Petrogenesis of the Dongfeng granite and its dioritic enclave: Implications for the Triassic magmatism in the Songpan−Ganzi Orogenic Belt
-
摘要:
松潘−甘孜造山带已成为中国重要的锂多金属成矿带,多金属成矿作用与该地区晚三叠世—早侏罗世花岗质岩浆活动密切相关。岩浆演化的复杂过程导致了这些花岗岩的地球化学多样性。暗色包体在花岗岩的形成演化中扮演了重要角色,然而对于这些暗色包体在松潘−甘孜造山带花岗岩形成过程中的作用及对岩浆系统中Li的贡献目前知之甚少。东风岩体是松潘−甘孜造山带东部含有大量闪长质暗色包体的典型花岗岩体。锆石U−Pb定年结果显示,黑云母花岗岩和闪长质包体的结晶年龄分别为211.8 ± 1.0 Ma和210.5 ± 1.1 Ma。黑云母花岗岩具有富硅、过铝质,以及低Rb、Rb/Sr和Rb/Ba的特征,且具有明显富集的锆石εHf(t) (−10.2~−5.9)、较高的初始Sr同位素组成((87Sr/86Sr)i = 0.7117~0.7118)及富集的εNd(t) (−9.7~−9.3),指示形成于中上地壳杂砂岩部分熔融。闪长质包体具有高Mg、Ca、Cr和Ni的特征,相对亏损的锆石Hf同位素(εHf(t) = −9.6~−1.3)和全岩Nd同位素(εNd(t) = −9.5~−8.8),以及低放射成因Sr同位素((87Sr/86Sr)i = 0.7108~0.7113),指示起源于受软流圈地幔改造的下地壳源区。黑云母花岗岩斜长石斑晶和闪长质包体中斜长石斑晶从核部向边部An值急剧变化,揭示了长英质岩浆和镁铁质岩浆的混合作用。闪长质包体具有低的Li含量(26×10−6~52×10−6),反映松潘−甘孜造山带锂矿成矿物质与下地壳或更深部的地幔物质无关。
Abstract:The Songpan−Ganzi Orogenic Belt has emerged as a prominent Li−polymetallic metallogenic belt in China, characterized by polymetallic mineralization intricately associated with granitic magmatism during the Late Triassic to Early Jurassic period. The complicated magma evolution has resulted in the geochemical diversity of these granites. Enclaves play an important role in the formation of granite. However, it is still enigmatic about the role played by enclaves in the formation of granite within the Songpan−Ganzi Orogenic Belt, as well as their contribution to Li in the magmatic system. The Dongfeng pluton, located in the eastern part of the Songpan−Ganzi Orogenic Belt, is a typical granitoid that contains numerous enclaves. Zircon U−Pb dating yielded crystallization ages of 211.8 ± 1.0 Ma for the biotite granite and 210.5 ± 1.1 Ma for the dioritic enclave. The biotite granite is characterized by high−Si and prealuminous, alongside low Rb content, Rb/Sr and Rb/Ba ratios. Furthermore, it displays negative zircon εHf(t) values ranging from −10.2 to −5.9, notably high (87Sr/86Sr)i ratios between 0.7117 and 0.7118, and negative εNd(t) values of −9.7 to −9.3. These features suggest that the parental magma derived from the partial melting of meta−sediments within the upper to middle crust. These dioritic enclaves display high concentrations of Mg, Ca, Cr and Ni, and relatively slightly depleted zircon Hf isotopes (εHf(t) = −9.6 to −1.3) and whole−rock Nd isotopes (εNd(t) = −9.5 to −8.8), as well as lower radiogenic Sr isotopes ((87Sr/86Sr)i = 0.7108~0.7113). This indicates a lower crustal source that had undergone modifications by asthenospheric mantle materials. The pronounced variations in An values from core to rim of the plagioclase phenocrysts from the biotite granite and dioritic enclaves provides compelling evidence for mixing process involving felsic and mafic magmas. The dioritic enclaves exhibit a low Li content (26×10−6~52×10−6), reflecting that the lithium deposits in the Songpan−Ganzi Orogenic Belt are not contributed by the lower crust or deeper mantle materials.
