中国阿尔泰造山带地壳改造与成熟化:岩浆-构造-变质视角

    汪晟, 蒋映德, 孙敏, Karel Schulmann, 袁超

    汪晟, 蒋映德, 孙敏, Karel Schulmann, 袁超. 2024: 中国阿尔泰造山带地壳改造与成熟化:岩浆-构造-变质视角. 地质通报, 43(12): 2162-2180. DOI: 10.12097/gbc.2024.07.070
    引用本文: 汪晟, 蒋映德, 孙敏, Karel Schulmann, 袁超. 2024: 中国阿尔泰造山带地壳改造与成熟化:岩浆-构造-变质视角. 地质通报, 43(12): 2162-2180. DOI: 10.12097/gbc.2024.07.070
    Wang S, Jiang Y D, Sun M, Karel S, Yuan C. Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism. Geological Bulletin of China, 2024, 43(12): 2162−2180. DOI: 10.12097/gbc.2024.07.070
    Citation: Wang S, Jiang Y D, Sun M, Karel S, Yuan C. Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism. Geological Bulletin of China, 2024, 43(12): 2162−2180. DOI: 10.12097/gbc.2024.07.070

    中国阿尔泰造山带地壳改造与成熟化:岩浆-构造-变质视角

    基金项目: 国家自然科学基金项目《中国阿尔泰造山带志留—泥盆纪挤压-伸展构造体制转换年代学研究》(批准号:42302052)、中国科学院国际合作局一带一路专项《中哈俄蒙增生体系地壳演化与成矿耦合》(编号:132744KYSB20190039)、安徽建筑大学校引进人才及博士启动基金项目《复合造山带早期构造转换过程年代学限定——以中国阿尔泰为例》(编号:2022QDZ30)和安徽省高等学校科学研究项目《荒漠沙物源解析及针对性资源化、功能化研究》(编号:2024AH050248)
    详细信息
      作者简介:

      汪晟(1991− ),男,博士,讲师,从事构造地质教学与研究。E−mail:wangsheng@ahjzu.edu.cn

      通讯作者:

      蒋映德(1982− ),男,博士,研究员,从事造山带构造变形与变质演化研究。E−mail:jiangyd@gig.ac.cn

    • 中图分类号: P54; P58

    Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism

    • 摘要:

      活动大陆边缘巨型杂岩系如何演化成为成熟大陆的一部分,仍是一个亟待深入探究的重要科学问题。位于中亚造山带腹地的中国阿尔泰地区记录了复杂的地壳改造历史,同时也具备了成熟大陆地壳结构,是研究增生杂岩改造和大陆地壳成熟化的天然实验室。为此,本文以中国阿尔泰造山作用主期(志留纪—泥盆纪)为重点,系统总结了其增生杂岩在变质-变形、深熔作用及花岗岩化方面的进展。研究表明:①奥陶系增生杂岩在志留纪—泥盆纪经历了挤压-伸展-挤压的变形改造,并发育广泛的深熔作用;②地球化学对比和热力学模拟揭示,区内志留纪—泥盆纪花岗岩可能来源于奥陶系增生杂岩的深熔作用;③区域变形过程促进了地壳分异和成熟大陆地壳结构的形成。综合区域研究资料,认为志留纪—泥盆纪强烈地壳改造作用与该区域俯冲体系中俯冲板片前进和后撤的反复转换过程密切相关,后者控制了造山带中的地壳深熔、流动及成熟化过程。活动大陆边缘强烈的地壳改造作用造成增生杂岩转变为成熟大陆地壳,可能是增生型大陆地壳成熟化的又一重要机制。

      Abstract:

      Giant accretionary complexes form at active margins by scraping off oceanic sediments from the subducting plate. Whether or not those compositionally complicated accretionary complexes would be ultimately transformed into mature continent crust remains an unsolved question that calls for further investigation. The Chinese Altai section of the Central Asian Orogenic Belt (CAOB), the largest accretionary orogenic belt on the earth, preserves complicated tectono−thermal geological records and is characterized by formation of mature continental crust, making it a natural laboratory for studying the reworking of accretionary complexes and their evolution into mature continental crust. This paper focuses on the main orogenic period (Silurian−Devonian) of the Chinese Altai and systematically summarizes its recent research progresses in terms of metamorphism−deformation, anatexis, and granitization. ① The Ordovician accretionary complex underwent multiple−stage deformation involving compression−extension−compression during the Silurian−Devonian period, accompanied by intense metamorphism and widespread anatexis during the extensional deformation stage; ② The Ordovician accretionary complexes and most Silurian−Devonian granites in the region exhibited significant similarities in their geochemical characteristics. More importantly, the chemical compositions of Silurian−Devonian granites resemble those of the modelled partial melts of the accretionary complex under regional anatexis PT conditions. ③ Regional deformation processes facilitated crustal differentiation and the formation of mature continental crust. Together with regional available data, this contribution proposes that the intense crustal reworking during the Silurian−Devonian of the Chinese Altai Orogenic Belt was related to changes in the dynamics of the related supra−subduction system. The cyclic switching between subduction advance and retreat in accretionary orogenic belts could lead to changes of regional stress field and provide anomalous heat source for crustal anatexis, thus control the processes of crustal anatexis and mass redistribution. In these regards, anatexis of accretionary complexes, plays a pivotal role on transformation of active continental margin sediments into compositionally differentiated mature continental crust. This may be a key mechanism contributing to the peripheral continental growth in accretionary orogenic belts in general.

