, et al.The late Cretaceous lithospheric mantle beneath the Central Andes:Evidence from phase equilibria and composition of mantle xenoliths[J].Lithos, 2005, 82:379-406. doi: 10.1016/j.lithos.2004.08.002
Marocchi M, Hermann J, Morten L.Evidence for multi-stage metasomatism of chlorite-amphibole peridotites(Ulten Zone, Italy):Constraints from trace element compositions of hydrous phases[J].Lithos, 2007, 99:85-104. doi: 10.1016/j.lithos.2007.05.010
Frezzotti M L, Ferrando S, Peccerillo A.Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara(Lake Tana region, Ethiopian plateau):Nature and evolution of volatiles in the mantle of a region of continental flood basalts[J].Geochimica et Cosmochimica Acta, 2010, 74:3023-3039. doi: 10.1016/j.gca.2010.02.007
Tommasia A, Langone A, Padrón-Navarta J A, et al.Hydrous melts weaken the mantle, crystallization of pargasite and phlogopite does not:Insights from a petrostructural study of the Finero peridotites, southern Alps[J].EPSL, 2017, 477:59-72. doi: 10.1016/j.epsl.2017.08.015
Kang H, Jung H.Lattice-preferred orientation of amphibole, chlorite, and olivine found in hydrated mantle peridotites from Bjrkedalen, southwestern Norway, and implications for seismic anisotropy[J].Tectonophysics, 2019, 750:137-152. doi: 10.1016/j.tecto.2018.11.011
张旗, 马宝林, 刘若新, 等.一个消减带之上的大陆岩石圈地慢残片:安徽饶拨寨超镁铁岩的地球化学特征[J].中国科学(B), 1995, 35(8):867-873. 支霞臣, 靳永斌, 孟庆, 等.大别山北部饶拔寨超镁铁岩体微量元素地球化学[J].岩石学报, 2004, 20:463-472. Pedrera A, Galindo-Zaldívar J, Acosta-Vigil A, et al.Serpentinization-driven extension in the Ronda mantle slab(Betic Cordillera, S.Spain)[J].Gondwana Research, 2016, 37:205-215. doi: 10.1016/j.gr.2016.05.008
仇东东.陕西省松树沟铬铁矿床成因与成矿预测研究[D].长安大学硕士学位论文, 2015. 芮会超.北秦岭松树沟超镁铁质岩石及条带状铬铁矿成因研究[D].长安大学硕士学位论文, 2018. 鲍佩声, 王希斌.对大道尔吉铬铁矿成因的新认识[J].矿床地质, 1998, 8(1):3-18. 王希斌, 郝治国, 鲍佩声, 等.中国造山带蛇绿岩中铬铁矿床的成因类型及其成矿的若干特征[J].矿床地质, 1992, 11(1):21-34. 苟国朝, 田培昭, 张新虎, 等.大道尔吉蛇绿岩型超镁铁岩铬铁矿中铂族元素分布特征[J].西北地质, 1994, 15(1):11-18. Estebana J J, Sanchez-Rodriguez L, Seward D, et al.The late thermal history of the Ronda area, southern Spain[J].Tectonophysics, 2004, 389:81-92. doi: 10.1016/j.tecto.2004.07.050
Reuber I, Michard A, Chalouan A, et al.Structure and emplacement of the Alpine-type peridotites from Beni Bousera, Rif, Morocco:A polyphase tectonic interpretation[J].Tectonophysics, 1982, 82:231-251. doi: 10.1016/0040-1951(82)90047-6
Obata M, Karato S I.Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy[J].Tectonophysics, 1995, 242:313-328. doi: 10.1016/0040-1951(94)00228-2
Kornprobst J, Vielzeuf D.Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations[C]//Limberlites.II, Elsevier, Amsterdam, 1984: 347-359.
张宗清, 张旗.北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J].岩石学报, 1995, 11(增刊):165-177. 仇东东, 焦建刚, 姜建超, 等.北秦岭松树沟铬铁矿床三维地质建模及其找矿意义[J].地球科学与环境学报, 2014, 36(1):210-217. 李海勇.大陆俯冲带交代作用: 苏鲁造山带橄榄岩地球化学制约[D].中国科学技术大学博士学位论文, 2017. 李犇, 朱赖民, 弓虎军, 等.北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系[J].岩石学报, 2010, 26(5):1487-1502. 徐树桐, 江来利, 刘贻灿, 等.大别山(安徽部分)的构造格局和演化过程[J].地质学报, 1992, 59(4):279-285. 李曙光, 聂永红, Jagoutz E, 等.大别山俯冲陆壳的再循环——地球化学证据[J].中国科学(D辑), 1997, 27(5):412-418. 吴元保, 陈道公, 程昊, 等.北大别饶拔寨退变质榴辉岩的地球化学特征[J].地震地质, 2000, 22(增刊):99-103. 靳永斌, 支霞臣, 孟庆, 等.大别山北部饶拔寨超镁铁岩体的形成时代:Re-Os同位素定年[J].科学通报, 2003, 48:2560-2565. Zhi X C.Re-Os isotopic system and formation age of subcontinental lithosphere mantle[J].Chinese Science Bulletin, 2000, 45:193-200. doi: 10.1007/BF02884671
Zhi X C, Jin Y B, Meng Q, et al.The Re-Os isotope geochemistry of the Raobazhai ultramafic complex of Dabieshan, central China[J].Geochim Cosmochim Acta, 2003, 67(18S):A83. doi: 10.1007/BF02900973