-
-
图 1 松潘−甘孜造山带大地构造图(a,底图据Xu et al., 2020)、松潘−甘孜造山带东部岩浆岩分布图(b,底图据胡健民等, 2005; Zhang et al., 2014)和东风岩体地质简图 (c)
Figure 1. Simplified geologic map of the Songpan−Ganzi Orogenic Belt (a), distribution map of magmatic rocks in the eastern Songpan−Ganzi Orogenic Belt (b) and simplified geological map of the Dongfeng granitoid (c)
图 4 东风岩体A/CNK−A/NK图解(a,底图据Maniar et al., 1989)和SiO2−(Na2O+K2O)图解(b,底图据Wilson, 1997)
Figure 4. A/CNK−A/NK (a) and SiO2−(Na2O+K2O) (b) diagrams for the Dongfeng granitoid
图 6 东风岩体球粒陨石标准化稀土元素配分图 (a)和原始地幔标准化微量元素蛛网图 (b)(球粒陨石和原始地幔标准化数据据Sun et al., 1989)
Figure 6. Chondrite−normalized REE patterns (a) and primitive mantle−normalized trace element spider diagrams (b) for the Dongfeng granitoid
图 8 东风岩体黑云母花岗岩Rb/Sr−Rb/Ba图解 (a,底图据Sylvester, 1998)和Ba−Rb/Sr图解 (b,底图据Zheng et al., 2016)
Figure 8. Rb/Sr−Rb/Ba (a) and Ba−Rb/Sr (b) diagrams for biotite granites in the Dongfeng granitoid
图 9 东风岩体Zr/Hf−Nb/Ta图解 (a,底图据Ballouard et al., 2016)和Li−Nb/Ta图解 (b) (马颈子岩体和可儿因岩体等数据据Fei et al., 2020; Zhang et al., 2022; Zhao et al., 2022)
Figure 9. Zr/Hf−Nb/Ta (a) and Li−Nb/Ta (b) diagrams for the Dongfeng granitoid
表 1 东风岩体黑云母花岗岩及其暗色包体LA−ICP−MS锆石U−Th−Pb分析结果
Table 1 LA−ICP−MS results of U−Th−Pb isotopic compositions for biotite granite and its dioritic enclave from the Dongfeng granitoid
样品号及分析点号 含量/10−6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 黑云母花岗岩 22S033−1 57 117 1642 0.07 0.0501 0.0007 0.2291 0.0038 0.0331 0.0003 198 33 209 3 210 2 22S033−3 65 124 1793 0.07 0.0510 0.0007 0.2367 0.0044 0.0335 0.0004 242 33 215 3 212 2 22S033−4 54 341 1451 0.24 0.0504 0.0008 0.2319 0.0051 0.0334 0.0006 213 38 211 4 212 3 22S033−6 83 263 2432 0.11 0.0496 0.0007 0.2294 0.0038 0.0335 0.0003 189 35 209 3 212 1 22S033−7 68 235 1892 0.12 0.0493 0.0006 0.2297 0.0042 0.0337 0.0004 166 29 209 3 213 2 22S033−8 53 105 1544 0.07 0.0501 0.0007 0.2314 0.0042 0.0333 0.0004 211 29 211 3 211 2 22S033−9 196 459 5483 0.08 0.0499 0.0005 0.2308 0.0037 0.0334 0.0004 190 24 210 3 212 2 22S033−10 82 213 2389 0.09 0.0494 0.0006 0.2267 0.0033 0.0332 0.0003 164 25 207 2 210 2 22S033−11 88 327 2521 0.13 0.0492 0.0006 0.2268 0.0037 0.0333 0.0004 166 31 207 3 211 2 22S033−12 78 186 2204 0.08 0.0497 0.0007 0.2322 0.0041 0.0337 0.0003 183 33 212 3 214 1 22S033−13 63 158 1864 0.08 0.0490 0.0006 0.2245 0.0033 0.0332 0.0003 146 25 205 2 210 2 22S033−14 175 501 4592 0.11 0.0502 0.0006 0.2321 0.0030 0.0335 0.0004 211 19 212 2 212 2 22S033−15 80 223 2253 0.10 0.0501 0.0006 0.2304 0.0035 0.0333 0.0003 198 32 210 2 211 2 22S033−16 55 129 1655 0.08 0.0486 0.0006 0.2225 0.0031 0.0331 0.0003 127 34 204 2 210 1 22S033−17 92 249 2598 0.10 0.0492 0.0007 0.2294 0.0036 0.0338 0.0003 153 35 209 3 214 1 22S033−18 53 111 1516 0.07 0.0493 0.0008 0.2261 0.0042 0.0331 0.0004 164 41 207 3 210 2 22S033−19 88 213 2476 0.09 0.0504 0.0006 0.2353 0.0041 0.0337 0.0004 213 29 214 3 213 2 22S033−20 74.6 317 2133 0.15 0.0500 0.0007 0.2298 0.0044 0.0332 0.0004 194 33 210 3 210 2 暗色包体 22S038−1 28 88 765 0.12 0.0522 0.0010 0.2402 0.0047 0.0334 0.0004 300 44 218 3 212 2 22S038−2 24 75 701 0.11 0.0511 0.0011 0.2331 0.0051 0.0331 0.0003 255 50 212 4 210 2 22S038−3 31 413 768 0.54 0.0500 0.0010 0.2295 0.0054 0.0333 0.0005 194 46 209 4 211 3 22S038−4 41 132 1218 0.11 0.0495 0.0007 0.2281 0.0042 0.0334 0.0004 168 5 208 3 211 2 22S038−5 27 170 761 0.22 0.0510 0.0012 0.2313 0.0056 0.0330 0.0005 242 53 211 4 209 3 22S038−7 62 172 1727 0.10 0.0499 0.0007 0.2291 0.0036 0.0332 0.0003 190 33 209 3 210 1 22S038−8 35 252 831 0.30 0.0529 0.0010 