Inclination shallowing study of the Early-Neoproterozoic Liantuo Formation in South China and its paleogeographic implications
-
摘要:
华南莲沱组最新的年龄结果表明,其时代结束于715Ma,因此,准确确定莲沱组的古纬度对“雪球地球”的研究具有重要意义。通过对莲沱组红层进行等温剩磁各向异性研究,获得其磁倾角校正因子为0.8719,校正后的磁倾角为70.4°,对比热退磁实验测得的莲沱组磁倾角为67.8°,则其磁倾角偏低量为2.6°。通过校正前后的磁倾角分别计算古纬度,获得磁倾角偏低所引起的古纬度变化为3.9°±6°。通过对比华南与澳大利亚-东南极板块的720Ma古地理位置,发现这一时期冰碛岩从中纬度到赤道广泛分布,验证了当时的“雪球地球”环境。
Abstract:New dating data indicate that the Liantuo Formation ended at 715Ma, and hence the constraint of the paleolatitude of the Liantuo Formation will shed a light on the "Snowball Earth" theory. Researchers have obtained reliable paleomagnetic results from the Liantuo Formation, but the inclination shallowing has not been considered by them. In this paper, the authors obtained a corrected parameter by conducting a remnant anisotropy research on Liantuo Formation. The inclination shallowing in Liantuo Formation is 2.6°, which results in a latitude difference of 3.9°±6°. The reconstruction of the South China and Australia block at 720Ma shows the diamictite distribution from middle latitude to tropical region, which proves the "Snowball Earth" theory.
-
Keywords:
- Liantuo Formation /
- inclination shallowing /
- Snowball Earth /
- Neoproterozoic
-
土城子组在中国北方发育广泛,分布东起辽西,西至内蒙古包头,北达锡林浩特,南抵北京中北部。土城子组岩性以杂色粗碎屑岩为主,不利于化石保存,化石发现并不多见。少量的化石具有明显的穿时性,不同门类化石确定的时代也不一致,生物地层学对该地层时代的看法也不一致。通过对双壳类[1-3]、叶肢介类[1-2, 4]、介形类[4-6]、昆虫[1-2, 7-8]、恐龙足迹[9-10]、木化石[11-12]和孢粉化石[5、13-15]的研究,认为土城子组时代为晚侏罗世早期;基于叶肢介类[16-17]、恐龙足迹[18]、木化石[19]和孢粉化石[20]的研究,认为土城子组时代为中侏罗世;根据介形类[21-22]、恐龙足迹[23-27]、恐龙骨骼[10, 28-30]的研究,认为土城子组时代为晚侏罗世;根据恐龙足迹[31-32]、孢粉化石[33]资料,认为土城子组时代为晚侏罗世—早白垩世。
北京地区的土城子组分布广泛,受燕山运动影响,主要分布于新城子四海-凤驼梁、千家店、白河堡、妙峰山、髫髻山等伸展背景下的断陷盆地中[34]。一般认为,沉积物中的孢粉组合可以反映其周围区域植物群,离母体植物越远的地方,孢粉的频度越小。孢粉组合在很大程度上能反映当时、当地植物群的面貌[35]。到目前为止,北京地区还没有土城子组孢粉化石组合特征的详细报道。本文对北京地区土城子组的孢粉化石组合特征进行研究,可为整个北方地区土城子组及其生物地层学对比提供参考。
1. 研究材料与方法
本文样品采自北京市延庆千家店盆地土城子组,剖面东起桥堡沟西至石湖南(图 1),自下而上可分为3个岩性段:①由复成分砾岩、砂砾岩、凝灰质砂岩构成沉积韵律,夹流纹质凝灰岩、安山质角砾熔岩;②由凝灰质砂岩、粉砂岩和花岗质砾岩构成沉积韵律,夹粗面质流纹质角砾凝灰岩,局部产动物、植物化石;③由复成分砾岩、含砾粗砂岩构成沉积韵律。样品采于土城子组二段深灰色粉砂质泥岩、黑色泥质页岩中,取样位置见图 1、图 2,共采集13块孢粉样品,其中样品均取样500 g,采样间距平均约5 m,总厚度约80 m,采用盐酸和氢氟酸法,浸解分离提取化石。
2. 孢粉组合特征
