• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

黄铁矿微量元素对广西大瑶山金竹洲金矿床成矿作用的约束

杨晨雨, 张宇, 王许, 金婷婷, 赵廉洁, 沈鸿杰

杨晨雨, 张宇, 王许, 金婷婷, 赵廉洁, 沈鸿杰. 2025: 黄铁矿微量元素对广西大瑶山金竹洲金矿床成矿作用的约束. 地质通报, 44(2~3): 259-275. DOI: 10.12097/gbc.2023.09.023
引用本文: 杨晨雨, 张宇, 王许, 金婷婷, 赵廉洁, 沈鸿杰. 2025: 黄铁矿微量元素对广西大瑶山金竹洲金矿床成矿作用的约束. 地质通报, 44(2~3): 259-275. DOI: 10.12097/gbc.2023.09.023
Yang C Y, Zhang Y, Wang X, Jin T T, Zhao L J, Shen H J. Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis. Geological Bulletin of China, 2025, 44(2/3): 259−275. DOI: 10.12097/gbc.2023.09.023
Citation: Yang C Y, Zhang Y, Wang X, Jin T T, Zhao L J, Shen H J. Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis. Geological Bulletin of China, 2025, 44(2/3): 259−275. DOI: 10.12097/gbc.2023.09.023

黄铁矿微量元素对广西大瑶山金竹洲金矿床成矿作用的约束

基金项目: 湖南省科技创新计划项目《关键金属资源勘查》(编号:2021RC4055)
详细信息
    作者简介:

    杨晨雨(1999− ), 男,硕士,地质资源与地质工程专业。E−mail:205011065@csu.edu.cn

    通讯作者:

    张宇(1985− ), 男,博士,副教授,从事矿床学研究。E−mail:zyu2005@csu.edu.cn

  • 中图分类号: P578.2+92; P618.51

Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis

  • 摘要:
    研究目的 

    作为钦杭成矿带的重要组成部分,广西大瑶山地区发育众多金矿床,但由于成矿的精细过程、成矿物质来源等方面缺乏有效的制约,其矿床成因一直存在争议。本次以大瑶山金竹洲金矿床为研究对象,为区域金矿床成因提供约束。

    研究方法 

    黄铁矿是热液矿床中常见的蚀变矿物,其微量元素特征能够在反演物理化学条件、制约成矿精细过程、限制矿床成因等方面发挥重要作用。通过野外地质调查,在成矿过程精细解剖的基础上,借助扫描电镜、电子探针、激光剥蚀等离子质谱仪等测试技术,开展金竹洲黄铁矿内部结构和原位微量元素研究。

    研究结果 

    大瑶山中部的金竹洲金矿床是区内典型金矿床之一,以发育近南北向的含金石英脉为特征,其成矿过程可划分为3个阶段:(Ⅰ)石英-绢云母-黄铁矿-毒砂阶段;(Ⅱ)石英-自然金-多金属硫化物阶段;(Ⅲ)石英-方解石-绿泥石阶段。系统的背散射图像观察发现,Ⅰ阶段黄铁矿(Py1)发育明显的核-幔-边结构,Ⅱ阶段多孔状和富硫化物包裹体的黄铁矿(Py2)明显交代Ⅰ阶段黄铁矿幔部(Py1b)。原位微区微量元素分析显示,Py1核部(Py1a)Co、Ni、Se、Bi等元素含量较高;幔部(Py1b)富集As和Au;边部(Py1c)元素含量普遍偏低;Py2呈现出亏损Au、As的特征。从Py1a、Py1b到Py1c,Co、Ni两种微量元素含量呈下降趋势,反映温度逐渐降低,这可能是导致Ⅰ阶段黄铁矿出现核-幔-边结构的主要因素;孔洞状且富含包裹体(如方铅矿、辉银矿)的Py2与Py1b的交代界线呈尖锐、突变接触,同时Py2中As、Au等微量元素显著低于Py1b,说明Py2可能是Py1b经过溶解-再沉淀形成的,该作用导致Py1b中的Au发生活化并在Ⅱ阶段富集沉淀形成自然金。