    • 图  1   中亚造山带大地构造位置图(a,据Windley et al., 2018修改)、蒙古拼贴体地质简图(b,据Jiang et al., 2017修改)和中国阿尔泰地质简图(c)

      Figure  1.   Outline of the CAOB (a) and simplified geological maps of the western Mongolian (b), and the Chinese Altai (c)

      图  2   中国阿尔泰造山带志留纪—泥盆纪变形-变质过程模式图(据Wang et al., 2021; Jiang et al., 2022修改)

      a—中国阿尔泰志留—泥盆纪构造变形过程;b—中低级变质哈巴河群岩石(未熔融)记录的志留纪—泥盆纪变质作用P(压力)−T(温度)轨迹图;c—混合岩化哈巴河群岩石(熔融)记录的志留纪—泥盆纪变质作用P(压力)−T(温度)轨迹图(数据据Wei et al., 2007; Jiang et al., 2015, 2019; Broussolle et al., 2019);b,c右侧的插图分别展示了不同演化阶段未熔融和熔融哈巴河群岩石的变形-变质过程(无论是未熔融还是熔融的哈巴河群都共同经历了D1B期的变形-变质,发育巴罗型变质矿物组合;此外,熔融的哈巴河群经历了显著的D1M期的熔融过程,在造山带下地壳深度形成混合岩并同时发育含矽线石的高温S1M面理。未熔融和熔融的哈巴河群岩石都受到区域直立褶皱F2的影响)。grt—石榴子石;ky—蓝晶石;sill—矽线石;st—十字石;and—红柱石;ksp—钟长石;ms—白云母;cd—堇青石

      Figure  2.   Silurian-Devonian tectono-metamorphic evolution of the Chinese Altai orogenic belt

      图  3   中国阿尔泰志留纪—泥盆纪花岗岩地球化学特征(据Jiang et al., 2016; Huang et al., 2020修改)

      a—CaO/(MgO + TFeO)−Al2O3/(MgO + TFeO)图解(底图据Gerdes et al., 2002);b—Rb/Sr−Rb/Ba图解(底图据Sylvester, 1998

      Figure  3.   Geochemical characteristics of the Silurian-Devonian granites in the Chinese Altai

      图  4   中国阿尔泰志留纪—泥盆纪花岗岩和哈巴河群变沉积岩(包括火山质组分和陆源碎屑组分)的 Nd 同位素特征(a)和两阶段Nd模式年龄图(b)(据Huang et al., 2020修改)

      Figure  4.   Nd isotopic diagrams (a) and two stage Nd model ages (b) for Silurian-Devonian granitoids and the Habahe Group metasedimentary rocks in the Chinese Altai

      图  5   哈巴河群深熔模拟熔体与区域志留纪—泥盆纪花岗岩类成分对比(地球化学图解据Conrad et al., 1988; Patiño et al., 1995; Montel et al., 1997修改,数据据Jiang et al., 2016; Huang et al., 2020

      Figure  5.   Geochemical projection for partial melts modelled from Habahe Group metasedimentary rocks and granitoids of the Chinese Altai are shown for comparison

      图  6   变熔混合岩中代表性构造特征

      a—叠层状变熔混合岩,浅色体条带和中间体之间存在富云母的暗色体(白色箭头所示);b—熔体在F2褶皱的作用下向褶皱轴面富集;c—熔体含量较多的变熔混合岩中, 褶皱的叠层状混合岩中含熔体的 S1M 面理被置换成近直立的含熔体S2面理,近直立的浅色体也相互连通成网状结构,并在F2褶皱轴部大量富集而形成局部的深熔混合岩,深熔混合岩中有很多块状和条带状的变熔混合岩残留体,这些残留体大致定向排列,指示了S2的方向

      Figure  6.   Representative structures of metatexite

      图  7   深熔混合岩中代表性构造特征

      a—含条带状暗色残留体的深熔混合岩;b—含块状暗色残留体的深熔混合岩中,暗色残留体仍保留了叠层状变熔混合岩的浅色体条带结构;c—区域褶皱核部深熔混合岩中的块状暗色残留体沿着S2面理方向被拉伸成纺锤形;d—区域褶皱翼部深熔混合岩中块状残留体呈“σ”型和逐渐分解状态,指示与 S2面理方向呈一定角度的岩浆流动