0.2429 0.0050 0.0333 0.0004 324 40 220 4 211 2 22S038−9 42 175 1183 0.15 0.0503 0.0008 0.2289 0.0041 0.0330 0.0003 209 43 209 3 209 2 22S038−10 41 136 1116 0.12 0.0517 0.0009 0.2356 0.0041 0.0331 0.0003 333 38 214 3 210 2 22S038−11 48 611 1281 0.48 0.0527 0.0010 0.2435 0.0068 0.0333 0.0006 316 45 221 5 211 3 22S038−13 36 128 994 0.13 0.0499 0.0008 0.2314 0.0051 0.0336 0.0005 190 37 211 4 213 3 22S038−14 78 1164 1969 0.59 0.0496 0.0006 0.2263 0.0035 0.0330 0.0003 176 31 207 2 209 1 22S038−15 21 114 591 0.19 0.0508 0.0011 0.2321 0.0057 0.0332 0.0004 231 47 212 4 210 2 22S038−16 104 673 2399 0.28 0.0531 0.0007 0.2461 0.0044 0.0336 0.0004 344 31 223 3 212 2 22S038−18 23 122 626 0.20 0.0504 0.0010 0.2305 0.0052 0.0331 0.0003 213 48 210 4 210 2 22S038−19 31 350 828 0.42 0.0494 0.0009 0.2254 0.0044 0.0331 0.0003 164 42 206 3 210 1 表 2 东风岩体黑云母花岗岩及其暗色包体锆石Hf同位素分析结果
Table 2 Zircon Hf isotopic compositions of biotite granites and its dioritic enclaves in the Dongfeng granitoid
样品号及分析点号 年龄/ Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) 2σ TDM/Ma TDMC/Ma fLu/Hf 黑云母花岗岩 22S033−1 210.0 0.026803 0.000451 0.000798 0.000010 0.282450 0.000018 −6.9 0.6 1129 1683 −0.98 22S033−2 0.164645 0.011052 0.004615 0.000309 0.282457 0.000026 −7.2 0.9 1244 1699 −0.86 22S033−3 212.7 0.033570 0.000414 0.000968 0.000010 0.282422 0.000016 −7.9 0.6 1174 1746 −0.97 22S033−4 212.1 0.082495 0.005727 0.002297 0.000157 0.282361 0.000023 −10.2 0.8 1305 1893 −0.93 22S033−5 0.043814 0.000451 0.001270 0.000017 0.282423 0.000021 −7.9 0.7 1181 1746 −0.96 22S033−6 212.1 0.041495 0.000394 0.001218 0.000015 0.282456 0.000019 −6.7 0.7 1133 1672 −0.96 22S033−7 213.8 0.052840 0.000516 0.001558 0.000010 0.282479 0.000019 −5.9 0.7 1111 1623 −0.95 22S033−8 211.4 0.070153 0.000466 0.002201 0.000023 0.282429 0.000026 −7.8 0.9 1203 1740 −0.93 22S033−9 212.0 0.024751 0.001798 0.000665 0.000047 0.282432 0.000022 −7.5 0.8 1150 1721 −0.98 22S033−10 210.8 0.061779 0.001157 0.001768 0.000034 0.282476 0.000021 −6.1 0.7 1121 1632 −0.95 22S033−11 211.4 0.044777 0.001466 0.001320 0.000038 0.282462 0.000018 −6.5 0.6 1127 1658 −0.96 22S033−12 214.0 0.049732 0.001237 0.001490 0.000050 0.282469 0.000019 −6.2 0.7 1123 1644 −0.96 22S033−13 210.5 0.036251 0.000550 0.001045 0.000019 0.282462 0.000020 −6.5 0.7 1120 1658 −0.97 22S033−14 212.6 0.038359 0.000269 0.001100 0.000006 0.282417 0.000017 −8.0 0.6 1184 1756 −0.97 22S033−15 211.0 0.037671 0.000640 0.001085 0.000018 0.282470 0.000017 −6.2 0.6 1110 1640 −0.97 22S033−16 210.1 0.043610 0.000589 0.001287 0.000015 0.282469 0.000017 −6.3 0.6 1117 1644 −0.96 22S033−17 214.1 0.042781 0.000906 0.001218 0.000023 0.282413 0.000018 −8.2 0.6 1193 1766 −0.96 22S033−18 210.2 0.022825 0.000248 0.000644 0.000006 0.282444 0.000017 −7.1 0.6 1133 1695 −0.98 22S033−19 213.8 0.043918 0.001425 0.001264 0.000040 0.282423 0.000019 −7.8 0.7 1180 1744 −0.96 22S033−20 210.5 0.036489 0.000637 0.001059 0.000021 0.282463 0.000018 −6.4 0.6 1118 1654 −0.97 暗色包体 22S038−1 212.0 0.035882 0.001068 0.001163 0.000032 0.282497 0.000018 −5.2 0.6 1073 1579 −0.96 22S038−2 210.0 0.088699 0.002151 0.002835 0.000073 0.282606 0.000026 −1.7 0.9 1073 1579 −0.96 22S038−3 211.0 0.038860 0.001231 0.001201 0.000034 0.282460 0.000018 −6.6 0.6 963 1351 −0.91 22S038−4 211.6 0.043432 0.000989 0.001281 0.000028 0.282436 0.000019 −7.4 0.7 1127 1662 −0.96 22S038−5 209.1 0.026593 0.001009 0.000827 0.000030 0.282451 0.000021 −6.9 0.8 1163 1717 −0.96 22S038−6 0.037644 0.001346 0.001249 0.000041 0.282609 0.000023 −1.3 0.8 1128 