    结论 

    金竹洲黄铁矿明显富集亲岩浆元素Se(3.76×10−6 ~ 73.3×10−6,平均值16.5×10−6),结合大瑶山地区普遍发育岩浆热液成因的金矿床及深部存在巨大隐伏岩体的可能,推测金竹洲金矿床可能为岩浆热液成因。

    Abstract:
    Objective 

    As an important part of the Qin−Hang Metallogenic Belt, the Dayaoshan district develops abundant gold deposits. However, due to the lack of effective constraints on the ore−forming process ore source the genesis of these deposits has always been controversial. The aim of this study is to provide constraints on the deposit genesis of regional gold deposits by taking the Jinzhuzhou gold deposit in the Dayaoshan district as the study object.

    Methods 

    Pyrite is a common mineral in hydrothermal deposits, and its trace element geochemistry can play an important role in constraints on physicochemical conditions, ore−forming process and origin of deposits. In this paper, the internal structure and in situ trace element studies of Jinzhuzhou pyrite are carried out through field geological investigations, on the basis of fine dissection of the metallogenic process, and with the help of SEM, EPMA, LA−ICP−MS and other testing techniques.

    Results 

    The Jinzhuzhou gold deposit is one of the typical gold deposits in this district, and characterized by the NS−trending ore−bearing quartz veins. Its mineralization can be divided into three stages: (Ⅰ) Quartz−sericite−pyrite−arsenopyrite stage; (Ⅱ) Quartz−native gold−polymetallic sulfide stage; (Ⅲ) Quartz−calcite−chlorite stage. Systematic back−scattering imaging observations revealed that the Stage Ⅰ pyrite (Py1) has developed a distinct core−mantle−rim texture, while the porous Stage Ⅱ pyrite (Py2) trapping some sulfide inclusions commonly replaces the mantle zone (Py1b) of Py1. In−situ LA−ICP−MS trace element analysis showed that the core zone (Py1c) of Py1 is enriched in Co, Ni, Se, and Bi. Py1b is commonly enriched in As and Au, while the rim zone of (Py1c) of Py1 is commonly depleted in trace elements. Generally, Py2 is characterized by the depletion of Au−As. Notably, the Co−Ni concentrations declines from Py1a, through Py1b, to Py1c, suggesting a gradual decreasing temperature, which may have been responsible for the core−mantle−rim texture of Py1. Moreover, the sharp and irregular contact boundary between Py2 and Py1b, abundant porosities and mineral inclusion of Py2, and the lower Au−As concentrations of Py2 than Py1b, indicate that Py2 may have been formed via dissolution and precipitation of Py1b. This process results in the remobilization of gold solid solution within Py1b and the further precipitation of visible gold in Stage Ⅱ.

    Conclusions 

    Generally, the Jinzhuzhou pyrite is obviously enriched in Se (3.76 ~ 73.3×10−6, with an average of 16.5×10−6). Combining with the widespread development of magmatic−hydrothermal gold deposits, and the possible concealed magmatic pluton in the Dayaoshan district, it is inferred that the Jinzhuzhou gold deposit may have been magmatic hydrothermal origin.