13个样品中有3件含孢粉化石,其中1件较丰富,2件极少,另外8件未见任何孢粉。3件样品含517粒孢粉化石,共计12属8种,6种未定种(表 1),常见及代表性种属见图版Ⅰ。孢粉组合面貌如下。
表 1 延庆千家店桥堡沟-石湖剖面土城子组孢粉化石Table 1. Statistics(in grain)of pollen and spores from the Tuchengzi Formation in Qiaobaogou-Shihu section, Qianjiadian, Yanqing属种名称 TCZ(2)- bf-2 TCZ(2)- bf-5 TCZ(2)- bf-9 Cyathidites minor 5 Converrucosisporites sp. 4 Asseretospora parva 1 Cicatricosisporites? sp. 1 Classopollis spp. 105 177 195 Quadraeculina minor 1 Quadraeculina anellaeformis 5 Quadraeculina limbata 1 Pinuspollenites sp. 5 3 Protoconiferus funarius 5 Podocarpidites spp. 2 Pseudopicea rotundiformis 1 Piceites sp. 1 Alisporites minutisaccus 1 不能鉴定的无肋双囊类花粉 4 图版Ⅰ1~4.小桫椤孢Cyathidites minor Couper; 5、6.三角瘤面孢(未定种)Converrucosisporite ssp.; 7.小阿赛勒特孢Asseretispora parva(Li et Shang) Pu et Wu; 8.无突肋纹孢?(未定种)Cicatricosisporites? sp.; 9~11.克拉梭粉(未定多种)Classopollis spp.; 12.小四字粉Quadraeculina minor(Pocock) Xu et Zhang; 13~15.矩形四字粉Quadraeculina anellaeformis Maljawkina; 16.有边四字粉Quadraeculina limbata Maljawkina; 17.双束松粉(未定种)Pinuspollenites sp.; 18.罗汉松粉(未定多种)Podocarpidites spp.; 19.索沟原始松柏粉Protoconiferus funarius(Naumova)Bolchovitina; 20.小囊阿里粉Alisporites minutisaccus Clarke; 21.圆形假云杉粉Pseudopicea rotundiformis (Maljawkina) Bolchovitina; 22.拟云杉粉(未定种)Piceites sp.图版Ⅰ.3件样品孢粉组合面貌相同,组成相当单调。克拉梭粉(Classopollis spp.)在组合中占绝对优势(90%以上),另有一些松柏类的无肋双囊粉,Quadraeculina minor(Rocock)Xu et Zhang(0~0.38%),Quadraeculina anellaeformis Maljiawkina(0~0.97%),Quadraeculina limbata Maljawkina(0~0.19%),Pinuspollenites sp.(0.58%~0.96%),Protoconiferus funarius(Naumova)Bolchovitina(0~0.96%),Podocarpidites spp.(0~0.39%),Pseudopicea rotundiformis(Maljawkina)Bolchovitina(0~ 0.19%),Piceites sp.(0~0.19%)和Alisporites minutisaccus Clarke(0~0.77%)。
蕨类植物孢子极少,属种分异度及含量远低于裸子植物花粉,仅占孢粉组合的2.13%,共计4属2种,2未定种,分别是Cyathidites minor Couper(0~ 0.97%), Converrucosisporites sp.(0~0.77%),Asseretospora parva (Li et Shang) Pu et Wu(0~0.19%), Cicatricosisporites? sp.(0~0.19%)。
3. 讨论
3.1 土城子组孢粉组合时代
千家店盆地土城子组孢粉组合为Classopollis高峰组合,繁盛于中侏罗世的桫椤科孢子Cyathidites minor含量降低,未见被子植物花粉,见极少量疑似海金沙科孢子Cicatricosisporites。整个组合显示了晚侏罗世孢粉的植物群面貌,以Classopollis在组合中占据绝对优势,另有一些松柏类的无肋双囊类花粉,蕨类孢子极少。