1680 −0.98 22S038−7 210.7 0.078966 0.004340 0.002531 0.000127 0.282486 0.000025 −5.8 0.9 918 1329 −0.96 22S038−8 211.3 0.029208 0.001187 0.000919 0.000037 0.282440 0.000018 −7.3 0.7 1129 1615 −0.92 22S038−9 209.3 0.047083 0.002830 0.001591 0.000078 0.282545 0.000024 −3.7 0.8 1147 1706 −0.97 22S038−10 210.1 0.042937 0.001318 0.001254 0.000038 0.282422 0.000019 −7.9 0.7 1017 1476 −0.95 22S038−11 211.1 0.064165 0.004125 0.002109 0.000133 0.282603 0.000023 −1.6 0.8 1181 1748 −0.96 22S038−12 0.033059 0.000382 0.000960 0.000011 0.282377 0.000018 −9.5 0.6 948 1350 −0.94 22S038−13 213.1 0.031860 0.000693 0.000963 0.000022 0.282400 0.000019 −8.6 0.7 1237 1847 −0.97 22S038−14 209.5 0.114579 0.001743 0.003688 0.000048 0.282593 0.000024 −2.2 0.9 1204 1794 −0.97 22S038−15 210.3 0.043738 0.000837 0.001412 0.000022 0.282511 0.000020 −4.8 0.7 1005 1386 −0.89 22S038−16 212.8 0.081100 0.002690 0.002615 0.000074 0.282577 0.000025 −2.6 0.9 1061 1551 −0.96 22S038−17 0.031416 0.000724 0.000978 0.000020 0.282416 0.000019 −8.1 0.7 1000 1413 −0.92 22S038−18 210.1 0.076582 0.001730 0.002414 0.000054 0.282548 0.000026 −3.6 0.9 1182 1759 −0.97 22S038−19 210.2 0.052456 0.003388 0.001724 0.000107 0.282584 0.000024 −2.3 0.8 1035 1476 −0.93 22S038−20 0.092916 0.001452 0.002991 0.000061 0.282466 0.000025 −6.6 0.9 965 1389 −0.95 表 3 东风岩体黑云母花岗岩及其闪长质包体主量、微量和稀土元素含量及有关参数
Table 3 Major, trace and rare earth elements compositions of biotite granites and its dioritic enclaves from the Dongfeng granitoid
元素 黑云母花岗岩 暗色包体 22S036 22S037 22S033 22S034 22S035 22S047 22S048 22S038 22S039 SiO2 66.16 66.64 68.68 69.39 71.18 53.43 54.19 58.46 66.65 TiO2 0.465 0.472 0.429 0.425 0.377 0.912 0.849 0.647 0.589 Al2O3 16.78 16.44 15.67 15.61 14.72 17.63 17.21 15.87 15.82 TFe2O3 3.65 3.75 3.24 3.31 3.01 9.11 9.21 6.86 4.21 MnO 0.073 0.074 0.058 0.068 0.063 0.223 0.244 0.171 0.081 MgO 1.028 1.040 0.962 0.930 0.833 4.172 3.852 3.660 1.386 CaO 3.83 3.84 3.53 3.41 3.08 8.57 8.65 7.45 4.14 Na2O 3.15 3.09 2.93 2.93 2.75 3.19 3.18 2.64 2.85 K2O 4.03 3.73 3.70 3.79 3.80 2.05 2.04 2.87 3.35 P2O5 0.110 0.113 0.102 0.104 0.091 0.139 0.132 0.115 0.129 烧失量 0.49 0.44 0.51 0.21 0.24 0.39 0.36 0.63 0.32 Na2O+K2O 7.18 6.82 6.63 6.72 6.55 5.24 5.22 5.51 6.20 K2O/Na2O 0.78 0.83 0.79 0.77 0.72 1.55 1.56 0.92 0.85 σ 2.2 2.0 1.7 1.7 1.5 2.6 2.4 2.0 1.6 A/NK 1.76 1.80 1.78 1.75 1.70 2.36 2.32 2.13 1.90 A/CNK 1.29 1.30 1.30 1.30 1.29 1.16 1.13 1.12 1.31 Li 62.6 63.1 57.5 54.0 50.4 35.6 27.7 26.3 52.7 Be 3.70 3.53 3.54 3.38 3.30 4.50 4.94 3.14 3.25 Sc 6.46 6.44 6.40 5.45 5.26 48.1 57.4 22.1 9.88 Ti 2854 2767 2659 2476 2253 5480 5102 3903 3478 V 32.8 31.9 31.1 28.0 25.9 93.3 88.6 103 43.7 Cr 8.32 8.18 7.14 7.55 6.78 48.7 25.1 92.7 13.4 Co 6.33 6.20 6.17 5.55 5.06 17.5 16.5 15.3 7.95 Ni 2.22 2.17 2.67 2.02 1.77 5.13 4.38 5.73 3.09 Cu 3.23 2.46 1.40 2.71 1.75 49.0 32.6 27.6 4.52 Zn 62.9 61.0 57.9 55.8 50.4 116 131 92.9 63.9 Ga 21.6 20.3 19.6 19.0 18.0 23.5 23.8 20.0 19.7 Rb 163 157 154 152 147 117 106 135 149 Sr 296 281 275 262 245 275 265 274 280 Y 13.3 11.6 12.7 11.2 11.7 32.6 36.9 21.0 22.2 Zr 206 154 185 190 128 192 131 128 171 Nb 11.4 11.0 10.3 9.82 9.65 17.8 19.1 11.2 11.8 Sn 3.26 3.23 2.85 2.78 2.72 5.58 7.17 3.02 3.21 Cs 6.79 6.69 7.32 7.82 7.81 7.20 5.65 5.03 7.05 Ba 786 672 710 673 572 380 404 654 709 La 36.1 26.0 32.5 31.8 30.9 3.40 3.13 21.8 42.7 Ce 69.8 51.0 62.5 62.1 60.7 7.94 6.93 52.0 83.9 Pr 7.51 5.57 6.72 6.69 6.39 1.39 1.31 6.75 9.83 Nd 26.5 20.0 24.1 23.8 22.7 7.54 7.16 27.6 32.9 Sm 4.78 3.81 4.40 4.29 4.16 3.25 3.51 