Loading [MathJax]/jax/output/SVG/jax.js
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏扎布耶茶卡北部早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其地质意义

侯云岭, 黄柏鑫, 贾小川, 杨学俊, 叶春林, 吕志伟, 杨蕻

侯云岭, 黄柏鑫, 贾小川, 杨学俊, 叶春林, 吕志伟, 杨蕻. 2017: 西藏扎布耶茶卡北部早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 36(10): 1783-1799. DOI: 10.12097/gbc.dztb-36-10-1783
引用本文: 侯云岭, 黄柏鑫, 贾小川, 杨学俊, 叶春林, 吕志伟, 杨蕻. 2017: 西藏扎布耶茶卡北部早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 36(10): 1783-1799. DOI: 10.12097/gbc.dztb-36-10-1783
HOU Yunling, HUANG Baixin, JIA Xiaochuan, YANG Xuejun, YE Chunlin, LÜ Zhiwei, YANG Hong. 2017: Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance. Geological Bulletin of China, 36(10): 1783-1799. DOI: 10.12097/gbc.dztb-36-10-1783
Citation: HOU Yunling, HUANG Baixin, JIA Xiaochuan, YANG Xuejun, YE Chunlin, LÜ Zhiwei, YANG Hong. 2017: Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance. Geological Bulletin of China, 36(10): 1783-1799. DOI: 10.12097/gbc.dztb-36-10-1783

西藏扎布耶茶卡北部早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其地质意义

基金项目: 

中国地质调查局项目《冈底斯-喜马拉雅铜矿资源基地调查》 DD20160015

《西藏扎布耶茶卡北地区1:5万H45E002001、H45E002002、H45E003001、H45E003002四幅区域地质矿产调查》 121201010000150014-13

详细信息
    作者简介:

    侯云岭(1988-), 男, 硕士, 助理工程师, 从事区域地质调查与研究。E-mail:yunlinghou@126.com

  • 中图分类号: P534.5;P597+.3

Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance

  • 摘要:

    中冈底斯带在早白垩世发生的大规模岩浆爆发事件的成因模式仍然存在争议。对中冈底斯带扎布耶茶卡北部区域岩浆岩的野外特征、锆石U-Pb年龄、全岩地球化学特征进行研究,结果表明,扎布耶茶卡北部岩体主要侵位于142Ma和100Ma,2期岩浆作用均包含中酸性岩体和辉长岩脉体。第一期(约142Ma)岩体属I型偏铝质高钾钙碱性系列花岗质岩体,第二期(约100Ma)岩体为偏铝质高钾钙碱性系列闪长质岩体。2期中酸性岩体均富集Rb、Ba、Th、U等大离子亲石元素,相对亏损Nb、Ta等高场强元素,并显示强烈的壳-幔岩浆混合特征。结合前人研究资料,扎布耶茶卡北部第一期花岗质岩体及辉长岩脉为南向俯冲的班公湖-怒江洋壳板片回转引起的岩浆作用;第二期闪长质岩体及辉长岩脉为班公湖-怒江洋壳板片断离的岩浆作用的响应。该研究成果为班公湖-怒江洋的南向俯冲、板片回转和板片断离演化模式提供了岩浆作用证据。

    Abstract:

    The genetic model of the widely distributed magmatism in the Mid-Gangdise belt of Tibet during Early Cretaceous is still controversial. The authors conducted field observation, zircon U-Pb dating and geochemical studies of the intrusions from Zabuye salt lake in the Mid-Gangdise belt. Zircon U-Pb age dating suggests that the the intrusion of Zabuye salt lake magma occurred in two periods (142Ma and 100Ma), and both have intermediate to acidic plutons and gabbro dikes. The first phase plutons are I-type metaluminous and high-k calcalkaline series granitic rocks, whereas the second phase plutons belong to metaluminous high-k calcalkaline series dioritic intrusions. Both intermediate to acidic plutons show enrichment of LILE (Rb, Ba, Th and U) and depletion of HFSE (Nb, Ta), with strong magma mixing characters.The data collected from previous researchers show that the first phase granitic plutons and gabbro dike were induced by the roll-back of the subducted Bangong-Nujiang Oceanic slab, while the second phase plutons and dike resulted from the oceanic slab break-off. The results obtained by the authors provide evidence for the southern direction subduction, roll-back and break-off of the Bangong-Nujiang Oceanic slab.

  • 土城子组在中国北方发育广泛,分布东起辽西,西至内蒙古包头,北达锡林浩特,南抵北京中北部。土城子组岩性以杂色粗碎屑岩为主,不利于化石保存,化石发现并不多见。少量的化石具有明显的穿时性,不同门类化石确定的时代也不一致,生物地层学对该地层时代的看法也不一致。通过对双壳类[1-3]、叶肢介类[1-2, 4]、介形类[4-6]、昆虫[1-2, 7-8]、恐龙足迹[9-10]、木化石[11-12]和孢粉化石[513-15]的研究,认为土城子组时代为晚侏罗世早期;基于叶肢介类[16-17]、恐龙足迹[18]、木化石[19]和孢粉化石[20]的研究,认为土城子组时代为中侏罗世;根据介形类[21-22]、恐龙足迹[23-27]、恐龙骨骼[10, 28-30]的研究,认为土城子组时代为晚侏罗世;根据恐龙足迹[31-32]、孢粉化石[33]资料,认为土城子组时代为晚侏罗世—早白垩世。