      Figure  7.   Representative structures of diatexite

      图  8   花岗岩中代表性构造特征

      a—被逐步分解的暗色残留体在与花岗岩的边界上呈向上的拖曳的结构;b—黑云母花岗岩中自形的黑云母、长石定向排列形成平行于S2的岩浆面理,花岗岩中局部有暗色体的残留,并沿岩浆面理S2的方向拉长;c—二云母花岗岩中拉长的石英、长石和云母定向排列形成亚固相线下面理;d—穹隆核部花岗岩中的发育的显著线性构造

      Figure  8.   Representative structures of granites

      图  9   中国阿尔泰深熔地壳水平和垂向流动及花岗岩-混合岩穹隆形成的演化简图(据Wang et al., 2021修改)

      a—阶段1:D1M期地壳水平伸展减薄,造成地壳深部地壳熔融和形成具有近水平浅色体的叠层状混合岩;b—阶段2:D2 期地壳水平缩短,岩浆网状通道开始形成;随着地壳缩短的持续,混合岩逐渐失去其固态框架,深熔熔体开始发生迁移并聚集;c—阶段3:D2 期直立褶皱发展阶段,可能伴随着熔体浮力抬升,导致褶皱扩大和岩浆的聚集

      Figure  9.   Interpretative spatial evolution of the migmatite-granite domes in the Chinese Altai, showing horizontal-vertical flow of Devonian anatectic crust in association with regional deformation

      图  10   露头尺度上浅色体汇聚形成直立的漏斗形结构(利于深熔熔体沿破碎岩体进入并卷入、旋转及熔融该岩体)

      Figure  10.   A representative field photo showing migration of partial melts in sub-vertical funneling networks, in which the surrounding rocks were disassembled and rotated

      图  11   阿尔泰增生楔的构造-热演化与俯冲体系交替前进-后撤的构造示意图(据Kong et al., 2022修改)

      a—寒武纪−早奥陶世增生楔与岩浆弧形成;b—中奥陶世−早志留世增生楔体系增厚;c—晚志留世−早泥盆世地壳伸展伴随深溶作用;d—中泥盆世−早石炭世水平方向缩短伴随地壳尺度褶皱

      Figure  11.   Tectonic models of the tectono-thermal evolution and alternating advance-retreat of the subduction system in the Altai accretionary wedge

    • Allegre C J, Courtillot V, Tapponnier P, et al. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0

      Allen M, Alsop G, Zhemchuzhnikov V. 2001. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan[J]. Journal of the Geological Society, 158: 83−95. doi: 10.1144/jgs.158.1.83

      Arndt N T, Goldstein S L. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling[J]. Tectonophysics, 161: 201−212. doi: 10.1016/0040-1951(89)90154-6

      Briggs S M, Yin A, Manning C E, et al. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System[J]. Geological Society of America Bulletin, 119: 944−960. doi: 10.1130/B26044.1

      Broussolle A, Aguilar C, Sun M, et al. 2018. Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U–Pb geochronology[J]. Lithos, 314/315: 400−424. doi: 10.1016/j.lithos.2018.06.005

      Broussolle A, Štípská P, Lehmann J, et al. 2015. PTtD record of crustal−scale horizontal flow and magma−assisted doming in the SW Mongolian Altai[J]. Journal of Metamorphic Geology, 33: 359−383. doi: 10.1111/jmg.12124

      Broussolle A, Sun M, Schulmann K, et al. 2019. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis?[J]. Gondwana Research, 66: 183−206. doi: 10.1016/j.gr.2018.11.003

      Brown M. 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust[J]. Canadian Journal of Earth Sciences, 47: 655−694. doi: 10.1139/E09-057

      Brun J P. 1980. The cluster−ridge pattern of mantled gneiss domes in eastern Finland: Evidence for large−scale gravitational instability of the Proterozoic crust[J]. Earth & Planetary Science Letters, 47: 441−449.

      Burenjargal U, Okamoto A, Kuwatani T, et al. 2014. Thermal evolution of the Tseel terrane, SW Mongolia and its relation to granitoid intrusions in the Central Asian Orogenic Belt[J]. Journal of Metamorphic Geology, 32: 765−790. doi: 10.1111/jmg.12090

      Buriánek D, Schulmann K, Hrdličková K, et al. 2017. Geochemical and geochronological constraints on distinct Early−Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia[J]. Gondwana Research, 47: 200−227. doi: 10.1016/j.gr.2016.09.008

      Buslov M M, Fujiwara Y, Iwata K, et al. 2004. Late Paleozoic−Early Mesozoic Geodynamics of Central Asia[J]. Gondwana Research, 7: 791−808. doi: 10.1016/S1342-937X(05)71064-9

      Cai H M, Wang R, Liu G P, et al. 2022. Discovery of Late Devonian monzogranite from the Eastern Tianshan, and its constrains on the tectonic evolution of the Aqishan−Yamansu belt[J]. Geological Bulletin of China, 41(7): 1184−1190.