5.93 6.23 Eu 1.18 1.03 1.10 1.03 1.00 1.08 1.10 1.12 1.21 Gd 3.64 3.10 3.44 3.23 3.21 4.25 4.69 5.00 5.08 Tb 0.51 0.46 0.50 0.45 0.46 0.78 0.88 0.75 0.76 Dy 2.65 2.38 2.51 2.30 2.34 5.05 5.79 4.16 4.25 Ho 0.48 0.44 0.46 0.41 0.42 1.11 1.27 0.80 0.81 Er 1.28 1.18 1.26 1.10 1.12 3.21 3.72 2.14 2.18 Tm 0.18 0.17 0.17 0.15 0.16 0.51 0.60 0.31 0.32 Yb 1.10 1.02 1.04 0.98 0.96 3.57 4.13 2.06 1.96 Lu 0.17 0.16 0.15 0.15 0.15 0.59 0.68 0.33 0.29 Hf 5.84 4.48 5.14 5.30 3.69 6.08 3.99 3.42 5.00 Ta 0.94 0.89 0.87 0.78 0.90 1.27 1.45 0.58 1.14 Tl 0.83 0.81 0.80 0.79 0.74 0.62 0.51 0.73 0.76 Pb 40.4 35.2 35.9 37.7 38.1 25.7 27.1 30.8 33.3 Th 16.0 12.7 15.1 14.7 15.2 1.26 1.30 7.74 19.7 U 2.21 1.89 1.77 1.93 1.69 3.61 3.88 2.35 2.75 ΣREE 4772 4441 4409 4168 3741 7031 6572 5719 5309 (La/Yb)N 29.16 22.60 27.14 25.39 25.24 0.68 0.54 7.58 15.64 Zr/Hf 35.23 34.41 35.93 35.77 34.75 31.63 32.92 37.30 34.15 Nb/Ta 12.13 12.36 11.80 12.53 10.78 14.00 13.16 19.27 10.33 Rb/Sr 0.55 0.56 0.56 0.58 0.60 0.43 0.40 0.49 0.53 Rb/Ba 0.21 0.23 0.22 0.23 0.26 0.31 0.26 0.21 0.21 注:主量元素含量单位为%,微量、稀土元素含量单位为10−6;里特曼指数σ=(K2O+Na2O)²/(SiO2-43) 表 4 松潘−甘孜造山带东风岩体黑云母花岗岩及其暗色包体全岩Sr−Nd同位素分析结果
Table 4 Sr−Nd isotopic compositions of biotite granites and its dioritic enclaves from the Dongfeng granitoid
样品号 87Rb/86Sr 87Sr/86Sr 2 σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd 2 σ (143Nd/144Nd)t εNd(t) TDM2/Ga fSm/Nd 黑云母花岗岩 22S033 1.62 0.716601 0.000005 0.7118 0.1101 0.512044 0.000005 0.5124 −9.3 1.74 −0.44 22S034 1.68 0.716834 0.000005 0.7118 0.1089 0.512040 0.000006 0.5124 −9.4 1.75 −0.45 22S035 1.74 0.717061 0.000012 0.7118 0.1109 0.512035 0.000005 0.5124 −9.5 1.76 −0.44 22S036 1.59 0.716501 0.000006 0.7117 0.1090 0.512031 0.000007 0.5124 −9.5 1.76 −0.45 22S037 1.62 0.716561 0.000011 0.7117 0.1154 0.512032 0.000006 0.5124 −9.7 1.77 −0.41 暗色包体 22S038 1.43 0.715132 0.000007 0.7108 0.1300 0.512096 0.000006 0.5124 −8.8 1.70 −0.34 22S039 1.54 0.715685 0.000008 0.7111 0.1142 0.512060 0.000007 0.5124 −9.1 1.73 −0.42 22S047 1.23 0.714759 0.000007 0.7111 0.2602 0.512263 0.000005 0.5124 −9.1 1.72 0.32 22S048 1.15 0.714782 0.000008 0.7113 0.2959 0.512296 0.000005 0.5124 −9.5 1.75 0.50 表 5 东风岩体黑云母花岗岩及其闪长质包体斜长石电子探针分析结果
Table 5 Major element compositions of plagioclases in biotite granites and its dioritic enclaves from the Dongfeng granitoid
点号 SiO2 Na2O Cr2O3 K2O MgO Al2O3 MnO CaO FeO TiO2 NiO 总计 Na Ca An Ab 22S034−1 1 58.25 6.95 − 0.19 − 25.52 − 8.04 0.04 0.01 0.03 99.02 0.22 0.14 38.99 61.01 2 59.56 6.88 0.01 0.19 0.03 24.98 0.03 8.03 0.20 0.02 − 99.93 0.22 0.14 39.22 60.78 3 58.46 6.72 − 0.15 0.01 26.00 0.02 8.42 0.04 − − 99.81 0.22 0.15 40.90 59.10 4 57.25 6.05 0.01 0.17 0.03 26.82 − 9.46 0.10 0.01 0.01 99.91 0.20 0.17 46.35 53.65 5 58.19 6.41 − 0.17 0.01 26.21 0.02 8.77 0.02 0.01 0.03 99.84 0.21 0.16 43.06 56.94 6 58.69 6.45 − 0.19 − 26.11 0.00 8.46 0.06 − − 99.94 0.21 0.15 42.02 57.98 7 57.26 6.30 − 0.13 − 26.83 0.01 9.33 0.07 − − 99.93 0.20 0.17 45.01 54.99 22S035−1 1 54.32 4.72 − 0.06 0.02 28.30 − 11.93 0.00 0.02 0.02 99.38 0.15 0.21 58.30 41.70 2 57.20 6.05 0.03 0.09 0.01 26.45 − 9.47 0.01 − 0.00 99.31 0.20 0.17 46.39 53.61 3 57.68 6.34 0.03 0.12 0.03 25.81 − 9.13 0.02 0.00 0.04 99.20 0.20 0.16 44.33 55.67 4 59.74 7.11 − 0.15 − 25.04 − 7.56 0.08 0.05 0.02 99.74 0.23 0.13 37.00 63.00 5 57.91 6.18 0.02 0.10 0.01 26.16 0.01 9.08 0.02 0.05 − 99.53 0.20 0.16 44.80 55.20 6 58.76 6.82 − 0.11 − 25.46 0.00 8.57 0.02 0.04 0.07 99.84 0.22 0.15 40.98 59.02 7 57.32 6.12 − 0.09 − 26.33 − 9.11 0.06 − 0.03 