    北京地区的土城子组分布广泛,受燕山运动影响,主要分布于新城子四海-凤驼梁、千家店、白河堡、妙峰山、髫髻山等伸展背景下的断陷盆地中[34]。一般认为,沉积物中的孢粉组合可以反映其周围区域植物群,离母体植物越远的地方,孢粉的频度越小。孢粉组合在很大程度上能反映当时、当地植物群的面貌[35]。到目前为止,北京地区还没有土城子组孢粉化石组合特征的详细报道。本文对北京地区土城子组的孢粉化石组合特征进行研究,可为整个北方地区土城子组及其生物地层学对比提供参考。

    本文样品采自北京市延庆千家店盆地土城子组,剖面东起桥堡沟西至石湖南(图 1),自下而上可分为3个岩性段:①由复成分砾岩、砂砾岩、凝灰质砂岩构成沉积韵律,夹流纹质凝灰岩、安山质角砾熔岩;②由凝灰质砂岩、粉砂岩和花岗质砾岩构成沉积韵律,夹粗面质流纹质角砾凝灰岩,局部产动物、植物化石;③由复成分砾岩、含砾粗砂岩构成沉积韵律。样品采于土城子组二段深灰色粉砂质泥岩、黑色泥质页岩中,取样位置见图 1图 2,共采集13块孢粉样品,其中样品均取样500 g,采样间距平均约5 m,总厚度约80 m,采用盐酸和氢氟酸法,浸解分离提取化石。

    图  1  研究区地质略图
    Jtˆc3—土城子组三段;Jtˆc2—土城子组二段;Jtˆc1—土城子组一段;Jx—蓟县系;Ch—长城系
    Figure  1.  Geological sketch map of the study area
    图  2  桥堡沟-石湖剖面柱状图及取样层位示意图
    1—复成分砾岩;2—砂砾岩;3—泥灰质砂岩;4—泥灰质粉砂岩;5—流纹质角砾凝灰岩;6—粉砂岩;7—角砾凝灰岩;8—粗面质火山碎屑岩;9—砂质页岩;10—页岩;11—含砾粗砂岩
    Figure  2.  Stratigraphic column of the Qiaobaogou-Shihu section and sampling horizon

    13个样品中有3件含孢粉化石,其中1件较丰富,2件极少,另外8件未见任何孢粉。3件样品含517粒孢粉化石,共计12属8种,6种未定种(表 1),常见及代表性种属见图版Ⅰ。孢粉组合面貌如下。

    表  1  延庆千家店桥堡沟-石湖剖面土城子组孢粉化石
    Table  1.  Statistics(in grain)of pollen and spores from the Tuchengzi Formation in Qiaobaogou-Shihu section, Qianjiadian, Yanqing
    属种名称 TCZ(2)- bf-2 TCZ(2)- bf-5 TCZ(2)- bf-9
    Cyathidites minor 5
    Converrucosisporites sp. 4
    Asseretospora parva 1
    Cicatricosisporites? sp. 1
    Classopollis spp. 105 177 195
    Quadraeculina minor 1
    Quadraeculina anellaeformis 5
    Quadraeculina limbata 1
    Pinuspollenites sp. 5 3
    Protoconiferus funarius 5
    Podocarpidites spp. 2
    Pseudopicea rotundiformis 1
    Piceites sp. 1
    Alisporites minutisaccus 1
    不能鉴定的无肋双囊类花粉 4
    下载: 导出CSV 
    | 显示表格
      图版Ⅰ 
    1~4.小桫椤孢Cyathidites minor Couper; 5、6.三角瘤面孢(未定种)Converrucosisporite ssp.; 7.小阿赛勒特孢Asseretispora parva(Li et Shang) Pu et Wu; 8.无突肋纹孢?(未定种)Cicatricosisporites? sp.; 9~11.克拉梭粉(未定多种)Classopollis spp.; 12.小四字粉Quadraeculina minor(Pocock) Xu et Zhang; 13~15.矩形四字粉Quadraeculina anellaeformis Maljawkina; 16.有边四字粉Quadraeculina limbata Maljawkina; 17.双束松粉(未定种)Pinuspollenites sp.; 18.罗汉松粉(未定多种)Podocarpidites spp.; 19.索沟原始松柏粉Protoconiferus funarius(Naumova)Bolchovitina; 20.小囊阿里粉Alisporites minutisaccus Clarke; 21.圆形假云杉粉Pseudopicea rotundiformis (Maljawkina) Bolchovitina; 22.拟云杉粉(未定种)Piceites sp.
      图版Ⅰ. 

    3件样品孢粉组合面貌相同,组成相当单调。克拉梭粉(Classopollis spp.)在组合中占绝对优势(90%以上),另有一些松柏类的无肋双囊粉,Quadraeculina minor(Rocock)Xu et Zhang(0~0.38%),Quadraeculina anellaeformis Maljiawkina(0~0.97%),Quadraeculina limbata Maljawkina(0~0.19%),Pinuspollenites sp.(0.58%~0.96%),Protoconiferus funarius(Naumova)Bolchovitina(0~0.96%),Podocarpidites spp.(0~0.39%),Pseudopicea rotundiformis(Maljawkina)Bolchovitina(0~ 0.19%),Piceites sp.(0~0.19%)和Alisporites minutisaccus Clarke(0~0.77%)。

    蕨类植物孢子极少,属种分异度及含量远低于裸子植物花粉,仅占孢粉组合的2.13%,共计4属2种,2未定种,分别是Cyathidites minor Couper(0~ 0.97%), Converrucosisporites sp.(0~0.77%),Asseretospora parva (Li et Shang) Pu et Wu(0~0.19%), Cicatricosisporites? sp.(0~0.19%)。

