辽北清原大孤家韧性剪切带变形特征、变形时代及动力学背景

    宋志伟, 赵佳奇, 梁琛岳

    宋志伟, 赵佳奇, 梁琛岳. 2024: 辽北清原大孤家韧性剪切带变形特征、变形时代及动力学背景. 地质通报, 43(12): 2256-2271. DOI: 10.12097/gbc.2024.07.067
    引用本文: 宋志伟, 赵佳奇, 梁琛岳. 2024: 辽北清原大孤家韧性剪切带变形特征、变形时代及动力学背景. 地质通报, 43(12): 2256-2271. DOI: 10.12097/gbc.2024.07.067
    Song Z W, Zhao J Q, Liang C Y. Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province. Geological Bulletin of China, 2024, 43(12): 2256−2271. DOI: 10.12097/gbc.2024.07.067
    Citation: Song Z W, Zhao J Q, Liang C Y. Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province. Geological Bulletin of China, 2024, 43(12): 2256−2271. DOI: 10.12097/gbc.2024.07.067

    辽北清原大孤家韧性剪切带变形特征、变形时代及动力学背景

    基金项目: 国家重点研发计划项目《东亚俯冲陆缘的构造变形响应与转换》(编号:2022YFF0800401-2)和国家自然科学基金项目《东北地区山弯构造研究》(批准号:42130305)
    详细信息
      作者简介:

      宋志伟(1998− ),男,在读博士生,从事构造地质学研究。E−mail:songzw19@mails.jlu.edu.cn

      通讯作者:

      梁琛岳(1986− ),男,博士,教授,从事构造地质学研究。E−mail:chenyueliang@jlu.edu.cn

    • 中图分类号: P54; P597+.3

    Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province

    • 摘要:

      辽北清原地区位于华北克拉通北缘东段,发育大规模强变形花岗质岩石,是进一步研究中生代燕山运动和东北地区多构造体系叠加、转换过程的重要窗口。通过详细的宏微观构造解析、有限应变测量、石英EBSD组构分析和锆石U−Pb测年,厘定了区域内大孤家韧性剪切带的变形特征、变形时代和动力学背景。结果显示,大孤家韧性剪切带发育走向NW―SE的构造面理和倾伏向SE的矿物拉伸线理,整体具有NW向左行走滑剪切特点。岩石变形温度较高,介于550~650°C之间。剪切带内花岗质岩石主要形成于中生代多期次岩浆活动,结合区域构造年代学资料,限定剪切带变形时代为晚侏罗世末—早白垩世初,为燕山运动B幕在辽北地区的局部响应。古太平洋板片俯冲导致的区域断裂带重新活化是大孤家韧性剪切带形成的主要原因。

      Abstract:

      The Qingyuan area in northern Liaoning Province is located in the eastern segment of the northern margin of the North China Craton, with large−scale strongly deformed granitic rocks. It is an important window to further study the Mesozoic Yanshanian movement and the superposition and transformation of multiple tectonic regimes of NE China. In this paper, the deformation characteristics, age and dynamical background of the regional Dagujia ductile shear zone are determined by detailed macro− and micro−structure analysis, finite strain measurements, quartz EBSD fabric and zircon U−Pb dating. The results show that the Dagujia ductile shear zone develops NW−SE−trending foliations and SE−plunging mineral stretching lineations, with a NW−trending sinistral strike−slip shear characteristics. The deformation temperatures of the rocks are relatively high, ranging between 550°C and 650°C. The granitic rocks in the shear zone primarily formed in Mesozoic multi−stage magmatism. Combined with the regional tectonic chronology data, the deformation age of the shear zone is the latest Late Jurassic to earliest Early Cretaceous, reflecting the local response of the Yanshanian Movement B−episode in the northern Liaoning Province. The Reactivation of regional fault zones caused by the subduction of the Paleo−Pacific Plate is the main reason for the formation of the Dagujia ductile shear zone.