99.07 0.20 0.16 45.13 54.87 8 59.62 6.91 0.00 0.09 − 25.00 − 7.74 0.03 0.03 − 99.42 0.22 0.14 38.21 61.79 9 59.71 7.20 − 0.07 0.01 24.96 0.02 7.65 0.05 − 0.02 99.70 0.23 0.14 37.02 62.98 22S037−1 1 57.61 6.07 − 0.13 0.01 26.31 − 9.05 0.06 0.05 0.02 99.30 0.20 0.16 45.17 54.83 2 57.15 6.09 0.01 0.15 − 26.42 − 9.18 0.05 0.03 0.01 99.08 0.20 0.16 45.46 54.54 3 57.55 6.28 − 0.15 0.01 26.30 0.04 9.14 0.02 0.02 − 99.51 0.20 0.16 44.56 55.44 4 58.09 6.70 0.05 0.17 − 26.31 − 8.51 0.05 − 0.01 99.89 0.22 0.15 41.25 58.75 5 56.96 5.97 − 0.14 − 26.59 0.03 9.59 0.07 − 0.01 99.36 0.19 0.17 47.02 52.98 6 57.85 6.35 − 0.13 0.01 25.77 − 8.95 0.02 0.01 − 99.09 0.20 0.16 43.76 56.24 7 58.31 6.44 0.02 0.17 0.01 25.52 0.01 8.68 0.00 0.02 − 99.19 0.21 0.15 42.66 57.34 8 57.67 5.92 − 0.11 0.00 26.23 0.02 9.09 0.07 0.00 0.04 99.16 0.19 0.16 45.91 54.09 9 58.16 6.27 − 0.07 0.01 26.12 0.03 9.05 0.05 0.03 − 99.79 0.20 0.16 44.39 55.61 22S048−1 1 60.22 7.88 0.01 0.11 0.02 24.92 − 6.76 0.12 − 0.02 100.05 0.25 0.12 32.14 67.86 2 58.69 6.64 0.01 0.14 0.02 25.72 0.01 8.55 0.11 − − 99.90 0.21 0.15 41.57 58.43 3 58.43 6.64 − 0.14 − 25.83 0.02 8.22 0.07 0.02 − 99.36 0.21 0.15 40.62 59.38 4 57.07 6.01 − 0.12 0.02 26.60 0.01 9.65 0.09 − 0.00 99.58 0.19 0.17 47.01 52.99 5 57.57 6.20 0.00 0.11 − 26.59 0.02 9.28 0.06 0.02 0.02 99.87 0.20 0.17 45.25 54.75 6 56.67 5.69 − 0.15 − 27.14 0.00 9.70 0.04 0.01 0.02 99.42 0.18 0.17 48.53 51.47 7 57.35 6.45 0.01 0.15 − 26.96 0.01 9.02 0.09 0.04 0.00 100.06 0.21 0.16 43.57 56.43 8 54.91 5.05 0.01 0.10 0.01 27.98 − 10.98 0.10 − − 99.13 0.16 0.20 54.59 45.41 9 57.63 6.06 − 0.09 0.02 26.37 0.01 9.46 0.04 0.04 0.02 99.73 0.20 0.17 46.32 53.68 22S048−2 1 59.67 7.59 − 0.16 0.01 24.64 − 6.98 0.17 − − 99.21 0.24 0.12 33.68 66.32 2 57.65 6.30 − 0.10 − 26.32 − 9.02 0.08 − 0.05 99.52 0.20 0.16 44.18 55.82 3 57.07 5.95 − 0.11 − 26.72 0.01 9.62 0.03 − 0.05 99.55 0.19 0.17 47.19 52.81 4 57.72 6.12 − 0.11 − 26.53 0.02 9.21 0.04 0.02 0.03 99.79 0.20 0.16 45.41 54.59 5 56.64 5.68 0.03 0.09 − 26.98 − 10.19 0.04 − 0.02 99.67 0.18 0.18 49.81 50.19 6 56.78 6.15 − 0.13 0.01 26.65 − 9.78 0.03 − − 99.53 0.20 0.17 46.78 53.22 7 55.76 5.23 0.02 0.07 − 27.78 − 10.75 0.02 0.01 − 99.63 0.17 0.19 53.17 46.83 8 57.02 6.21 − 0.10 0.01 26.58 0.02 9.46 0.03 0.00 − 99.43 0.20 0.17 45.73 54.27 9 63.34 8.62 0.00 0.06 0.00 22.77 − 4.66 0.02 0.01 0.01 99.49 0.28 0.08 22.98 77.02 22S048−3 1 60.02 7.22 0.02 0.06 − 24.87 0.00 7.27 0.04 − 0.01 99.51 0.23 0.13 35.74 64.26 2 57.45 6.11 − 0.07 − 26.38 − 9.18 0.05 0.00 − 99.25 0.20 0.16 45.35 54.65 3 57.58 6.16 0.02 0.06 − 26.51 − 9.22 0.04 0.03 − 99.62 0.20 0.16 45.26 54.74 4 50.84 3.02 − 0.06 − 30.85 − 14.70 0.04 0.06 0.01 99.58 0.10 0.26 72.87 27.13 5 49.74 2.68 0.01 0.04 − 31.46 − 15.35 0.06 0.00 0.04 99.39 0.09 0.27 76.00 24.00 -
Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(3): 231−234.
Bennett E N, Lissenberg C J, Cashman K V. 2019. The significance of plagioclase textures in mid−ocean ridge basalt (Gakkel Ridge, Arctic Ocean)[J]. Contributions to Mineralogy and Petrology, 174: 1−22.
Blundy J, Cashman K, Humphreys M. 2006. Magma heating by decompression−driven crystallization beneath andesite volcanoes[J]. Nature, 443(7107): 76−80. doi: 10.1038/nature05100
Cai H M, Zhang H F, Xu W C, et al. 2010. Petrogenesis of Indosinian volcanic rocks in Songpan−Garzê fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China Earth Sciences, 53: 1316−1328. doi: 10.1007/s11430-010-4033-9
Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1−26.