苏德英等[36]在对中国非海相晚中生代介形虫、孢粉生物地层研究时,认为侏罗纪晚期Concavissimisporites- Cyathidites-Classopollis组合中裸子植物花粉居优势,Classopollis含量和类型较中侏罗世有大幅度的增长,蕨类孢子较贫乏,主要是Cyathidites和Concavssimisporites,见个别Cicatricosisporites。侏罗纪晚期Cicatricosisporites开始零星出现,至早白垩世逐渐增多,类型也随之丰富。Pocock [37]、Brideaux等[38]据孢粉及沟鞭藻(Gonyaulacysta-Pareodinia ceratophora)划分了加拿大北部及加拿大北极区侏罗系—白垩系的分界。孢粉组合的总体特征表现为自侏罗纪晚期Cicatricosisporites开始零星出现,至早白垩世逐渐增多,类型逐渐丰富。孢粉研究表明,侏罗系—白垩系的界线置于concavissmisporites-Cyathidites-Classopollis和Appendicisporites-Trilobsporites-Clavatipollenites组合之间,这种组合特征与中国北方侏罗纪晚期和早白垩世早期孢粉组合相似。俄罗斯北部带[39]及加拿大北极地区Mould Bay Formation下部孢粉组合与研究区组合类似,都表现为Classopollis属高含量组合,裸子植物花粉和蕨类孢子含量极少。中国晚侏罗世孢粉组合主要见于陕甘宁盆地安定组、冀北-辽西土城子组,可作对比研究。
陕甘宁盆地安定组孢粉同样表现为Classopollis属高含量组合,其含量最高,且种类繁多,裸子植物花粉含量明显高于蕨类植物孢子,Cyathidites minor含量下降,Klukisporites在组合中经常出现,个别样品中发现海金沙科孢子,松柏目两气囊花粉中,罗汉松科、松科花粉较发育[40]。袁效奇等[41]根据上述孢粉特征,结合双壳类、鱼类等化石的时代信息,将安定组确定为晚侏罗世早期。
研究区土城子组孢粉组合类同于辽西北票大板蔡家沟土城子组下部孢粉组合[13] (Classopollis 86.2%, 松柏类双气囊花粉3%)、河北宣化堰家沟土城子组中下段孢粉组合[15] (Classopollis 91%, 松柏类双气囊花粉3%)、北票巴图营子土城子组一段(Classopollis 60.56%, 松柏类双气囊花粉15.49%) [5]。并判断土城子组孢粉组合特征应为晚侏罗世早期,其孢粉组合典型的特征表现为高Classopollis和低松柏类两气囊花粉含量(图 3)。
研究区孢粉组合特征区别于林妙琴等[33]关于辽西北票四合屯土城子组三段孢粉组合特征的研究,其主要表现为松柏类两气囊花粉含量高达81.53%,Classopollis仅0.96%。林妙琴等[33]指出其特征符合该区早白垩世地层孢粉特征组合,认为该区土城子组三段时代应属于早白垩世;并归纳总结了土城子组自下而上体现出Classopollis大量减少而两气囊类显著增加的变化规律。据此,研究区土城子组二段Classopollis含量高达92.8%,其一、二段应处于土城子沉积期的早期。
前人在千家店盆地的土城子组二段中发现了双壳类[1]、昆虫[1, 7-8]、叶肢介[2]、木化石[11-12]及恐龙足迹[9],认为这些生物化石应属晚侏罗世早期。
综上,研究区孢粉组合时代应属晚侏罗世早期。这一结论与焦润成等[42]、贺瑾瑞等[43]在该剖面土城子组一段下部和二段中上部流纹质凝灰岩夹层中分别获得的锆石同位数年龄157.62±0.69 Ma和157.13±0.96 Ma相符。另外,在北京其他地区,如汪洋等[44]在延庆白河堡获得土城子组测年数据为162.8±11.4 Ma,张计东等[45]在密云古北口地区获得土城子组测年数据为161.2±2.3 Ma。根据目前报道的测年结果,北京地区的土城子组主沉积期较集中,燕山地区土城子组的顶底年龄界线应该在130~163 Ma之间[46-51],主体沉积时限应为146~137 Ma。
3.2 古气候环境
Classopollis在中生代非常繁盛,国内外许多学者对其所指示的古气候环境进行过讨论。Vakhrameev [52]、Pocock [53]认为其母体个体矮小,在结构和习性上像现代的侧柏,生活在干燥的环境中;Filatoff [54]研究认为,大量的Classopollis应出现在干旱条件下的灰色-杂色的泥质或砂质岩石中,如蒸发盐等;王从凤等[55]认为,产生Classopollis的掌鳞杉科生长于温暖、干旱的环境;苗淑娟[56]分析认为,Classopollis含量愈高,其生长的环境愈干旱;余静贤等[57]认为,Classopollis的母体生长时需要干热气候。
一般认为,土城子组在不同盆地发育的程度不一,形成的环境和沉积序列不同,所含生物化石有异,但其共同点是均在干热气候条件下形成的红杂色陆相碎屑岩。千家店盆地土城子组整体以红杂色碎屑岩为主,但局部有灰绿色和黑色粉砂或泥质页岩出现。Classopollis的高峰组合加之本文样品TCZ(2)-bf-2取自千家店盆地土城子组第二段黑色页岩层中,并有大量动植物化石发现[1-2],黑色页岩层的出现表明当时局地处于静水的还原环境。由此表明,在北方整体较干旱或半干旱的气候条件下,至少在局地有湖泊气候的存在。