    • 图  1   华北克拉通和中亚造山带大地构造分区图(a, 据Wu et al., 2011修改)及研究区地质简图(b, 据Gu et al., 2018段东等, 2024修改;黄色方框中数字代表区域内岩浆岩的形成年龄)

      Ⅰ—额尔古纳地块;Ⅱ—兴安地体;Ⅲ—松嫩-张广才岭地块;Ⅳ—佳木斯-兴凯地块;Ⅴ—那丹哈达地体;Ⅵ—陆源活动带;A—索伦-西拉木伦-长春-延吉缝合带;B—新林-喜桂图缝合带;C—黑河-贺根山缝合带;D—嘉荫-牡丹江缝合带;E—跃进山缝合带;F1—赤峰-开原断裂;F2—依兰-伊通断裂;F3—敦化-密山断裂;F4—郯庐断裂

      Figure  1.   Tectonic division of the North China Craton and the Central Asian Orogenic Belt (a), and geological map of the study area (b)

      图  2   辽北清原大孤家镇地区地质简图(底图据1∶50000大孤家幅、猴石幅地质图修改)

      Figure  2.   Geological map of the Dagujia Town, Qingyuan, northern Liaoning Province

      图  3   辽北清原大孤家镇典型变形岩石石英C轴组构图(m.u.d.代表极点密度)

      Figure  3.   Quartz C-axis pole figures of typical deformed rocks in Dagujia Town, Qingyuan, northern Liaoning Province

      图  5   辽北清原大孤家镇强变形岩石中部分锆石的阴极发光图像

      Figure  5.   Cathodoluminescence images of some zircons from strongly deformed rocks in Dagujia Town, Qingyuan, northern Liaoning Province

      图  4   Flinn有限应变判别图解(底图据郑亚东等, 1985

      Figure  4.   Flinn finite strain discrimination diagram

      图  6   辽北清原大孤家镇强变形岩石锆石U−Pb年龄谐和图

      Figure  6.   Zircon U−Pb concordia diagrams of strongly deformed rocks from Dagujia Town, Qingyuan, northern Liaoning Province

      图  7   早白垩世粗粒碱性花岗岩宏微观结构特征及锆石U−Pb谐和图

      Figure  7.   Field and microstructural characteristics of Early Cretaceous coarse−grained alkaline granite and zircon U−Pb concordia diagram

      表  1   辽北清原大孤家韧性剪切带典型露头产状

      Table  1   Typical outcrop occurrences in the Dagujia ductile shear zone in Qingyuan, northern Liaoning Province

      样品点 采样位置 主要岩石类型 面理(S)和线理(L)
      21QY1 42°19′40.6″N、
      124°54′37.9″E
      花岗质糜棱岩 22°∠66°(S); 45°∠84°(S); 45°∠74°(S); 35°∠70°(S); 115°∠18°(L)
      21QY2 42°23′08.4″N、
      124°50′00.4″E
      花岗质糜棱岩 40°∠24°(S); 50°∠19°(S); 60°∠14°(S); 115°∠9°(L);
      50°∠12°(S); 123°∠4°(L); 70°∠31°(S); 65°∠32°(S)
      21QY4 42°22′27.9″N、
      124°54′59.4″E
      钾长花岗质糜棱岩 37°∠59°(S); 120°∠26°(L); 43°∠62°(S); 120°∠24°(L)
      23QY1 42°19′07.0″N、
      124°56′18.8″E
      黑云母钾长质花岗糜棱岩 54°∠72°(S); 66°∠80°(S)
      23QY3 42°19′23.3″N、
      124°54′35.0″E
      黑云母花岗质糜棱岩 45°∠71°(S); 38°∠75°(S); 32°∠63°(S)
      23QY5 42°22′17.7″N、
      124°52′55.2″E
      花岗质糜棱岩 22°∠48°(S)
      23QY7 42°22′08.6″N、
      124°45′01.3″E
      花岗质糜棱岩 34°∠56°(S); 32°∠58°(S)
      23QY11 42°26′22.4″N、
      124°55′23.8″E
      花岗质糜棱岩 42°∠34°(S); 50°∠21°(S); 58°∠19°(S); 20°∠33°(S); 12°∠35°(S); 42°∠44°(S);
      20°∠29°(S); 107°∠12°(L); 18°∠36°(S); 89°∠15°(L)
      下载: 导出CSV

      表  2   辽北清原大孤家镇变形岩石的有限应变测量结果

      Table  2   Finite strain results of typical deformed rock in Dagujia Town, Qingyuan, northern Liaoning Province