    千家店盆地土城子组孢粉组合为Classopollis高峰组合,繁盛于中侏罗世的桫椤科孢子Cyathidites minor含量降低,未见被子植物花粉,见极少量疑似海金沙科孢子Cicatricosisporites。整个组合显示了晚侏罗世孢粉的植物群面貌,以Classopollis在组合中占据绝对优势,另有一些松柏类的无肋双囊类花粉,蕨类孢子极少。

    苏德英等[36]在对中国非海相晚中生代介形虫、孢粉生物地层研究时,认为侏罗纪晚期Concavissimisporites- Cyathidites-Classopollis组合中裸子植物花粉居优势,Classopollis含量和类型较中侏罗世有大幅度的增长,蕨类孢子较贫乏,主要是CyathiditesConcavssimisporites,见个别Cicatricosisporites。侏罗纪晚期Cicatricosisporites开始零星出现,至早白垩世逐渐增多,类型也随之丰富。Pocock [37]、Brideaux等[38]据孢粉及沟鞭藻(Gonyaulacysta-Pareodinia ceratophora)划分了加拿大北部及加拿大北极区侏罗系—白垩系的分界。孢粉组合的总体特征表现为自侏罗纪晚期Cicatricosisporites开始零星出现,至早白垩世逐渐增多,类型逐渐丰富。孢粉研究表明,侏罗系—白垩系的界线置于concavissmisporites-Cyathidites-ClassopollisAppendicisporites-Trilobsporites-Clavatipollenites组合之间,这种组合特征与中国北方侏罗纪晚期和早白垩世早期孢粉组合相似。俄罗斯北部带[39]及加拿大北极地区Mould Bay Formation下部孢粉组合与研究区组合类似,都表现为Classopollis属高含量组合,裸子植物花粉和蕨类孢子含量极少。中国晚侏罗世孢粉组合主要见于陕甘宁盆地安定组、冀北-辽西土城子组,可作对比研究。

    陕甘宁盆地安定组孢粉同样表现为Classopollis属高含量组合,其含量最高,且种类繁多,裸子植物花粉含量明显高于蕨类植物孢子,Cyathidites minor含量下降,Klukisporites在组合中经常出现,个别样品中发现海金沙科孢子,松柏目两气囊花粉中,罗汉松科、松科花粉较发育[40]。袁效奇等[41]根据上述孢粉特征,结合双壳类、鱼类等化石的时代信息,将安定组确定为晚侏罗世早期。

    研究区土城子组孢粉组合类同于辽西北票大板蔡家沟土城子组下部孢粉组合[13] (Classopollis 86.2%, 松柏类双气囊花粉3%)、河北宣化堰家沟土城子组中下段孢粉组合[15] (Classopollis 91%, 松柏类双气囊花粉3%)、北票巴图营子土城子组一段(Classopollis 60.56%, 松柏类双气囊花粉15.49%) [5]。并判断土城子组孢粉组合特征应为晚侏罗世早期,其孢粉组合典型的特征表现为高Classopollis和低松柏类两气囊花粉含量(图 3)。

    图  3  土城子组不同剖面孢粉组合特征对比图
    Figure  3.  Comparison of sporpollen assemblages in different section of Tuchengzi Formation

    研究区孢粉组合特征区别于林妙琴等[33]关于辽西北票四合屯土城子组三段孢粉组合特征的研究,其主要表现为松柏类两气囊花粉含量高达81.53%,Classopollis仅0.96%。林妙琴等[33]指出其特征符合该区早白垩世地层孢粉特征组合,认为该区土城子组三段时代应属于早白垩世;并归纳总结了土城子组自下而上体现出Classopollis大量减少而两气囊类显著增加的变化规律。据此,研究区土城子组二段Classopollis含量高达92.8%,其一、二段应处于土城子沉积期的早期。

    前人在千家店盆地的土城子组二段中发现了双壳类[1]、昆虫[1, 7-8]、叶肢介[2]、木化石[11-12]及恐龙足迹[9],认为这些生物化石应属晚侏罗世早期。

    综上,研究区孢粉组合时代应属晚侏罗世早期。这一结论与焦润成等[42]、贺瑾瑞等[43]在该剖面土城子组一段下部和二段中上部流纹质凝灰岩夹层中分别获得的锆石同位数年龄157.62±0.69 Ma和157.13±0.96 Ma相符。另外,在北京其他地区,如汪洋等[44]在延庆白河堡获得土城子组测年数据为162.8±11.4 Ma,张计东等[45]在密云古北口地区获得土城子组测年数据为161.2±2.3 Ma。根据目前报道的测年结果,北京地区的土城子组主沉积期较集中,燕山地区土城子组的顶底年龄界线应该在130~163 Ma之间[46-51],主体沉积时限应为146~137 Ma。

    Classopollis在中生代非常繁盛,国内外许多学者对其所指示的古气候环境进行过讨论。Vakhrameev [52]、Pocock [53]认为其母体个体矮小,在结构和习性上像现代的侧柏,生活在干燥的环境中;Filatoff [54]研究认为,大量的Classopollis应出现在干旱条件下的灰色-杂色的泥质或砂质岩石中,如蒸发盐等;王从凤等[55]认为,产生Classopollis的掌鳞杉科生长于温暖、干旱的环境;苗淑娟[56]分析认为,Classopollis含量愈高,其生长的环境愈干旱;余静贤等[57]认为,Classopollis的母体生长时需要干热气候。