4. 结论
(1) 本文详细报道了北京地区土城子组孢粉组合。延庆千家店地区晚侏罗世早期的孢粉组合以Classopollis高含量,少量松柏类的无肋双囊粉,极少蕨类植物孢子和无被子植物孢粉为特征。
(2) 根据其孢粉组合特征,可与陕甘宁盆地安定组、冀北-辽西土城子组二段或中下部层位产出孢粉组合对比,其时代为晚侏罗世早期,并与盆地剖面上的测年数据吻合。
(3) 根据本次孢粉组合特征研究,结合前人研究成果,认为研究区高含量的Classopollis指示气候环境为干热气候,土城子组沉积期内局地会出现相对潮湿的湖相气候环境。
致谢: 审稿专家对本文进行了认真细致的审阅,并提出了宝贵的修改意见,在此表示衷心的感谢。 -
图 2 本次研究获取的采点(下划线标注TLS编号)在地层上的分布
(TL编号为Jing等[29]采点)
Figure 2. Stratigraphic column of the Liantuo Formation and detailed sampling layer positions of three sub-sections at Yichang
图 4 45°方向加场后平行于层面方向(IRMx)和垂直于层面方向(IRMz)等温剩磁获得曲线图(a, d),IRMz/IRMx关系图(b, e)和IRMz/IRMx的热退磁结果(c, f)
Figure 4. Plots of IRMx (parallel to bedding) and IRMz (perpendicular to bedding) acquisitions produced by applying magnetic field at 45° to bedding as function of increasing field (a, d), plots of IRMZ/IRMX(b, e), the thermal demagnetization results of IRMZ/IRMX(c, f)
表 1 宜昌地区剖面莲沱组样品等温热剩磁各向异性及磁倾角偏低值
Table 1 Anisotropy of isothermal remnant magnetization for Liantuo Formation red beds in Yichang area
ID Iobs IRMz/IRMx
(610~1200mT)IF1 ΔI1(=IF1-Iobs) IRMz/IRMx
(600°C以上)IF2 ΔI2(=IF2-Iobs) 15 64.4 0.7796 69.518 5.118 0.8542 67.7425 3.3425 15-2c 71.5 0.8414 74.277 2.777 0.8513 74.1009 2.6009 15-5b 65 0.899 67.256 2.256 0.8757 67.7876 2.7876 17-1 72.1 0.831 74.976 2.876 0.8118 75.3075 3.2075 3-1 73 0.87 75.105 2.105 0.8859 74.8452 1.8452 4-2b 66.3 0.6147 74.899 8.599 0.901 68.4206 2.1206 5-2b 64.2 0.8472 67.728 3.528 0.9117 66.2153 2.0153 5-4b 66 0.7989 70.420 4.420 0.872 68.7818 2.7818 7-1 61.9 0.8579 65.389 3.489 0.8731 65.0054 3.1054 8-3 70 0.8737 72.359 2.359 0.856 72.6951 2.6951 8-4 66.8 0.8701 69.548 2.748 0.8977 68.9555 2.1555 平均值 67.8 0.8258 71.377 3.577 0.8719 70.4146 2.6146 注:ID为样品号,Iobs为热退磁实验所得样品磁倾角,IRMz/IRMx(610~1200mT)为610~1200mT之间垂直层面方向和平行层面方向等温剩磁大小的比值,IRMz/IRMx(600°C以上)为600 °C以上垂直层面方向和平行层面方向等温剩磁大小的比值,IF为校正后磁倾角,ΔI为校正值 -
Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1 Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1
Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52. Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52.