      样品号长短轴法Fry法
      X/ZY/ZX/YFlinn参数(KX/ZY/ZX/YFlinn参数(K
      20QY5-11.441.291.120.431.491.341.110.36
      21QY1-11.811.611.120.251.831.631.120.24
      21QY1-21.671.521.100.221.621.461.110.27
      21QY1-41.741.571.110.231.811.641.100.20
      21QY2-11.981.561.270.541.911.511.260.57
      21QY2-21.881.581.190.381.851.551.190.40
      21QY2-a1.791.441.240.601.751.411.240.63
      21QY2-2a1.961.611.220.411.951.591.230.44
      21QY3-12.121.781.190.302.081.741.200.32
      21QY3-22.071.691.220.392.111.721.230.38
      21QY4-41.351.221.110.511.431.281.120.45
      21QY4-a1.471.291.140.511.521.311.160.55
      23QY1-11.771.491.190.431.721.451.190.46
      23QY3-12.131.631.310.552.041.581.290.56
      23QY11-11.891.661.140.261.821.611.130.26
      下载: 导出CSV
    • Bhattacharya A R, Weber K. 2004. Fabric development during shear deformation in the Main Central Thrust Zone, NW−Himalaya, India[J]. Tectonophysics, 387(1): 23−46.

      Chen H Y, Zhang Y Q, Zhang J D, et al. 2014. LA−ICP−MS zircon U−Pb age and geochemical characteristics of tuff of Jiulongshan Formation from Chengde basin, northern Hebei[J]. Geological Bulletin of China, 33(7): 966−973 (in Chinese with English abstract).

      Chen J S, Li W W, Shi Y, et al. 2022. Evolution of the eastern segment of the northern margin of the North China Craton in the Triassic: Evidence from the geochronology and geochemistry of magmatic rocks in Kaiyuan area, North Liaoning[J]. Acta Petrologica Sinica, 38(8): 2216−2248 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.03

      Chen Y, Zhu G, Jiang D Z, et al. 2013. Timing Determination of Phase B of the Yanshanian Movement in the Eastern North China Craton: Evidence from Dating of A Ductile Shear Zone in Sihetang, Northeastern Beijing[J]. Acta Geologica Sinica, 87(3): 295−310 (in Chinese with English abstract).

      Chen L M, Liu P H, Du L L, et al. 2023. Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U−Pb−Hf isotopic and rare earth element composition in the garnet−staurolite−mica−quartz schist[J]. Geological Bulletin of China, 42(12): 2037−2059 (in Chinese with English abstract).

      Dong S W, Zhang Y Q, Zhang F Q. et al. 2015. Late Jurassic−Early Cretaceous Continental Convergence and Intracontinental Orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 114: 750−770. doi: 10.1016/j.jseaes.2015.08.011

      Dong S W, Zhang Y Q, Li H L, et al. 2018. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 61: 1888−1909. doi: 10.1007/s11430-017-9297-y

      Duan D, Zheng C Q, Liang C Y, et al. 2024. Petrogeochemical characteristics and tectonic significance of Middle Jurassic intrusive pluton in Xiajiabao area, Qingyuan, northern Liaoning[J]. Earth Science, 49(3): 868−892 (in Chinese with English abstract).

      Fry N. 1979. Random point distributions and strain measurements in rocks[J]. Tectonophysics, 60(1/2): 89−105. doi: 10.1016/0040-1951(79)90135-5

      Fu Z B, Zhao Y, Liu J L, et al. 2018. Revisiting of the Yanshanian basins in western and northern Beijing, North China[J]. Journal of Asian Earth Sciences, 163: 90−107. doi: 10.1016/j.jseaes.2018.05.016

      Gu C C, Zhu G, Zhai M J, et al. 2016. Features and origin time of Mesozoic strike−slip structures in the Yilan−Yitong Fault Zone[J]. Science China Earth Sciences, 59: 2389−2410. doi: 10.1007/s11430-016-5334-4

      Gu C C, Zhu G, Li Y J, et al. 2018. Timing of deformation and location of the eastern Liaoyuan Terrane, NE China: Constraints on the final closure time of the Paleo−Asian Ocean[J]. Gondwana Research, 60: 194−212. doi: 10.1016/j.gr.2018.04.012

      Han Y G, Yan D P, Li Z L. 2015. A new solution for finite strain measurement by Fry method in the CorelDRAW platform[J]. Geoscience, 29(3): 494−500 (in Chinese with English abstract).