      Cai K D, Sun M, Yuan C, et al. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 18: 638−652. doi: 10.1016/j.gr.2010.02.010

      Cai K D, Sun M, Yuan C, et al. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127: 261−281. doi: 10.1016/j.lithos.2011.09.001

      Cai K D, Sun M, Yuan C, et al. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids[J]. Journal of Asian Earth Sciences, 42: 949−968. doi: 10.1016/j.jseaes.2010.11.020

      Chai F, Mao J, Dong L, et al. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny[J]. Gondwana Research, 16(2): 189−200.

      Chen B I N, Jahn B M 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications [J]. Geological Magazine, 139: 1−13.

      Clos F, Weinberg R F, Zibra I, et al. 2019. Archean diapirism recorded by vertical sheath folds in the core of the Yalgoo Dome, Yilgarn Craton[J]. Precambrian Research, 320: 391−402. doi: 10.1016/j.precamres.2018.11.010

      Coleman R G. 1989. Continental growth of northwest China[J]. Tectonics, 8: 621−635. doi: 10.1029/TC008i003p00621

      Collins W J. 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30: 535.

      Conrad W K, Nicholls I A, Wall V J, et al. 1988. Water−saturated and −undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences[J]. Journal of Petrology, 29(4): 765−803. doi: 10.1093/petrology/29.4.765

      Coward M P. 1981. Diapirism and gravity tectonics: report of a tectonic studies group conference held at Leeds University, 25–26 March 1980[J]. Journal of Structural Geology, 3: 89−95. doi: 10.1016/0191-8141(81)90059-6

      Currie C, Wang K, Hyndman R D, et al. 2004. The thermal effects of steady−state slab−driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc[J]. Earth Planetary Science Letters, 223: 35−48. doi: 10.1016/j.jpgl.2004.04.020

      Demoux A, Kröner A, Badarch G, et al. 2009. Zircon ages from the Baydrag block and the Bayankhongor ophiolite zone: Time constraints on Late Neoproterozoic to Cambrian subduction−and accretion−related magmatism in Central Mongolia[J]. The Journal of Geology, 117: 377−397. doi: 10.1086/598947

      Faure M, Lalevée F, Gusokujima Y, et al. 1986. The pre−Cretaceous deep−seated tectonics of the Abukuma massif and its place in the structural framework of Japan[J]. Earth & Planetary Science Letters, 77: 384−398.

      Fowler T, Osman A. 2001. Gneiss−cored interference dome associated with two phases of late Pan−African thrusting in the central Eastern Desert, Egypt[J]. Precambrian Research, 108: 17−43. doi: 10.1016/S0301-9268(00)00146-7

      Gates A E 1987. Transpressional dome formation in the Southwest Virginia Piedmont [J]. American Journal of Science, 287: 927−949.

      Gerdes A, Montero P, Bea F, et al. 2002. Peraluminous granites frequently with mantle−like isotope compositions: the continental−type Murzinka and Dzhabyk batholiths of the eastern Urals[J]. International Journal of Earth Sciences, 91: 3−19. doi: 10.1007/s005310100195

      Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 307: 501−516. doi: 10.1016/j.jpgl.2011.05.024

      Hanžl P, Schulmann K, Janoušek V, et al. 2016. Making continental crust: origin of Devonian orthogneisses from SE Mongolian Altai [J]. Journal of Geosciences: 25−50.

      Harris N, Inger S 1992. Trace element modelling of pelite−derived granites [J]. Contributions to Mineralogy Petrology, 110: 46−56.

      Hawkesworth C J, Kemp A I S. 2006. The differentiation and rates of generation of the continental crust [J]. Chemical Geology, 226: 134−143.

      He, G Q, Liu, D Q, Li, M S, et al. 1995. The five stage model of crustal evolution and metallogenic series of chief orogenic belts in Xinjiang[J]. Xinjiang Geology, 13: 99−194 (in Chinese with English abstract).

      Hu W W, Li P, Rosenbaum G, et al. 2020. Structural evolution of the eastern segment of the Irtysh Shear Zone: Implications for the collision between the East Junggar Terrane and the Chinese Altai Orogen (northwestern China)[J]. Journal of Structural Geology, 139: 104126. doi: 10.1016/j.jsg.2020.104126

      Huang Y Q, Jiang Y, Collett S, et al. 2020. Magmatic recycling of accretionary wedge: A new perspective on Silurian−Devonian I−type granitoids generation in the Chinese Altai[J]. Gondwana Research, 78: 291−307. doi: 10.1016/j.gr.2019.07.019

      Hyndman R D, Currie C A, Mazzotti S P. 2005. Subduction zone backarcs, mobile belts, and orogenic heat[J]. GSA Today, 15: 4−10. doi: 10.1130/1052-5173(2005)015<4:TNELOT>2.0.CO;2

      Jahn B M, Wu B M, Chen F, et al. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 91: 181−193. doi: 10.1017/S0263593300007367

      Jahn B M, Wu F Y, Chen B 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82−92.

      Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 226: 73−100. doi: 10.1144/GSL.SP.2004.226.01.05

      Janoušek V, Jiang Y, Buriánek D, et al. 2018. Cambrian–Ordovician magmatism of the Ikh−Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia)[J]. Gondwana Research, 54: 122−149. doi: 10.1016/j.gr.2017.10.003

      Jiang Y D, Sun M, Zhao G C, et al. 2010. The similar to 390 Ma high-T Metamorphic event in the Chinese Altai: a consequence of ridge-subduction?[J]. American Journal of Science, 310(10): 1421−1452.

      Jiang Y D, Sun M, Zhao G, et al. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia[J]. Precambrian Research, 189: 140−154. doi: 10.1016/j.precamres.2011.05.008

      Jiang Y D, Štípská P, Sun M, et al. 2015. Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: A result of crustal thickening followed by doming of partially molten lower crust[J]. Journal of Metamorphic Geology, 33: 45−70. doi: 10.1111/jmg.12110

      Jiang Y D, Schulmann K, Sun M, et al. 2016. Anatexis of accretionary wedge, Pacific−type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt[J]. Tectonics, 35: 3095−3118. doi: 10.1002/2016TC004271

      Jiang Y D, Schulmann K, Kröner A, et al. 2017. Neoproterozoic−Early Paleozoic Peri−Pacific accretionary evolution of the Mongolian collage system: Insights from geochemical and U−Pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai[J]. Tectonics, 36: 2305−2331. doi: 10.1002/2017TC004533

      Jiang Y D, Schulmann K, Sun M, et al. 2019. Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia[J]. Tectonics, 38: 253−280. doi: 10.1029/2018TC005231

      Jiang Y D, Štípská P, Schulmann K, et al. 2022. Barrovian and Buchan metamorphic series in the Chinese Altai: PTtD evolution and tectonic implications[J]. Journal of Metamorphic Geology, 40: 823−857. doi: 10.1111/jmg.12647

      Jull M, Kelemen P. 2001. On the conditions for lower crustal convective instability [J]. Solid Earth, 106: 6423−6446.

      Kelemen P B, Behn M D. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons[J]. Nature Geoscience, 9: 197−205. doi: 10.1038/ngeo2662

      Kong L J, Jiang Y, Schulmann K, et al. 2022. Petrostructural and geochronological constraints on Devonian extension−shortening cycle in the Chinese Altai: Implications for retreating−advancing subduction[J]. Tectonics, 41: e2021TC007195. doi: 10.1029/2021TC007195

      Kong X, Zhang C, Liu D, et al. 2019. Disequilibrium partial melting of metasediments in subduction zones: Evidence from O−Nd−Hf isotopes and trace elements in S−type granites of the Chinese Altai[J]. Lithosphere, 11: 149−168. doi: 10.1130/L1039.1

      Kroener A, Kovach V, Alexeiev D, et al. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data[J]. Gondwana Research, 50: 135−166. doi: 10.1016/j.gr.2017.04.006

      Kröner A, Lehmann J, Schulmann K, et al. 2010. Lithostratigraphic and geochronilogical constraints on the evolution of the Central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion[J]. American Journal of Science, 310: 523−574. doi: 10.2475/07.2010.01

      Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02

      Lehmann J, Schulmann K, Lexa O, et al. 2017. Detachment folding of partially molten crust in accretionary orogens: A new magma−enhanced vertical mass and heat transfer mechanism [J]. Lithosphere.

      Li H J. 2006. Confirmation of Altai−Mongolia microcontinent and its implications[J]. Acta Petrologica Sinica, 22(5): 1369−1379 (in Chinese with English abstract).

      Li P F, Sun M, Rosenbaum G, et al. 2015. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008

      Li P F, Sun M, Rosenbaum G, et al. 2016. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt[J]. Journal of Structural Geology, 87: 64−80. doi: 10.1016/j.jsg.2016.04.006

      Li P F, Sun M, Rosenbaum G, et al. 2017. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. Geological Society of America Bulletin, 129: 547−569. doi: 10.1130/B31541.1

      Li P F, Sun M, Shu C, et al. 2019. Evolution of the Central Asian Orogenic Belt along the Siberian margin from Neoproterozoic−Early Paleozoic accretion to Devonian trench retreat and a comparison with Phanerozoic eastern Australia[J]. Earth−Science Reviews, 198: 102951.