    一般认为,土城子组在不同盆地发育的程度不一,形成的环境和沉积序列不同,所含生物化石有异,但其共同点是均在干热气候条件下形成的红杂色陆相碎屑岩。千家店盆地土城子组整体以红杂色碎屑岩为主,但局部有灰绿色和黑色粉砂或泥质页岩出现。Classopollis的高峰组合加之本文样品TCZ(2)-bf-2取自千家店盆地土城子组第二段黑色页岩层中,并有大量动植物化石发现[1-2],黑色页岩层的出现表明当时局地处于静水的还原环境。由此表明,在北方整体较干旱或半干旱的气候条件下,至少在局地有湖泊气候的存在。

    (1) 本文详细报道了北京地区土城子组孢粉组合。延庆千家店地区晚侏罗世早期的孢粉组合以Classopollis高含量,少量松柏类的无肋双囊粉,极少蕨类植物孢子和无被子植物孢粉为特征。

    (2) 根据其孢粉组合特征,可与陕甘宁盆地安定组、冀北-辽西土城子组二段或中下部层位产出孢粉组合对比,其时代为晚侏罗世早期,并与盆地剖面上的测年数据吻合。

    (3) 根据本次孢粉组合特征研究,结合前人研究成果,认为研究区高含量的Classopollis指示气候环境为干热气候,土城子组沉积期内局地会出现相对潮湿的湖相气候环境。

    致谢: 野外工作期间得到四川省地质调查院李小刚工程师、吴大伟助理工程师及王刚、庞千耀、韩磊、吴冉、孟亮技术员的大力支持,薄片鉴定在吴钰工程师的指导下完成,刘卫新高级工程师对本文提供了宝贵意见。锆石U-Th-Pb同位素测定在南京大学内生金属矿床成矿机制研究国家重点实验室吴斌老师指导下完成,全岩主量和微量元素测试由国土资源部武汉矿产资源监督检测中心夏灿老师完成,在此一并深表谢意。
  • 图  1   青藏高原构造单元划分(a)和中冈底斯早白垩世岩浆岩分布及年龄(b, 据参考文献[8]修改)

    JSSZ—金沙江缝合带;BNSZ—班公湖-怒江缝合带;YZSZ—雅鲁藏布江缝合带;SNMZ—狮泉河-纳木错蛇绿岩带;GLCF—噶尔-措麦断裂带;SMLMF—沙莫勒-米拉山断裂;GRUB—冈底斯弧背断隆带;NG—北冈底斯;MG—中冈底斯;SG—南冈底斯

    Figure  1.   Tectonic subdivision of the Tibetan Plateau

    图  2   研究区地质简图及采样位置[20]

    Figure  2.   Simplified geological map of the study area

    图版Ⅰ  

    a.扎布耶茶卡北部二长花岗岩野外照片;b.闪长岩野外照片,见细粒闪长质包体;c.闪长岩呈似斑状结构;d.闪长岩中紫苏辉石被黑云母包裹,其外见微粒状透辉石逆反应边;e.闪长岩中细小斜长石、辉石集合环绕斜长石、透辉石颗粒边缘分布,部分斜长石晶体呈齿状边;f.闪长岩中逆反应边结构,透辉石环绕于黑云母外。c~f为正交偏光照片。Hy—紫苏辉石;Bt—黑云母;Di—透辉石;Pl—斜长石

    图版Ⅰ.  

    图  4   扎布耶茶卡北部中酸性侵入岩及辉长岩脉定年样品的锆石U-Pb谐和图

    Figure  4.   Zircon U-Pb age concordia plots of the studied intrusive rocks in the north of Zabuye salt lake area

    图  3   扎布耶茶卡北部定年样品的锆石阴极发光图像

    Figure  3.   The CL images of the zircon grains from the intrusive rocks in the north of Zabuye salt lake area

    图  5   扎布耶茶卡北部侵入岩岩石类型判别图解

    a—TAS图解[31];b—A/CNK-A/NK散点图[32];c—SiO2-K2O岩石系列划分图[33]

    Figure  5.   Classification and serial diagrams of the intrusive rocks in the north of Zabuye salt lake area

    图  6   扎布耶茶卡北部岩体的构造环境判别图

    a—Y-N图解;b—(Y+Nb)-Rb图解[35]

    Figure  6.   Diagrams for discriminating the tectonic setting of intrusive rocks in the north of Zabuye salt lake area

    图  7   扎布耶茶卡北部侵入岩球粒陨石标准化稀土元素配分图解[36](a)和微量元素原始地幔标准化蜘蛛图解[37](b)(上地壳数据据参考文献[34])

    Figure  7.   Chondrite-normalized REE and primitive-mantle-normalized trace element patterns for the intrusive rocks in the north of Zabuye salt lake area

    图  8   扎布耶茶卡北部侵入岩选择性地球化学散点图(图f据参考文献[46]修改;前人数据据参考文献[9, 40, 42])

    Figure  8.   Selective geochemical diagrams of the intrusive rocks in the north of Zabuye salt lake area

    图  9   中冈底斯早白垩世时期构造岩浆演化示意图(北冈底斯113Ma年龄数据据参考文献[8, 12])

    Figure  9.   Schematic illustration of the tectonomagmatic evolution of the Mid-Gangdese belt during Early Creataceous