      Hao W X, Zhu G, Zhu R X. 2019. Timing of the Yanshan Movement: Evidence from the Jingxi Basin in the Yanshan fold−and−thrust belt, eastern China[J]. International Journal of Earth Sciences, 108: 1961−1978. doi: 10.1007/s00531-019-01743-5

      Hao W X, Zhu R X, Zhu G. 2020. Jurassic tectonics of the eastern North China Craton: Response to initial subduction of the Paleo−Pacific Plate[J]. Geological Society of America Bulletin, 133(1/2): 19−36.

      Hu P Y, Liang C Y, Zheng C Q, et al. 2019. Tectonic transformation and metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from geochemistry and zircon U−Pb geochronology of the adamellites in Xingcheng, western Liaoning, China[J]. Minerals, 9(9): 518. doi: 10.3390/min9090518

      Li H L, Zhang H R, Qu H J, et al. 2014. Initiation, the first stage of the Yanshan (Yenshan) Movement in Western Hills. Constraints from zircon U−Pb dating[J]. Geological Review, 60(5): 1026−1042 (in Chinese).

      Li Z X. 2016. Study on the prospecting method of Shahe fault zone in northern Liaoning[J]. Non−Ferrous Mining and Metallurgy, 32(2): 5−9 (in Chinese with English abstract).

      Li Z, Zhang W, Yang F, et al. 2020. Petrogenesis of the Mesoarchean granodioritic−tonalitic gneisses in the Kaiyuan area, northern Liaoning: Elemental and zircon U−Pb−Hf isotopic geochemical constraints[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1292–1311 (in Chinese with English abstract).

      Liang C Y, Liu Y J, Zheng C Q, et al. 2019. Macro−and microstructural, textural fabrics and deformation mechanism of calcite mylonites from Xar Moron−Changchun dextral shear zone, Northeast China[J]. Acta Geologica Sinica (English Edition), 93(5): 1477−1499. doi: 10.1111/1755-6724.14357

      Liang C Y, Liu Y J, Song Z W, et al. 2020. Deformation pattern and age of Hulin complex in Heilongjiang Province: Implications for subduction of the Palaeo−pacific plate during the Early Cretaceous, eastern NE China[J]. Acta Petrologica Sinica, 36(3): 685−702 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.04

      Liu D Y, Nutman A P, Compston W, et al. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino−Korean craton[J]. Geology, 20(4): 339−342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

      Liu J, Liu Z H, Li S C, et al. 2016. Geochronology and geochemistry of Triassic intrusive rocks in Kaiyuan area of the eastern section of the northern margin of North China[J]. Acta Petrologica Sinica, 32(9): 2739−2756 (in Chinese with English abstract).

      Liu J, Zhang J, Liu Z H, et al. 2020. Petrogenesis of Permo−Triassic intrusive rocks in Northern Liaoning Province, NE China: implications for the closure of the eastern Paleo−Asian Ocean[J]. International Geology Review, 62(6): 754−780. doi: 10.1080/00206814.2019.1633693

      Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05

      Liu Z H, Wang C, Song J, et al. 2016. 40Ar−39Ar dating and its tectonic significance of the Hulan Group at the northern margin of the North China Plate[J]. Acta Petrologica Sinica, 32(9): 2757−2764 (in Chinese with English abstract).

      Okudaira T, Takeshita T, Hara I, et al. 1995. A new estimate of the conditions for transition from basal <a> to prism [c] slip in naturally deformed quartz[J]. Tectonophysics, 250(1): 31−46.

      Peng Y B, Liu W B, Zhao J, et al. 2022. LA−ICS−MS zircon U−Pb dating and geochemical characteristics of Yingchang pluton in Xifeng area of the North Liaoning province[J]. Contributions to Geology and Mineral Resources Research, 37(3): 344−353 (in Chinese with English abstract).

      Ren Q, Zhang S, Wu H, et al. 2016. Further paleomagnetic results from the similar to 155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol−Okhotsk suture[J]. Gondwana Research, 35: 180−191. doi: 10.1016/j.gr.2015.05.002

      Shao H W, Li J J, Liu H G, et al. 2007. Shahe ductile shear zone in northern Liaoning Province and its ore−searching importance[J]. Geology and Resources, 16(1): 23−28 (in Chinese with English abstract).