      Li Z, Yang X, Li Y, et al. 2014. Late Paleozoic tectono–metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic PT pseudosection and zircon U–Pb dating of ultra−high−temperature granulite[J]. Lithos, 204: 83−96. doi: 10.1016/j.lithos.2014.05.022

      Liu W, Liu LJ, Liu XJ, et al. 2010. Age of the Early Devonian Kangbutiebao Formation along the southern Altay Mountains and its northeastern extension[J]. Acta Petrologica Sinica, 26(2): 387−400 (in Chinese with English abstract).

      Liu W, Liu X J, Xiao W J. 2012. Massive granitoid production without massive continental−crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U−Pb age, Hf−Nd−Sr isotopes and geochemistry[J]. American Journal of Science, 312: 629−684.

      Liu Z, Bartoli O, Tong L, et al. 2020. Permian ultrahigh–temperature reworking in the southern Chinese Altai: Evidence from petrology, PT estimates, zircon and monazite U–Th–Pb geochronology[J]. Gondwana Research, 78: 20−40. doi: 10.1016/j.gr.2019.08.007

      Long X P, Sun M, Yuan C, et al. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution[J]. Sedimentary Geology, 208: 88−100. doi: 10.1016/j.sedgeo.2008.05.002

      Long X, Sun M, Yuan C, et al. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Tectonics, 26: TC5015.

      Long X, Yuan C, Sun M, et al. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution[J]. Tectonophysics, 480: 213−231.

      Martini A, Bitencourt M d F, Weinberg R F, et al. 2019. From migmatite to magma − crustal melting and generation of granite in the Camboriú Complex, south Brazil[J]. Lithos, 340/341: 270−286. doi: 10.1016/j.lithos.2019.05.017

      Montel J, Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts[J]. Contributions to Mineralogy and Petrology, 128(2): 176−196.

      Nguyen H, Hanžl P, Janoušek V, et al. 2018. Geochemistry and geochronology of Mississippian volcanic rocks from SW Mongolia: Implications for terrane subdivision and magmatic arc activity in the Trans−Altai Zone[J]. Journal of Asian Earth Sciences, 164: 322−343. doi: 10.1016/j.jseaes.2018.06.029

      Niu H, Sato H, Zhang H, et al. 2006. Juxtaposition of adakite, boninite, high−TiO2 and low−TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 28: 439−456. doi: 10.1016/j.jseaes.2005.11.010

      Paterson S R, Vernon R H, Tobisch O. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 11: 349−363. doi: 10.1016/0191-8141(89)90074-6

      Patiño Douce A E, Beard J S. 1995. Dehydration−melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 36(3): 707−738. doi: 10.1093/petrology/36.3.707

      Qu G, Zhang J. 1994. Oblique thrust systems in the Altay orogen, China[J]. Journal of Southeast Asian Earth Sciences, 9: 277−287. doi: 10.1016/0743-9547(94)90035-3

      Rudnick R L. 1995. Making continental crust[J]. Nature, 378: 571−578. doi: 10.1038/378571a0

      Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 33: 267−309. doi: 10.1029/95RG01302

      Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Treatise on Geochemistry.

      Sawyer E W. 1994. Melt segregation in the continental crust[J]. Geology, 22: 1019.

      Sawyer E W. 1996. Melt segregation and magma flow in migmatites: implications for the generation of granite magmas[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 87: 85−94. doi: 10.1017/S0263593300006507

      Sawyer E W. 1998. Formation and Evolution of Granite Magmas During Crustal Reworking: the Significance of Diatexites[J]. Journal of Petrology, 39: 1147−1167. doi: 10.1093/petroj/39.6.1147

      Schofield D I, D'Lemos R. 1998. Relationships between syn−tectonic granite fabrics and regional PTtd paths: An example from the Gander−Avalon boundary of NE Newfoundland[J]. Journal of Structural Geology, 20: 459−471. doi: 10.1016/S0191-8141(97)00117-X

      Sengör A M C, Natal'ln B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and paleozoic crustal growth in Eurasia.[J]. Nature, 364: 209−304.

      Shi W, Zhang J D, Liu W G, et al. 2015. Hronology and petrology characteristics of Early Devonian gnessic. Granites from East Altai Orogenic Belt.[J]. Xinjiang Geology, 33: 7 (in Chinese with English abstract).

      Shu T, Jiang Y D, Schulmann K, et al. 2022. Structure, geochronology, and petrogenesis of Permian peraluminous granite dykes in the southern Chinese Altai as indicators of Altai East Junggar convergence[J]. GSA Bulletin, 135(5/6): 1243−1264.

      Soejono I, Čáp P, Míková J, et al. 2018. Early Palaeozoic sedimentary record and provenance of flysch sequences in the Hovd Zone (western Mongolia): Implications for the geodynamic evolution of the Altai accretionary wedge system[J]. Gondwana Research, 64: 163−183. doi: 10.1016/j.gr.2018.07.005

      Soejono I, Janoušek V, Žáčková E, et al. 2017. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif[J]. International Journal of Earth Sciences, 106(6): 2109−2129.