    表  1   扎布耶茶卡北部侵入岩LA-ICP-MS锆石U-Th-Pb定年结果

    Table  1   LA-ICP-MS zircon U-Th-Pb data of the intrusive rocks in the north of Zabuye salt lake area

    测点编号Th/U元素含量/10-6同位素比值年龄/Ma
    238U232Th206Pb207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/235U206Pb/238U
    D4246,二长花岗岩
    30.692461704.60.04890.00130.15250.00410.02260.00030.00730.000414441442
    40.922121944.00.04930.00200.15020.00590.02210.00040.00650.000614251412
    50.712922085.00.04890.00150.15220.00480.02260.00040.00650.000414441442
    60.611911163.60.04890.00280.14990.00830.02230.00050.00710.001014271423
    80.751871403.40.04910.00150.15000.00460.02220.00030.00720.000614241412
    100.504272147.30.04880.00110.14730.00340.02190.00030.00710.000514031402
    140.731671222.90.04880.00140.150.0040.0220.000330.00700.0003614241422
    151.061721842.90.04880.00230.150.0070.0230.000430.00700.0006214461443
    D4830,二长花岗岩
    10.842131794.10.04910.00110.16360.00390.02420.00030.00850.000415431542
    20.76112852.30.04880.00250.16040.00800.02380.00050.00830.000815171523
    30.511961013.40.04890.00210.15920.00660.02360.00040.00790.000615061503
    40.722321674.30.04910.00120.15840.00380.02340.00030.00800.000414931492
    50.582241314.10.04920.00120.15870.00400.02340.00030.00830.000515041492
    60.792441944.60.04940.00120.16460.00400.02420.00040.00900.000515531542
    70.623001865.50.04890.00110.15760.00360.02340.00030.00840.000514931492
    80.943733536.30.04900.00130.15060.00410.02230.00030.00750.000614241422
    90.651921253.60.04910.00140.16070.00460.02380.00040.00820.000615141512
    100.494512198.00.04880.00100.15600.00330.02320.00030.00800.000514731482
    110.67127852.30.04890.00150.15850.00480.02350.00040.00860.000414941502
    122.043066205.60.04900.00150.15140.00440.02240.00030.00580.000414341432
    150.613432106.20.04920.00100.16110.00360.02380.00030.00790.000415231512
    160.78117912.30.04950.00160.16480.00530.02410.00040.00870.000615551542
    170.65154992.90.04940.00130.16390.00450.02410.00040.00910.000615441532
    190.751971483.70.04930.00130.16260.00430.02390.00040.00830.000615341522
    200.682741845.40.04900.00180.16690.00590.02470.00040.00770.000915751573
    D4392,花岗闪长岩
    10.58106621.90.04890.00160.15650.00500.02320.00040.00540.000214841482
    20.67119792.00.04860.00210.15180.00630.02270.00040.00480.000314461443
    30.7977601.60.04930.00310.17050.01040.02510.00060.00740.000716091603
    40.7363461.20.04890.00340.14930.01010.02210.00050.00650.000614191413
    50.6198591.70.04880.00200.15260.00600.02270.00040.00630.000414451452
    60.64102661.70.04880.00210.14410.00610.02140.00040.00620.000513751372
    90.6291571.50.04900.00180.14990.00540.02220.00040.00540.000314251412
    100.631901203.00.04890.00200.14990.00610.02220.00040.00430.000414251423
    110.6171441.20.04880.00330.14670.00950.02180.00050.00630.000713981393
    130.77115892.00.04940.00200.15520.00620.02280.00040.00770.000414751453
    140.6289551.60.04910.00170.15210.00530.02250.00040.00760.000414451432
    160.741831353.10.04910.00140.14920.00430.02210.00030.00750.000414141412
    170.791321042.30.04890.00350.15010.01040.02230.00060.00790.001114291423
    200.5974441.30.05030.00390.15450.01150.02230.00060.00740.0009146101424
    D4001,闪长岩
    10.795344258.10.04720.00090.12440.00250.01910.00030.00580.000211921222
    20.963533394.30.04980.00130.10550.00270.01540.00020.00490.00011022981
    D4001,闪长岩
    30.4734351595520.04830.00080.12600.00220.01890.00030.00200.000112021212
    40.962462373.20.04730.00140.10620.00330.01630.00020.00500.000110231042
    50.993533494.70.04730.00120.10900.00270.01670.00020.00540.000110531071
    60.88715628130.04720.00080.15040.00270.02310.00030.00530.000114221472
    70.994464426.00.04650.00100.10790.00250.01680.00020.00550.000110421081
    80.7815131170250.04900.00070.14230.00220.02110.00030.00690.000213521342