      Shi S S, Shi Y, Zhang C, et al. 2022. Geochronology and geochemistry of the Triassic intrusive rocks in the Faku area, northern Liaoning, China: Constraints on the evolution of the Palaeo−Asian Ocean[J]. Geological Journal, 57(4): 1658−1681. doi: 10.1002/gj.4368

      Shu T, Xu H J, Zhang J F, et al. 2019. Deformation characteristics and time of Taipingshan folds in Fangshan area, Beijing: Implications for Early Cretaceous compressional tectonics of North China Craton[J]. Earth Science, 44(5): 1734−1748 (in Chinese with English abstract).

      Song Z W, Zheng C Q, Liang C Y, et al. 2021. Identification and geological significance of Early Jurassic adakitic volcanic rocks in Xintaimen area, western Liaoning[J]. Minerals, 11(3): 331. doi: 10.3390/min11030331

      Song Z W, Liang C Y, Neubauer F, et al. 2022. Multistage evolution of the Keluo complex in the northern Da Hinggan Mountains: Implications for the Mesozoic tectonic history of the eastern Central Asian Orogenic Belt[J]. Gondwana Research, 107: 339−369. doi: 10.1016/j.gr.2022.04.002

      Song Z W, Zheng C Q, Lin B, et al. 2023. Geological characteristics of Late Jurassic volcanic rocks in Sierbao−Baita Basin, West Liaoning province and its response to Yanshan Movement[J]. Earth Science, 48(10): 3689−3706 (in Chinese with English abstract).

      Su N, Zhu G. 2022. Stratigraphical sequences and chronological framework of Cretaceous in the western Liaoning region[J]. Geotectonica et Metallogenia, 46(5): 993−1021 (in Chinese with English abstract).

      Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River−Changchun−Yanji plate suture zone Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).

      Tang J, Xu W L, Wang F, et al. 2018. Subduction history of the Paleo−Pacific slab beneath Eurasian continent: Mesozoic−Paleogene magmatic records in Northeast Asia[J]. Science China Earth Sciences, 61: 527−559. doi: 10.1007/s11430-017-9174-1

      Wang X Q, Liu M, Mao J W. 2024. The Paleoproterozoic basin evolution of the Zhongtiao Mountain region in the Trans−North China Orogen, North China Craton[J]. Geological Bulletin of China, 43(4): 546–560 (in Chinese with English abstract).

      Wang Y, Sun L X, Zhou L Y, et al. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Science China Earth Sciences, 61: 499−514.

      Wang Z J, Xu W L, Pei F P, et al. 2015. Geochronology and geochemistry of middle Permian–Middle Triassic intrusive rocks from central–eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo−Asian Ocean[J]. Lithos, 238: 13−25. doi: 10.1016/j.lithos.2015.09.019

      Wong W H. 1926. Crustal Movement in Eastern China[C]//Procceding of the 3th Pan−Pacific Scientific Congress, Tokyo, 1: 265–285.

      Wong W H. 1927. Crustal movements and igneous activities in Eastern China since Mesozoic time[J]. Bulletin of the Geological Society of China, 6: 9−37. doi: 10.1111/j.1755-6724.1927.mp6001002.x

      Wong W H. 1929. The Mesozoic orogenic movement in Eastern China[J]. Bulletin of the Geological Society of China, 8: 33−44. doi: 10.1111/j.1755-6724.1929.mp8001004.x

      Wu F Y, Zhao G C, Sun D Y, et al. 2007. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 30(3): 542−556.

      Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

      Xu Z Q, Wang Q, Liang F H, et al. 2009. Electron backscatter diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 25(7): 1721−1736 (in Chinese with English abstract).

      Yuan L L, Zhang X H, Xue F H, et al. 2016. Late Permian high−Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo−Asian ocean and the orogen−craton boundary[J]. Lithos, 258/259: 58–76.

