• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

基于证据权和随机森林的山东微山稀土矿三维成矿预测

董旭朝, 孙莉, 肖克炎, 兰君, 李程, 樊铭静, 杨鑫, 张鹏, 李志民, 邢楠, 李得建, 王健, 徐洪岩

董旭朝, 孙莉, 肖克炎, 兰君, 李程, 樊铭静, 杨鑫, 张鹏, 李志民, 邢楠, 李得建, 王健, 徐洪岩. 0: 基于证据权和随机森林的山东微山稀土矿三维成矿预测. 地质通报. DOI: 10.12097/gbc.2024.06.039
引用本文: 董旭朝, 孙莉, 肖克炎, 兰君, 李程, 樊铭静, 杨鑫, 张鹏, 李志民, 邢楠, 李得建, 王健, 徐洪岩. 0: 基于证据权和随机森林的山东微山稀土矿三维成矿预测. 地质通报. DOI: 10.12097/gbc.2024.06.039
Xuchao DONG, Li SUN, Keyan XIAO, Jun LAN, Cheng LI, Mingjing FAN, Xin YANG, Peng ZHANG, Zhimin LI, Nan XING, Dejian LI, Jian WANG, Hongyan XU. 0: Evidence Right and Random Forest Based 3D Metallogenic Prediction of Weishan REE Deposit in Shandong Province, China. Geological Bulletin of China. DOI: 10.12097/gbc.2024.06.039
Citation: Xuchao DONG, Li SUN, Keyan XIAO, Jun LAN, Cheng LI, Mingjing FAN, Xin YANG, Peng ZHANG, Zhimin LI, Nan XING, Dejian LI, Jian WANG, Hongyan XU. 0: Evidence Right and Random Forest Based 3D Metallogenic Prediction of Weishan REE Deposit in Shandong Province, China. Geological Bulletin of China. DOI: 10.12097/gbc.2024.06.039

基于证据权和随机森林的山东微山稀土矿三维成矿预测

基金项目: 全国战略性矿产潜力评价与定位预测;湖南省地调项目;国家重点研发计划

Evidence Right and Random Forest Based 3D Metallogenic Prediction of Weishan REE Deposit in Shandong Province, China

  • 摘要: 三维矿产资源潜力评价是深部成矿预测的重要手段。近年来,随着机器学习算法的融入,三维矿产资源潜力评价的精准度大幅提高,为矿产资源勘查领域做出了突出贡献。微山稀土矿目前开采标高约-200m,向深部追索探矿效果并不理想,需进一步开展深部找矿勘查工作,本研究利用三维地质建模技术刻画了矿体、岩体以及构造的空间展布形态,并定量提取了岩体、构造、地球化学等有利成矿要素。随后,运用证据权法分析各类地质要素与成矿作用的相关性并计算权重。在此基础上,建立随机森林模型,进行深部成矿预测。结合区域成矿背景,圈定了2处找矿靶区,为郗山稀土矿深部找矿提供了方向。
    Abstract: 3D mineral resource potential assessment is an important tool for deep ore prediction. In recent years, with the integration of machine learning algorithms, the accuracy of 3D mineral resource potential assessment has significantly improved, making outstanding contributions to the field of mineral resource exploration. The current mining elevation of the Weishan REE deposit is approximately -200m. The exploration results for deep-seated ore prospecting are not satisfactory, and further exploration is needed. In this study, 3D geological modeling was utilized to depict the spatial distribution of ore bodies, rock formations, and structures, and various geological factors were quantitatively extracted. Subsequently, the correlation between various geological factors and mineralization was analyzed using the weight of evidence, Based on this, a random forest model was established for deep ore prediction. Combining with the regional ore-forming background, two exploration targets were identified, providing insights for deep ore exploration in the Weishan REE deposit.
计量
  • 文章访问数:  106
  • HTML全文浏览量:  0
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-07-26
  • 录用日期:  2024-09-22
  • 网络出版日期:  2025-03-18

目录

    /

    返回文章
    返回