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346. doi: 10.1126/science.281.5381.1342 Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346. doi: 10.1126/science.281.5381.1342
Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429. doi: 10.1038/35013005 Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429. doi: 10.1038/35013005
Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248. Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248.
Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61. doi: 10.1007/BF01821169 Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61. doi: 10.1007/BF01821169
Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99. doi: 10.1016/j.epsl.2016.04.016 Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99. doi: 10.1016/j.epsl.2016.04.016
Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565. doi: 10.2113/gsecongeo.88.3.542 Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565. doi: 10.2113/gsecongeo.88.3.542
Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013 Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013
Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459. doi: 10.1038/nature06811 Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459. doi: 10.1038/nature06811
Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148. doi: 10.1038/ncomms8142 Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148. doi: 10.1038/ncomms8142
Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2 Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601. doi: 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2 Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601. doi: 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412. doi: 10.1126/science.252.5011.1409 Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412. doi: 10.1126/science.252.5011.1409
Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2 Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210. Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210.
Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7. Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7.
Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106. doi: 10.1130/0091-7613(2000)28<103:PAUSAF>2.0.CO;2 Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106. doi: 10.1130/0091-7613(2000)28<103:PAUSAF>2.0.CO;2
Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128. doi: 10.1046/j.1365-3121.2002.00401.x Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128. doi: 10.1046/j.1365-3121.2002.00401.x
Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404. doi: 10.1144/SP327.16 Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404. doi: 10.1144/SP327.16
Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170. Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170.
Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52. Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52.
Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652. doi: 10.1111/gji.1994.117.issue-3 Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652. doi: 10.1111/gji.1994.117.issue-3
Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115. Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115.
Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333. Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333.
方大钧, 谈晓冬.等温剩磁各向异性及其在磁倾角校正中的应用[J].地球物理学报, 2000, 43(5):719-724. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200005015.htm 王恒, 仝亚博, 高亮, 等.青藏高原东南缘川滇地块古近纪沉积地层古地磁分析及其构造意义[J].地质通报, 2015, 34(1):45-57. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20150107&flag=1 Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600. Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600.
Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211. doi: 10.1016/j.precamres.2015.07.007 Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211. doi: 10.1016/j.precamres.2015.07.007
Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141. doi: 10.1016/j.precamres.2015.03.012 Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141. doi: 10.1016/j.precamres.2015.03.012
Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9. doi: 10.1016/0040-1951(90)90116-P Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9. doi: 10.1016/0040-1951(90)90116-P
安志辉, 童金南, 叶琴, 等.峡东青林口地区新元古代地层序列及沉积演变[J].地球科学(中国地质大学学报), 2014, 39(7):795-806. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407003.htm Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963. doi: 10.1007/s11434-015-0790-3 Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963. doi: 10.1007/s11434-015-0790-3
Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060. Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060.
Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115. Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115.
Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66. doi: 10.1016/j.precamres.2015.02.023 Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66. doi: 10.1016/j.precamres.2015.02.023
Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/gji.1980.62.issue-3 Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/gji.1980.62.issue-3
Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177. doi: 10.1016/j.jseaes.2012.11.022 Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177. doi: 10.1016/j.jseaes.2012.11.022
Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334. Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334.
Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232. doi: 10.1016/j.sedgeo.2013.05.016 Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232. doi: 10.1016/j.sedgeo.2013.05.016
Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468. doi: 10.2475/04.2008.02 Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468. doi: 10.2475/04.2008.02
马国干, 李华芹, 张自超.华南地区震旦纪时限范围的研究[J].中国地质科学院宜昌地质矿产研究所所刊, 1984, 8(1):1-29. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198412001003.htm Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235. doi: 10.1086/674801 Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235. doi: 10.1086/674801
高维, 张传恒.长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J].地质通报, 2009, 28:45-50. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090106&journal_id=gbc Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187. Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187.
Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434. Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434.
Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357. Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357.
Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139. doi: 10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2 Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139. doi: 10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2