Chappell B W, Wyborn D. 2012. Origin of enclaves in S−type granites of the Lachlan Fold Belt[J]. Lithos, 154: 235−247. doi: 10.1016/j.lithos.2012.07.012
Chen M, Wang Y H, G Q, et al. 2023. Discovery of Late Triassic basic rocks in the Xiacangjie area of Songpan-Ganzi terrane and its geological significance[J]. Acta Petrologica et Mineralogica, 42(1): 1−12 (in Chinese).
Cheng Y B, Spandler C, Mao J, et al. 2012. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two−stage mixing of crust−and mantle−derived magmas[J]. Contributions to Mineralogy and Petrology, 164: 659−676. doi: 10.1007/s00410-012-0766-0
Dai H Z, Wang D H, Liu L J, et al. 2019. Geochronology and geochemistry of Li (Be)−bearing granitic pegmatites from the Jiajika superlarge Li−polymetallic deposit in Western Sichuan, China[J]. Journal of Earth Science, 30: 707−727. doi: 10.1007/s12583-019-1011-9
Davidson J P, Tepley III F J. 1997. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 275(5301): 826−829. doi: 10.1126/science.275.5301.826
De Sigoyer J, Vanderhaeghe O, Duchêne S, et al. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary−orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China[J]. Journal of Asian Earth Sciences, 88: 192−216. doi: 10.1016/j.jseaes.2014.01.010
Deschamps F, Duchêne S, De Sigoyer J, et al. 2017. Coeval mantle−derived and crust−derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221−2256. doi: 10.1093/petrology/egy007
Fei G C, Menuge J F, Li Y Q, et al. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 364/365: 105555.
Flood R H, Shaw S E. 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: Pressure quench cumulates[J]. Lithos, 198: 92−102.
Gao J G, Wei G Y, Li G W, et al. 2024. Geochemical constraints on the origin of the rare metal mineralization in granite-pegmatite, evidence from three-kilometer scientific drilling core in the Jiajika Li deposit, eastern Tibetan Plateau[J]. Ore Geology Reviews, 165: 105852.
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid−absent versus fluid−fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42. doi: 10.1130/G38336.1
Hao X F, Fu X Fang, Liang B, et al. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199−1208 (in Chinese).
Harris N, Inger S. 1992. Trace element modelling of pelite−derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46−56. doi: 10.1007/BF00310881
Harris N, Massey J, Inger S. 1993. The role of fluids in the formation of high Himalayan leucogranites[J]. Geological Society, London, Special Publications, 74(1): 391−400.
Holden P, Halliday A N, Stephens W E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production[J]. Nature, 330(6143): 53−56. doi: 10.1038/330053a0
Hou K J, Li Y H, Tian Y R. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28: 481−492 (in Chinese).
Hu J M, Meng Q R, Shi Y R, et al. 2005. SHRIMP U−Pb dating of zircons from granitoid bodies in the Songpan−Ganzi terrane and its implications[J]. Acta Petrogica Sinica, 21(3): 867−880 (in Chinese with English abstract).
Li J K, Li P, Yan Q G, et al. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis[J]. Science China Earth Sciences, 66(8): 1702−1724.
Li X F, Tian S H, Wang D H, et al. 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U−Pb dating, Hf−O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273−304 (in Chinese with English abstract).
Liu D M, Xiao Y F, Li N, et al. 2022. Geochemistry, chronology and tectonic significances of the Darizelong granite intrusion in the northern Songpan−Garzê orogenic belt[J]. Acta Mineralogica Sinica, 42(3): 270−84 (in Chinese with English abstract).
Lu Y X, Yang J S, Xu Z Q, et al. 2022. Possible northward subduction in the Ganzi−Litang ocean: evidence from Dawu−Luhuo magmatic rocks in the Songpan−Ganzi orogen[J]. Acta Geologica Sinica, 96(7): 2380−2402 (in Chinese with English abstract).
Luo G, Yang X J, Bai X Z, et al. 2009. Trace Element Geochemical Characteristics of the granite bodies in Yanggonghai and its neighboring area in northwestern Sichuan[J]. Geological Survey and Research, 32(1): 15−21 (in Chinese with English abstract).
Luo X L, Li W Q, Du D H, et al. 2024. Iron isotope systematics of the Jiajika granite-pegmatite lithium deposit, Sichuan, China[J]. Ore Geology Reviews, 165: 105903.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643.
Morse S A. 1984. Cation diffusion in plagioclase feldspar[J]. Science, 225(4661): 504−505. doi: 10.1126/science.225.4661.504
Nelson, Stephen T, Montana A. 1992. Sieve−textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 77: 1242−49.
Norris P C, Skulas−Ray A C, Riley I, et al. 2018. Identification of specialized pro−resolving mediator clusters from healthy adults after intravenous low−dose endotoxin and omega−3 supplementation: A methodological validation[J]. Scientific Reports, 8(1): 18050. doi: 10.1038/s41598-018-36679-4
Pullen A, Kapp P, Gehrels G E, et al. 2008. Triassic continental subduction in central Tibet and Mediterranean−style closure of the Paleo−Tethys Ocean[J]. Geology, 36(5): 351−354. doi: 10.1130/G24435A.1
Russell W A, Papanastassiou D A, Tombrello T A. 1978. Ca isotope fractionation on the Earth and other solar system materials[J]. Geochimica et Cosmochimica Acta, 42(8): 1075−1090. doi: 10.1016/0016-7037(78)90105-9
Shi Z L, Zhang H F, Cai H M. 2009. Petrogenesis of strongly peraluminous granites in Markan area Songpan fold belt and its tectonic implication[J]. Earth Science−Journal of China University of Geosciences, 34(4): 569−584 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.062
Sláma J, Košler J, Condon D J, et al. 2008. Plešovice zircon−a new natural reference material for U–Pb and Hf isotopic microanalysis[J]. Chemical geology, 249(1/2): 1−35.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313–345.
Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29−44.
Ustunisik G, Kilinc A, Nielsen R L. 2014. New insights into the processes controlling compositional zoning in plagioclase[J]. Lithos, 200: 80−93.
Wang D H, Li J K, Fu X F. 2005. 40Ar/39Ar dating for the Jiajika pegmatite−type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 34(6): 3−9 (in Chinese with English abstract).
Wilson M. 1997. Igneous petrogenesis[M]. Unwin Hyman Ltd.
Wu F Y, Yue H, Xie L W, et al. 2006. Hf isotopic compositions of the standard zircons and bad deleyites used in U−Pb geochronology[J]. Chemical Geology, 234: 105−126. doi: 10.1016/j.chemgeo.2006.05.003
Xiao L, Zhang H F, Clemens J D, et al. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3/4): 436−452.
Xu Z Q, Fu X F, Wang R C, et al. 2020. Generation of lithium−bearing pegmatite deposits within the Songpan−Ganze orogenic belt, East Tibet[J]. Lithos, 354: 105281.
Yan S W, Zhu B, Wu W X, et al. 2015. Petrogenesis and geodynamic implications of the Wanlicheng granites and hosted magmatic enclaves in Songpan−Garzê orogen: Evidence from petrography and geochemistry[J]. Geological Bulletin of China, 34(2/3): 292−305 (in Chinese with English abstract).
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual review of Earth and Planetary Sciences, 28(1): 211−280.
Yuan C, Zhou M F, Sun M, et al. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3/4): 481−492.
Zhang H F, Parrish R, Zhang L, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garzê fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 97(3/4): 323−335.
Zhang H F, Zhang L, Harris N, et al. 2006. U–Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan−Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152: 75−88. doi: 10.1007/s00410-006-0095-2
Zhang H J, Tian S H, Wang D H, et al. 2022. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization[J]. Ore Geology Reviews, 150: 105174.
Zhang L Y, Ding L, Pullen A, et al. 2014. Age and geochemistry of western Hoh−Xil–Songpan−Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo−Tethys ocean[J]. Lithos, 190: 328−348.
Zhao H, Chen, B Huang C, et al. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 177(1): 3−16.
Zheng Y C, Hou Z Q, Fu Q, et al. 2016. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 264: 125−140.
Zheng Y L, Xu Z Q, Li G W, et al. 2020. Genesis of the Markam gneiss dome within the Songpan−Ganzi orogenic belt, eastern Tibetan Plateau[J]. Lithos, 362: 105475.
Zhou M F, Yan D P, Kennedy A K, et al. 2002. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc−magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1/2): 51−67.
Zhou X, Zhou Y, Luo L P, et al. 2018. Zircon LA−ICP−MS U−Pb dating of quartz diorite of Rongxuka lithium deposit in western Sichuan and its tectonic implication[J]. Mineralogy and Petrology, 38(4): 88−97 (in Chinese with English abstract).
Zhu J Y, Zhu W B, Xu Z Q, et al. 2023. The geochronology of pegmatites in the Jiajika lithium deposit, western Sichuan, China: Implications for multi-stage magmatic-hydrothermal events in the Songpan-Ganze rare metal metallogenic belt[J]. Ore Geology Reviews, 159: 105582.
陈敏, 王雁鹤, 谷强, 等. 2023. 松潘-甘孜地体下仓界地区晚三叠世基性岩的发现及其地质意义[J]. 岩石矿物学杂志, 42(1): 1−12. 郝雪峰, 付小方, 梁斌, 等. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199−1208. 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS 锆石微区原位U-Pb 定年技术[J]. 矿床地质, 28(4): 481−492. 胡健民, 孟庆任, 石玉若, 等. 2005. 松潘−甘孜地体内花岗岩锆石SHRIMP U−Pb定年及其构造意义[J]. 岩石学报, 21(3): 867−880. 李贤芳, 田世洪, 王登红, 等. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U−Pb定年、Hf−O同位素和地球化学证据[J]. 矿床地质, 39(2): 273−304. 刘大明, 肖渊甫, 李宁, 等. 2022. 松潘−甘孜造山带北部达日泽龙花岗岩体地球化学、年代学及构造意义[J]. 矿物学报, 42(3): 270−84. 卢雨潇, 杨经绥, 许志琴, 等. 2022. 甘孜−理塘洋可能存在北向俯冲: 来自松潘−甘孜道孚−炉霍岩浆岩的证据[J]. 地质学报, 96(7): 2380−2402. 罗改, 杨学俊, 白宪洲, 等. 2009. 川西北羊拱海及邻区花岗岩体微量元素地球化学特征[J]. 地质调查与研究, 32(1): 15−21. 时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学, 34(4): 569−584. 王登红, 李建康, 付小方. 2005. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 34(6): 3−9. 许志琴. 1992. 中国松潘−甘孜造山带的造山过程[M]. 北京: 地质出版社. 鄢圣武, 朱兵, 伍文湘, 等. 2015. 松潘−甘孜造山带万里城花岗岩及其岩浆包体的成因与地球动力学意义[J]. 地质通报, 34(2/3): 292−305. 周雄, 周玉, 罗丽萍, 等. 2018. 川西容须卡锂辉石矿床石英闪长岩锆石LA−ICP MS测年及构造意义[J]. 矿物岩石, 38(4): 88−97.