    90.932282123.00.04900.00150.11260.00350.01670.00020.00520.000210831072
    100.15602939.10.04860.00200.12830.00500.01920.00030.00540.000412351222
    111.012862893.60.04610.00300.09760.00610.01540.00030.00490.0001956982
    120.552251243.20.04810.00160.11470.00380.01730.00030.00570.000211031112
    130.992332323.10.04960.00170.11210.00370.01640.00020.00530.000210831052
    141.044754946.30.04730.00110.10610.00260.01630.00020.00530.000210221041
    150.833933265.50.04680.00120.10940.00280.01690.00020.00540.000210531081
    161.6711031841200.04870.00080.15160.00260.02260.00030.00680.000214321442
    170.72957694180.04750.00080.14890.00260.02270.00030.00710.000214121452
    181.033483594.50.04830.00140.10450.00300.01570.00020.00510.000210131001
    200.191178221210.04990.00080.15120.00250.02200.00030.00510.000214321402
    D4921,闪长岩
    21.005155176.30.04820.00100.10460.00220.01580.00020.00480.000210121011
    30.972812733.30.04890.00210.10560.00440.01570.00030.00500.000410241002
    40.705864147.20.04820.00100.10500.00220.01580.00020.00500.000210121011
    51.022662723.20.04950.00140.10710.00300.01570.00020.00380.000210331002
    60.942372242.90.04900.00130.10630.00290.01580.00020.00490.000310331011
    71.082542743.10.04950.00130.10700.00290.01570.00020.00480.000310331001
    81.054995245.50.04800.00310.10400.00640.01570.00040.00190.000210061012
    90.684352964.80.05260.00320.11510.00680.01590.00040.00280.000311161022
    101.152603003.30.04840.00330.10460.00680.01570.00040.00390.000610161002
    111.191802142.10.04850.00310.10230.00630.01530.00030.00360.0003996982
    121.063573814.40.04800.00110.10310.00240.01560.00020.00450.000210021001
    131.111071191.40.04830.00480.10480.00990.01570.00050.00370.000510191013
    150.732271662.70.04800.00190.10590.00410.01600.00030.00400.000210241022
    171.123123513.70.04770.00120.10120.00270.01540.00020.00400.0002982981
    181.042552673.20.04780.00160.10080.00330.01530.00020.00410.0003983982
    200.871961702.40.04710.00150.10300.00320.01590.00030.00450.000310031012
    D4257,辉长岩
    21.102753024.70.04880.00110.14750.00350.02190.00030.00660.000314031402
    41.014604667.70.04890.00110.15020.00350.02230.00030.00650.000314231422
    51.334866498.30.04860.00100.14710.00300.02200.00030.00650.000313931402
    60.832331934.10.04890.00130.15170.00390.02250.00030.00700.000414331432
    71.222713304.60.04890.00170.15210.00520.02260.00040.00700.000514451442
    80.612161323.80.04890.00120.15060.00380.02230.00030.00740.000414231422
    121.142082363.50.05090.00120.15230.00380.02170.00030.00710.000314431392
    151.011071091.90.04920.00160.15370.00510.02270.00040.00730.000414541442
    161.302383104.10.04900.00120.14840.00370.02200.00030.00690.000414031402
    171.031871923.20.04940.00130.15070.00410.02210.00030.00680.000414241412
    180.853543026.20.04940.00110.15350.00340.02260.00030.00720.000414531442
    D4713,辉长岩
    11.4976511379.80.04820.00110.10750.00240.01620.00020.00460.000310421031
    20.751451092.60.04880.00230.15290.00690.02270.00040.00680.000514561453
    50.883112744.00.04750.00150.10540.00330.01610.00030.00490.000310231032
    90.6387541.50.04810.00310.14690.00910.02220.00050.00700.000813981413
    100.791511192.70.04950.00240.15150.00710.02220.00040.00670.000714361423
    120.581030599140.04830.00090.11180.00220.01680.00020.00540.000310821071
    130.652371542.80.04810.00190.10130.00390.01530.00030.00530.0004984982
    140.511188610150.04820.00080.10870.00190.01640.00020.00540.000310521051
    151.969081771110.04780.00080.10810.00200.01640.00020.00380.000210421051
    180.701731212.80.04870.00180.14620.00540.02180.00040.00730.000613951392
    191.3719352644230.04820.00080.10130.00180.01530.00020.00410.0003982981
    200.822391963.90.04830.00210.14760.00640.02220.00040.00720.000714061413
    下载: 导出CSV