      Soejono I, Peřestý V, Schulmann K, et al. 2021. Structural, metamorphic and geochronological constraints on Palaeozoic multi−stage geodynamic evolution of the Altai accretionary wedge system (Hovd Zone, western Mongolia)[J]. Lithos, 396: 106204.

      Štípská P, Schulmann K, Lehmann J, et al. 2010. Early Cambrian eclogites in SW Mongolia: Evidence that the Palaeo−Asian Ocean suture extends further east than expected[J]. Journal of Metamorphic Geology, 28: 915−933. doi: 10.1111/j.1525-1314.2010.00899.x

      Sun M, Yuan C, Xiao W, et al. 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 247: 352−383. doi: 10.1016/j.chemgeo.2007.10.026

      Sun M, Long X, Cai K, et al. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D: Earth Sciences, 52: 1345−1358. doi: 10.1007/s11430-009-0110-3

      Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3

      Tang G J, Chung S L, Hawkesworth C J, et al. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth Planetary Science Letters, 464: 142−154. doi: 10.1016/j.jpgl.2017.02.022

      Taylor S R. 1967. The origin and growth of continents [J]. Tectonophysics, 4: 17−34.

      Tong L, Xu YG, Cawood P A, et al. 2014. Anticlockwise PT evolution at ~280Ma recorded from ultrahigh−temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?[J]. Journal of Asian Earth Sciences, 94: 1−11. doi: 10.1016/j.jseaes.2014.07.043

      Tong Y, Wang T, Hong D W, et al. 2007. Ages and origin of the early Devonian granites from thenorth part of Chinese Altai Mountains and its tectonic implications[J]. Acta Petrologica Sinica, 23(8): 1933−1944 (in Chinese with English abstract).

      Wan B, Xiao W, Zhang L, et al. 2011. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Implications for the accretionary history of the southern Altaids[J]. Journal of the Geological Society, 168: 1311−1321. doi: 10.1144/0016-76492011-021

      Wang S, Xu K, Huang Y Q, et al. 2018. Permian deformational history of western chinese Altai orogenic belt: Insights from structural and monazite U−Pb data[J]. Geotectonica et Metallogenia, 42: 798−811 (in Chinese with English abstract).

      Wang S, Jiang Y, Weinberg R, et al. 2021. Flow of Devonian anatectic crust in the accretionary Altai Orogenic Belt, central Asia: Insights into horizontal and vertical magma transfer[J]. GSA Bulletin, 133(11/12): 2501−2523.

      Wang T, Hong D W, Jahn, B M, et al. 2006. Timing, petrogenesis and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen[J]. Journal of Geology, 114: 735−751. doi: 10.1086/507617

      Wang T, Jahn B M, Kovach V P, et al. 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 110: 359−372. doi: 10.1016/j.lithos.2009.02.001

      Wang W, Wei C J, Wang T, et al. 2009. Confirmation of pelitic granulite in the Altai orogen and its geological significance[J]. Chinese Sci. Bull., 54: 918−923 (in Chinese with English abstract). doi: 10.1360/csb2009-54-7-918

      Wedepohl K H. 1995. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 59: 1217−1232. doi: 10.1016/0016-7037(95)00038-2

      Wei C J, Clarke G, Tian W, et al. 2007. Transition of metamorphic series from the Kyanite− to andalusite−types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations[J]. Lithos, 96: 353−374. doi: 10.1016/j.lithos.2006.11.004

      Wei C J, Wang W, Zhang Y H, et al. 2008. Low−pressure metamorphic belt and metapelitic granulites in the Altai orogenic Belt, Xinjiang [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27: 284−285 (in Chinese).

      Weinberg R F, Mark G. 2008. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India[J]. Geological Society of America Bulletin, 120: 994−1009. doi: 10.1130/B26227.1

      Weinberg R F, Hasalova P, Ward L, et al. 2013. Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia[J]. Geological Society of America Bulletin, 125: 1282−1300. doi: 10.1130/B30781.1

      Weinberg R F, Hasalová P. 2015. Water−fluxed melting of the continental crust: A review[J]. Lithos, 212/215: 158−188. doi: 10.1016/j.lithos.2014.08.021

      Weinberg R F, Becchio R, Farias P, et al. 2018. Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana[J]. Earth−Science Reviews, 187: 219−247. doi: 10.1016/j.earscirev.2018.10.001

      Wilhem C, Windley B F, Stampfli G M. 2012. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth−Science Reviews, 113: 303−341. doi: 10.1016/j.earscirev.2012.04.001

      Windley B F, Kroner A, Guo J, et al. 2002. Neoproterozoic to Paleozoicgeology of the Altai orogen, NW China[J]. Journal of Geology, 110: 719−737. doi: 10.1086/342866

      Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022

      Windley B F, Xiao W J. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 61: 73−87. doi: 10.1016/j.gr.2018.05.003

      Xiao W J, Kusky T. 2009. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction[J]. Gondwana Research, 16: 167−169. doi: 10.1016/j.gr.2009.05.001

      Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

      Xiao W J, Huang B, Han C, et al. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2/3): 253−273.