      Zeng J, Wei W, Lin W, et al. 2021. The Late Jurassic extensional event in the Yanshan fold and thrust belt (North China): New insights from an integrated study of structural geology, geophysics, and geochemistry of the Siganding granitic pluton[J]. Journal of Asian Earth Sciences, 211: 104708. doi: 10.1016/j.jseaes.2021.104708

      Zhai M G. 2012. Evolution of the North China Craton and Early Plate Tectonics[J]. Acta Geologica Sinica, 86(9): 1335−1349 (in Chinese with English abstract).

      Zhang C H, Deng H L, Li C M, et al. 2012. An out−of−syncline thrust model for the "Chengde Thrust Sheet" in central intraplate Yanshan Orogenic Belt, northern North China Craton[J]. Earth Science Frontiers, 19(5): 27−40 (in Chinese with English abstract).

      Zhang H H, Wang F, Xu W L, et al. 2016. Petrogenesis of Early–Middle Jurassic intrusive rocks in Northern Liaoning and Central Jilin provinces, Northeast China: Implications for the extent of spatial–temporal overprinting of the Mongol−Okhotsk and Paleo−Pacific tectonic regimes[J]. Lithos, 256/257: 132–147.

      Zhang N, Wang C B, Liu Z H, et al. 2022. Tectonic evolution of the Late Paleozoic−Early Mesozoic orogenic belt in the eastern segment of the northern margin of the North China Block: Evidence from meta−volcanic rocks of Jianshanzi, northern Liaoning Province[J]. Acta Petrologica Sinica, 38(8): 2323−2344 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.07

      Zhang Z K, Ling M X, Lin W, et al. 2020. “Yanshanian Movement” induced by the westward subduction of the Paleo−Pacific plate[J]. Solid Earth Sciences, 5(2): 103−114. doi: 10.1016/j.sesci.2020.04.002

      Zhao G C, Cawood P A, Li S, et al. 2012. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 222: 55−76.

      Zhao Y, Xu G, Zhang S H, et al. 2004. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 11(3): 319−328 (in Chinese with English abstract).

      Zhao Y, Gao H L, Zhang S H, et al. 2022. A brief century review of the “Yanshan Movement” and its founder[J]. Acta Geologica Sinica, 96(5): 1510−1523 (in Chinese with English abstract).

      Zheng Y D, Chang Z Z, 1985. Finite strain measurement and ductile shear zones[M]. Beijing: Geological Publishing House (in Chinese).

      Zhou J B, Han J, Simon A W, et al. 2013. A primary study of the Jilin−Heilongjiang high−pressure metamorphic belt: Evidence and tectonic implications[J]. Acta Petrologica Sinica, 29(2): 386−398 (in Chinese with English abstract).

      Zhu G, Liu C, Gu C C, et al. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan−Lu Fault Zone[J]. Science China Earth Sciences, 61: 386−405. doi: 10.1007/s11430-017-9136-4