    表  2   扎布耶茶卡北部侵入岩全岩地球化学数据

    Table  2   Chemical compositions of the studied intrusive rocks in the north of Zabuye salt lake area

    样品号D4246二长花岗岩D4392D4804D4869D4001D4921D4257D4713
    年龄/Ma142.173.50142.498.9100.2141.798.0
    岩石类型二长花岗岩0.25花岗闪长岩花岗闪长岩花岗闪长岩闪长岩闪长岩辉长岩辉长岩
    SiO273.5513.2068.4063.3571.2555.7956.6445.6046.18
    TiO20.270.810.390.490.341.020.921.570.88
    Al2O313.390.6315.3715.2714.0016.2416.5317.1918.84
    Fe2O31.020.081.361.671.382.432.247.624.18
    FeO0.750.731.702.901.275.105.406.254.70
    MnO0.171.470.070.150.070.160.140.210.13
    MgO0.613.511.432.051.124.354.114.625.42
    CaO1.304.093.643.622.647.888.1210.8715.10
    Na2O3.340.072.703.953.282.762.732.391.77
    K2O4.131.353.482.592.841.901.870.980.47
    P2O50.0899.700.090.130.090.190.230.120.20
    烧失量1.051.030.953.281.151.380.271.651.36
    总量99.6641.9999.5899.4499.4599.2099.2199.0699.22
    A/CNK1.0984.201.040.961.050.780.780.690.61
    La49.618.7032.7725.9435.7818.5319.6412.787.30
    Ce89.1830.0056.1648.0258.2437.0839.0524.7414.22
    Pr10.165.056.335.956.285.045.233.442.05
    Nd35.221.2521.2622.0620.0220.7220.9714.369.05
    Sm5.814.633.544.253.014.444.553.392.21
    Eu1.290.750.931.150.921.211.221.240.78
    Gd5.343.813.494.252.934.354.563.592.31
    Tb0.840.760.590.760.460.760.770.640.44
    Dy4.402.223.014.042.294.094.093.442.36
    Ho0.860.380.610.830.480.810.810.670.46
    Er2.582.481.812.381.432.272.321.921.29
    Tm0.460.350.330.420.260.350.400.320.20
    Yb2.8421.192.072.721.702.362.431.951.24
    Lu0.411.270.300.380.240.320.340.280.17
    Y24.762.5017.3622.4713.6021.1922.7118.2211.47
    Co2.0231.327.178.824.6422.9822.9037.3529.49
    Cu3.02120.6712.175.146.6984.5249.1052.1169.36
    Zn107.40132.8039.4168.9627.3390.8579.83122.7359.10
    Rb150.4810.78132.2273.7280.3784.1977.5646.1919.46
    Zr144.500.28142.80122.50134.30170.30169.9059.2043.00
    Nb81.2410.919.437.267.2847.1510.918.0474.16
    Mo0.580.800.400.550.220.681.370.540.41
    Hf8.551.079.096.8010.7813.2113.724.392.37
    Ta3.8125.430.760.610.552.570.880.552.58
    W1.5116.720.841.320.500.951.040.630.66
    Pb19.572.3919.3615.59165511.8212.177.108.11
    Th17.23771.3415.218.4615.298.7511.213.632.52
    U1.23192.761.971.780.871.571.940.630.58
    Ba813.2114.71623.79609.59906.54232.33222.97177.1394.21
    Sr231.340.61251.56393.70240.56348.75322.91422.03658.37
    V17.640.1556.5790.446.48191.0198.8425.7376.1
    As0.932.241.960.471.354.693.421.121.33
    Sb0.180.040.400.170.160.400.250.290.64
    Sn2.240.323.351.521.313.311.521.731.01
    Ag0.050.040.020.030.050.040.090.08
    Au0.410.423.290.872.780.580.4117.29
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表  3   西藏中冈底斯早白垩世岩浆岩的年龄及分布

    Table  3   Isotopic ages of representative intrusive rocks of the Early Creataceous in the Mid-Gangdise belt, Tibet

    地名或岩体定年的岩石名称定年矿物/方法年龄/Ma参考文献
    雄巴南东流纹岩SHRIMP锆石U-Pb142.9±1.0[8]
    尼玛县南二云母二长花岗岩黑云母K-Ar稀释法142±4[38]
    雄巴东流纹岩LA-ICP-MS锆石U-Pb143±2[7]
    雄巴南东英云闪长岩LA-ICP-MS锆石U-Pb134.3±1.7[8]
    雄巴南东流纹质火山角砾岩LA-ICP-MS锆石U-Pb133.8±1.1[8]
    尼玛县南白云母正长花岗岩黑云母K-Ar稀释法132±4[38]
    措勤北英安岩LA-ICP-MS锆石U-Pb130±1[7]
    雄巴东流纹岩LA-ICP-MS锆石U-Pb129±1[7]
    措勤北英安岩LA-ICP-MS锆石U-Pb121±1[7]
    申扎英安岩LA-ICP-MS锆石U-Pb114.0±0.7[8]
    申扎英安岩LA-ICP-MS锆石U-Pb113.8±0.5[8]
    措勤地区熔结凝灰岩LA-ICP-MS锆石U-Pb112.7±1.0[39]
    申扎地区花岗闪长岩LA-ICP-MS锆石U-Pb113.6±0.7[10]
    申扎英安岩LA-ICP-MS锆石U-Pb112.1±0.4[8]
    措勤北流纹质凝灰岩LA-ICP-MS锆石U-Pb112±1[7]
    申扎英安岩LA-ICP-MS锆石U-Pb110.9±0.5[8]
    申扎县买巴地区石英二长岩LA-ICP-MS锆石U-Pb111.0±1.1[40]
    申扎县买巴地区花岗岩LA-ICP-MS锆石U-Pb110.8±0.9[40]
    扎康西粗面英安岩LA-ICP-MS锆石U-Pb110.2±1.1[41]
    措勤地区熔结凝灰岩LA-ICP-MS锆石U-Pb108.6±1.6[39]
    扎康西流纹岩LA-ICP-MS锆石U-Pb108.3±0.4[41]
    措勤北花岗闪长岩LA-ICP-MS锆石U-Pb107±1[7]
    天宫尼勒花岗闪长岩LA-ICP-MS锆石U-Pb102.6±1.8[42]
    下载: 导出CSV
  • Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3):281-302. http://www.sciencedirect.com/science/article/pii/0012821X8690186X?via%3Dihub

    Xu R H, Schrer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study[J]. Journal Geology, 1985, 93:41-57. doi: 10.1086/628918

    Pearce J A, Mei H J. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London, 1988, 327:169-201. doi: 10.1098/rsta.1988.0125

    Ding L, Kapp P, Yin A, et al. Early Tertiary volcanism in the Qiangtang terrane of central Tibet:Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44:1833-1865. doi: 10.1093/petrology/egg061

    Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1

    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200603001&dbname=CJFD&dbcode=CJFQ

    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005

    张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948. http://d.wanfangdata.com.cn/Periodical/ysxb98201107003
    张亮亮, 朱弟成, 赵志丹, 等.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束[J].岩石学报, 2010, 26(6):1871-1888. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100620&flag=1
    张晓倩, 朱弟成, 赵志丹, 等.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J].岩石学报, 2010, 26(6):1793-1804. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100614&flag=1
    张晓倩, 朱弟成, 赵志丹, 等.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束[J].岩石学报, 2012, 28(5):1615-34. http://www.qianluntianxia.com/journal/522/1821006.html

    Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continen-tcontinent collision zone[J]. Lithos, 2013, 168-169:144-159. doi: 10.1016/j.lithos.2013.01.012

    Chen Y, Zhu D C, Zhao Z D, et al. Slab break off triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2):449-463. doi: 10.1016/j.gr.2013.06.005

    Wu H, Li C, Hu P Y, et al. Early Cretaceous (100~105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2014, 57(9/10):1-17.

    Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97A:51-66.

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

    朱弟成, 莫宣学, 赵志丹, 等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘, 2009, 16(2):1-20. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200902002&dbname=CJFD&dbcode=CJFQ
    朱弟成, 潘桂棠, 王立全, 等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报, 2008, 27(4):458-468. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20080403&journal_id=gbc

    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1):47-69.

    Black P, Gulson B L. The age of the Mud Tank carbonatite, Strang-ways Range, Northern Territory[J]. BMR J. Aust. Geol. Geophys., 1978, 3:227-232.

    Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Res., 2004, 131:231-282. doi: 10.1016/j.precamres.2003.12.011

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    Ludwig K R. Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publications, 2003:1-73.

    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439.

    Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps[M]. Springer, Berlin Heidelberg, 2000, 49(16):1589-1604.

    Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb age and metamorphism[J]. Chemical Geology, 2002, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2

    Moeller A, O, Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland, SW Norway[J]. Geological Society Special Publications, 2003, 220:65-81. doi: 10.1144/GSL.SP.2003.220.01.04

    宋彪, 乔秀夫.辽北辉绿岩墙(床)群及二道沟组玄武岩锆石年龄及其构造意义[J].地学前缘, 2008, 15(3):250-262. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200803024&dbname=CJFD&dbcode=CJFQ
    宋彪.用SHRIMP测定锆石U-Pb年龄的工作方法[J].地质通报, 2015, 34(10):1777-1788. doi: 10.3969/j.issn.1671-2552.2015.10.002

    Wilson M. Igneous Petrogenesis[M]. London:Allen and Unwin, 1989:1-164.

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. New York:Longman Group UK Ltd, 1993:1-352.

    Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust:Treaties on Geochemistry. Oxfor Elsevi-er Pergamon, 2003:1-64.

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984:63-114.

    Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    卢书炜, 任建德, 白国典, 等.西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义[J].中国地质, 2006, 33(2):332-339. http://www.cnki.com.cn/Article/CJFDTotal-DIZI200602012.htm
    刘伟, 李奋其, 袁四化, 等.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MS U-Pb年龄[J].地质通报, 2010, 29(7):1009-1016. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100706&journal_id=gbc
    张予杰, 刘伟, 朱同兴, 等.西藏申扎县买巴地区早白垩世侵入岩锆石U-Pb年龄及地球化学[J].中国地质, 2014, 41(1):50-60. http://www.cqvip.com/QK/90050X/201401/48842930.html
    丁慧霞, 张泽明, 向华, 等.青藏高原拉萨地体北部早白垩世火山岩的成因及意义[J].岩石学报, 2015, 31(5):1247-1267. http://www.fxyqpx.org/ysxb/20150505.htm
    黄瀚霄, 李光明, 刘波, 等.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示[J].地球学报, 2012, 33(4):424-434. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB201207001006.htm
    韩吟文, 马振东.地球化学[M].北京:地质出版社, 2003:181-212.

    Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 1994, 58:4127-414. doi: 10.1016/0016-7037(94)90269-0

    Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110:46-56. doi: 10.1007/BF00310881

    Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids:A case-study in northern Sardinia, Italy[J]. Chemical Geology, 1991, 92:45-86. doi: 10.1016/0009-2541(91)90049-W

    Karsli O, Chen B, Aydin F, et al. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dolek and Saricicek Plutons, Eastern Turkey:Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting[J]. Lithos, 2007, 98:67-96. doi: 10.1016/j.lithos.2007.03.005

    Kaygusuz A, Aydincakir K. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey. Evidence of magma mixing, mingling and chemical equilibration[J]. Chemie der Erde, 2009, 69:247-277. doi: 10.1016/j.chemer.2008.08.002

    张招崇, 董书云, 黄河, 等.西南天山二叠纪中酸性侵入岩的地质学和地球化学:岩石成因和构造背景[J].地质通报, 2009, 28(12):1827-1839. doi: 10.3969/j.issn.1671-2552.2009.12.015

    Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748. doi: 10.1130/G22725.1

    Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the IndoAsian collision[J]. Earth-Science Reviews, 2012, 114(3/4):236-249.

    康志强, 许继峰, 董彦辉, 等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?[J].岩石学报, 2008, 24(2):303-314. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802012.htm
    康志强, 许继峰, 王宝弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-3116. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201010022&dbname=CJFD&dbcode=CJFQ
    朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境火山岩约束[J].岩石学报, 2006, 22(3):534-546.

    Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2

    黄柏鑫, 叶春林, 吕志伟, 等. 西藏扎布耶茶卡北地区四幅区域地质矿产调查报告. 2017.
图(10)  /  表(3)
计量
  • 文章访问数:  2606
  • HTML全文浏览量:  496
  • PDF下载量:  1855
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2017-08-27
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-09-30

目录

/

返回文章
返回