      Xiao W J, Song D F, Fwindley B, et al. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 34 (in Chinese).

      Xu J F, Castillo P R, Chen F R, et al. 2003. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution[J]. Chemical Geology, 193: 137−154. doi: 10.1016/S0009-2541(02)00265-6

      Xu K, Jiang Y, Wang S, et al. 2021. Multi−phase tectonothermal evolution in the SE Chinese Altai, central Asia: Structures, U−Pb monazite ages and tectonic implications[J]. Lithos, 392: 106148.

      Yakymchuk C, Siddoway C S, Fanning C M, et al. 2013. Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf–O perspective from West Antarctica [J]. Geological Society, London, Special Publications, 383: 169−210.

      Yuan C, Sun M, Xiao W, et al. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids[J]. Chemical Geology, 242: 22−39. doi: 10.1016/j.chemgeo.2007.02.013

      Zhang C, Santosh M, Luo Q, et al. 2019. Impact of residual zircon on Nd−Hf isotope decoupling during sediment recycling in subduction zone[J]. Geoscience Frontiers, 10: 241−251. doi: 10.1016/j.gsf.2018.03.015

      Zhang C L, Santosh M, Zou H B, et al. 2012. Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 52: 117−133. doi: 10.1016/j.jseaes.2012.02.016

      Zhang J, Sun M, Schulmann K, et al. 2015. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process[J]. Journal of Structural Geology, 73: 64−82. doi: 10.1016/j.jsg.2015.02.007

      Zhang X, Zhang H, Tang Y, et al. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 249: 262−281. doi: 10.1016/j.chemgeo.2008.01.005

      Zhuag Y X. 1994. The pressure−temperature−space−time (PTSt) evolution of metamorphism and development mechanism of the thermal−structural−gneiss domes in the Chinese Altaides[J]. Acta Geologica Sinica, 68: 35−47 (in Chinese).

      蔡宏明, 王蓉, 刘桂萍, 等. 2022. 东天山晚泥盆世二长花岗岩的发现及其对阿奇山−雅满苏带构造演化的制约[J]. 地质通报, 41(7): 1184−1190. doi: 10.12097/j.issn.1671-2552.2022.07.005
      何国琦, 刘德权, 李茂松, 等. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列[J]. 新疆地质, 13: 99−194.
      李会军. 2006. 阿尔泰-蒙古微大陆的确定及其意义[J]. 岩石学报, 22: 1369−1379. doi: 10.3321/j.issn:1000-0569.2006.05.025
      刘伟, 刘丽娟, 刘秀金, 等. 2010. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J]. 岩石学报, 26(2): 387−400.
      施文翔, 张建东, 刘崴国, 等. 2015. 阿尔泰造山带东段早泥盆世片麻状花岗岩岩石地球化学及年代学特征[J]. 新疆地质, 33: 456−462. doi: 10.3969/j.issn.1000-8845.2015.01.003
      童英, 王涛, 洪大卫, 等. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J]. 岩石学报, 28: 1933−1944. doi: 10.3969/j.issn.1000-0569.2007.08.014
      汪晟, 徐扛, 黄艳琼, 等. 2018. 中国阿尔泰造山带西部二叠纪构造演化: 来自构造地质及独居石U−Pb年代学的制约[J]. 大地构造与成矿学, 42: 798−811.
      王伟, 魏春景, 王涛, 等. 2009. 中国阿尔泰造山带泥质麻粒岩的确定及地质意义[J]. 科学通报, 54: 918−923.
      魏春景, 王伟, 张颖慧, 等. 2008. 新疆阿尔泰造山带低压变质带与泥质麻粒岩[J]. 矿物岩石地球化学通报, 27: 284−285. doi: 10.3969/j.issn.1007-2802.2008.z1.152
      肖文交, 宋东方, Fwindley B , 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.
      庄育勋. 1994. 中国阿尔泰造山带变质作用PTSt演化和热−构造−片麻岩穹窿形成机制[J]. 地质学报, 68: 35−47.
    • 期刊类型引用(2)

      1. 杨旭明,文鹏帆,张春亢,张显云,康雅敬. 基于GTWR-LightGBM模型的京津冀地区近地面SO2浓度估算. 环境科学与技术. 2024(10): 204-215 . 百度学术
      2. 叶烨,叶晗迪,鲍杰利. 基于改进Adaboost算法的分布式光伏发电孤岛检测方法. 机电技术. 2024(05): 14-17+33 . 百度学术

      其他类型引用(1)

    图(11)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 3
    出版历程
    • 收稿日期:  2024-07-19
    • 修回日期:  2024-10-08
    • 网络出版日期:  2024-11-03
    • 刊出日期:  2024-12-14

    目录

      /

      返回文章
      返回