      陈海燕, 张运强, 张计东, 等. 2014. 冀北承德盆地侏罗系九龙山组凝灰岩LA‒ICP‒MS锆石U−Pb年龄与地球化学特征[J]. 地质通报, 33(7): 966−973. doi: 10.3969/j.issn.1671-2552.2014.07.004
      陈井胜, 李崴崴, 时溢, 等. 2022. 华北板块北缘东段三叠纪构造演化——来自辽北开原岩浆岩年代学、地球化学的证据[J]. 岩石学报, 38(8): 2216−2248. doi: 10.18654/1000-0569/2022.08.03
      陈丽梅, 刘平华, 杜利林, 等. 2023. 辽宁弓长岭鞍山群时代与物源——来自石榴十字云母片岩碎屑锆石U–Pb–Hf同位素特征与稀土元素组成的约束[J]. 地质通报, 42(12): 2037−2059. doi: 10.12097/j.issn.1671-2552.2023.12.003
      陈印, 朱光, 姜大志, 等. 2013. 四合堂剪切带活动时代及其对燕山运动B幕时间的限定[J]. 地质学报, 87(3): 295−310. doi: 10.3969/j.issn.0001-5717.2013.03.001
      翟明国. 2012. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 86(9): 1335−1349. doi: 10.3969/j.issn.0001-5717.2012.09.002
      段东, 郑常青, 梁琛岳, 等. 2024. 辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义[J]. 地球科学, 49(3): 868−892.
      韩阳光, 颜丹平, 李政林. 2015. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质, 29(3): 494−500. doi: 10.3969/j.issn.1000-8527.2015.03.002
      李海龙, 张宏仁, 渠洪杰, 等. 2014. 燕山运动“绪动/A幕”的本意及其锆石U−Pb年代学制约[J]. 地质论评, 60(5): 1026−1042.
      李忠宪. 2016. 辽北沙河断裂带找矿方法研究[J]. 有色矿冶, 32(2): 5−9. doi: 10.3969/j.issn.1007-967X.2016.02.002
      李壮, 张伟, 杨帆, 等. 2020. 辽北开原中太古代花岗闪长质‒英云闪长质片麻岩成因: 元素和锆石U−Pb−Hf同位素地球化学制约[J]. 矿物岩石地球化学通报, 39(6): 1292−1311.
      梁琛岳, 刘永江, 宋志伟, 等. 2020. 黑龙江虎林杂岩变形样式与时代: 对中国东北东部早白垩世古太平洋板块俯冲的启示[J]. 岩石学报, 36(3): 685−702.
      刘锦, 刘正宏, 李世超, 等. 2016. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究[J]. 岩石学报, 32(9): 2739−2756.
      刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.
      刘志宏, 王超, 宋健, 等. 2016. 华北板块北缘呼兰群40Ar−39Ar定年及其构造意义[J]. 岩石学报, 32(9): 2757−2764.
      彭游博, 刘文彬, 赵军, 等. 2022. 辽北西丰地区晚侏罗世营厂岩体LA‒ICP‒MS锆石U‒Pb年龄及岩石地球化学特征[J]. 地质找矿论丛, 37(3): 344−353. doi: 10.6053/j.issn.1001-1412.2022.03.010
      邵会文, 李俊杰, 刘洪光, 等. 2007. 辽北沙河韧性剪切构造带及其找矿意义[J]. 地质与资源, 16(1): 23−28. doi: 10.3969/j.issn.1671-1947.2007.01.005
      舒坦, 续海金, 章军锋, 等. 2019. 北京房山地区太平山褶皱的变形特征和形成时代: 华北克拉通早白垩世挤压构造的意义[J]. 地球科学, 44(5): 1734−1748.
      宋志伟, 郑常青, 林波, 等. 2023. 辽西寺儿堡‒白塔盆地晚侏罗世火山岩地质特征及其对燕山运动的响应[J]. 地球科学, 48(10): 3689−3706.
      苏楠, 朱光. 2022. 辽西地区白垩纪地层序列与年代学框架[J]. 大地构造与成矿学, 46(5): 993−1021.
      孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河‒长春‒延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181.
      王晓青, 刘敏, 毛景文. 2024. 华北克拉通中部造山带中条山地区古元古代盆地演化[J]. 地质通报, 43(4): 546−560.
      许志琴, 王勤, 梁凤华, 等. 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 25(7): 1721−1736.
      张诺, 王长兵, 刘正宏, 等. 2022. 华北板块北缘东段晚古生代‒早中生代造山带构造演化: 来自辽北开原地区尖山子变质火山岩的证据[J]. 岩石学报, 38(8): 2323−2344.
      张长厚, 邓洪菱, 李程明, 等. 2012. 燕山板内造山带中部“承德逆冲构造”的褶皱相关断裂构造模型[J]. 地学前缘, 19(5): 27−40.
      赵越, 高海龙, 张拴宏, 等. 2022. 回眸燕山运动——致敬“燕山运动”的创建者和中国地质学会的奠基人翁文灏[J]. 地质学报, 96(5): 1510−1523. doi: 10.3969/j.issn.0001-5717.2022.05.002
      赵越, 徐刚, 张拴宏, 等. 2004. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030
      郑亚东, 常志忠. 1985. 岩石有限应变测量及韧性剪切带[M]. 北京: 地质出版社.
      周建波, 韩杰, Simon A W, 等. 2013. 吉林—黑龙江高压变质带的初步厘定: 证据和意义[J]. 岩石学报, 29(2): 386−398.
    图(9)  /  表(2)
    计量
    • 文章访问数:  971
    • HTML全文浏览量:  161
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-30
    • 修回日期:  2024-10-14
    • 网络出版日期:  2024-11-03
    • 刊出日期:  2024-12-14

    目录

      /

      返回文章
      返回