王希斌, 杨经绥, 陈松永, 等.也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题[J].岩石学报, 2005, 21:1593-1608. 王希斌.对"也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题"一文评论的答疑[J].岩石学报, 2006, 22(12):3084-3089. 张旗.铙钹寨岩体是蛇绿岩吗?——评王希斌等:"也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题"[J].岩石学报, 2006, 22(12):3079-3084. Zheng L, Zhi X C, Reisberg L.Re-Os systematics of the Raobazhai peridotite massifs from the Dabie orogenic zone, eastern China[J].Chemical Geology, 2009, 268:1-14. doi: 10.1016/j.chemgeo.2009.06.021
匡少平, 凌文黎, 张本仁.大别造山带中镁铁质-超镁铁质岩石和榴辉岩有关问题的讨论[J].地质论评, 1999, 45(6):584-595. 游振东, 桑隆康, 钟增球, 等.大别山北麓尖晶石橄榄岩中石榴辉石岩包体的成因矿物学信息[J].现代地质, 2001, 15(2):161-167. 杨锡庸.安徽大别地区一个超镁铁质冷侵入体:对霍山县饶拨寨岩体的再认识[J].中国地质科学院南京地质矿产研究所所刊, 1983, (4):81-99. 钟大赉, 等.滇川西部古特提斯造山带[M].北京:科学出版社, 2002:1-231. 王奕萱, 王根厚, 袁国礼, 等.滇西三台山地幔橄榄岩的成因及其构造意义:来自地质学、矿物学和岩石地球化学的证据[J].地学前缘, 2018, 25(1):138-156. 储著银, 王伟, 陈福坤, 等.云南潞西三台山超镁铁岩体Os-Nd-Pb-Sr同位素特征及地质意义[J].岩石学报, 2009, 25(12):3221-3228. 刘慧明.云南三台山超基性岩与盈江超基性岩形成构造环境对比与含矿性研究[D].中国地质大学(北京)硕士学位论文, 2018. 许志琴, 徐惠芬, 张建新, 等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J].地质学报, 1994, 68:1-15. 张旗, 郭原生, 王岳明, 等.祁连山地区镁铁-超镁铁岩的多样性[J].地球科学进展, 1997, 12(5):324-330. 王二七, 张旗, Burchfiel C B.青海拉鸡山:一个多阶段抬升的构造窗[J].地质科学, 2000, 35:493-500. 冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996. 师占义.西北几个主要含矿超基性岩体的岩石矿物特征及意义[J].地质论评, 1980, 26(4):307-318. Boulller A M, Firdaous K, Boudier F.Fluid circulation related to deformation in the Zabargad gneisses(Red Sea rift)[J].Tectonophysics, 1997, 279:281-302. doi: 10.1016/S0040-1951(97)00116-9
Takla M A, Eldougdoug A A, Hussein A A A, et al.Petrogenesis of Zabargad ultramafic rocks and origin of peridot, Zabargad Island, Red Sea, Egypt[J].Annals of the Geological Survey of Egypt, 1997, 20:451-478.
Marshak S, Bonatti E, Brueckner H, et al.Fracture-zone tectonics at Island, Red Sea(Egypt)[J].Tectonophysics, 1992, 216:379-385. doi: 10.1016/0040-1951(92)90407-W
Pelletier L, Müntener O.High-pressure metamorphism of the Lanzo peridotite and its oceanic cover, and some consequences for the Sesia-Lanzo zone(northwestern Italian Alps)[J].Lithos, 2006, 90:111-130. doi: 10.1016/j.lithos.2006.01.006
Piccardo G B, Zanetti A, Muntener O.Melt/peridotite interaction in the southern Lanzo peridotite:Field, textural and geochemical evidence[J].Lithos, 2007, 94:181-209. doi: 10.1016/j.lithos.2006.07.002
Rubatto D, Gebauer D, Compagnoni R.Dating of eclogitefacies zircons:the age of Alpine metamorphism in the Sesia-Lanzo Zone(Western Alps)[J].EPSL, 1999, 167:141-158. doi: 10.1016/S0012-821X(99)00031-X
刘欣雨, 张旗, 张成立.基于大数据方法建立大洋安山岩构造环境判别图[J].地质通报, 2019, 38(12):1963-1970. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191204&flag=1 张旗, 李明超, 陈万峰, 等.岩石大地构造学说的兴起、没落与新生[J].大地构造与成矿学, 2020, 44(2):289-296. Sanfilippo A, Tribuzio R, Ottolini L, et al.Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites(Western Alps):New constraints into melt migration processes at cold thermal regimes[J].Geochimica et Cosmochimica Acta, 2017, 214:51-72. doi: 10.1016/j.gca.2017.07.034
Pognante U, Rsli U, Toscani L.Petrology of ultramafic and mafic rocks from the Lanzo peridotite body(Western Alps)[J].Lithos, 1985, 18:201-214. doi: 10.1016/0024-4937(85)90025-8
Hartmann G, Wedepohl K H.The composition of peridotite tectonites from the Ivrea Complex, northern Italy:Residues from melt extraction[J].Geochimica et Cosmochimica Acta, 1993, 57:1761-1782. doi: 10.1016/0016-7037(93)90112-A
Bodinier J L, Menzies M A, Thirlwall M.Continental to oceanic mantle transition—REE and Sr-Nd isotopic geochemistry of the Lanzo lherzolite massif.Orogenic lherzolites and mantle processes[J].Journal of Petrology, 1991, 20:191-210. https://academic.oup.com/petrology/article/42/1/233/1461786