    创新点

    以广西金竹洲金矿床为研究对象,通过黄铁矿的内部结构和化学成分反演成矿的物理化学条件变化,揭示金的沉淀富集机制,结合多方面证据限定金竹洲金矿床的矿床成因。

  • 关于琼东南盆地内的烃源岩,前人重点对渐新统崖城组烃源岩特征及其对油气富集的控制作用进行了分析,而对始新统烃源岩方面的研究较少,主要是由于之前琼东南盆地几乎未钻遇过始新统(杨泽光等,2022)。随着勘探的深入,近期在琼东南盆地松西凹陷新钻探了S32-6-1井,钻遇一套75 m厚的始新统油页岩。这是琼东南盆地首次钻遇油页岩,取得了盆地油气勘探史上的新突破,对下一步油气勘探具有里程碑式的意义。为进一步评价该源岩,理清这套油页岩的地球化学特征及其生烃潜力,本文利用新钻探的S32-6-1井油页岩壁心、岩屑样品,通过一系列地球化学分析测试,在录井和测井资料基础上,结合地震资料解释及盆地模拟技术,精细分析了油页岩特征及生烃潜力,并对比分析了周缘地区原油的地球化学特征,厘清了油、源之间的关系,为琼东南盆地后续勘探选区提供决策参考。

    琼东南盆地是位于南海西北部的新生代大陆边缘拉张性盆地,始新世—早渐新世,盆地受太平洋−欧亚板块相互作用及印度−欧亚板块作用,产生北西—南东向拉张应力场,形成北东向控凹断裂,盆地整体呈北东—南西走向。琼东南盆地平面上表现为“多坳多隆”的构造特征,纵向上具有“下断上坳”的双层结构(张功成等,2007朱伟林等,2008毛雪莲等,2021),自北向南可分为4个一级构造单元。北部坳陷位于盆地西北部,是主要的生油气区,北邻海南隆起,南接中部隆起(朱伟林等,2007何家雄等,2020),自西往东可进一步划分为崖北凹陷、松西凹陷、松东凹陷3个次级凹陷(图1)。北部坳陷在5号断裂的控制下形成了北断南超的大型半地堑结构。在始新世处于断陷阶段,发育多个孤立凹陷,该时期海侵范围小,主要为湖相沉积。早期湖水较浅,发育滨浅湖相沉积,随着湖水加深,逐渐发育中深湖相沉积。渐新世处于断-坳转换阶段,海平面开始扩张,主要为滨浅海相沉积。至新近纪,发生大规模区域海侵,沉积了厚层的新近系海相地层。古近系自下而上为始新统岭头组、渐新统崖城组和陵水组(黄保家等,2014徐新德等,2016范彩伟等,2021),其中始新统油页岩是本次研究的目标层段。

    图  1  琼东南盆地构造单元划分图
    Figure  1.  Structural unit division map of Qiongdongnan Basin

    松西凹陷始新统岭头组岩性存在明显的上、中、下三分结构,上部岭头组一段主要为细砂岩、泥质细砂岩与泥岩不等厚互层,与顶部的渐新统崖城组整合接触。该段化石相对较丰富,以裸子植物花粉双束松粉为主,被子植物花粉含量相对较低,常见栎粉(小栎粉和小亨氏栎粉),其他藻类以葡萄藻未定多种为主,盘星藻未定多种和粒面球藻少量出现。根据孢粉组合特征,推断该段沉积环境为浅湖,地层时代应为早渐新世—晚始新世。下部岭头组三段为细砂岩、粉砂岩、粉砂质泥岩与泥岩不等厚互层,与底部的中生界花岗岩呈不整合接触。该段孢粉组合以被子植物花粉栎粉(包括小栎粉和小亨氏栎粉)为主,裸子植物花粉(包括双束松粉和巨大双束松粉)含量相对较低,推断该段沉积环境也为浅湖,地层时代应为始新世。中部岭头组二段为一套厚层油页岩,该段化石十分丰富,以被子植物花粉(小栎粉和小亨氏栎粉)为主,裸子植物花粉(主要为双束松粉)含量较低。此外,该段富含湖相浮游藻类,以粒面球藻为主,其次为葡萄藻未定多种,盘星藻未定多种零星出现。根据孢粉组合特征,结合藻类分析结果,推断该段沉积环境为中深湖,地层时代应为始新世。类比珠江口盆地顺德凹陷已证实的始新统文昌组及油页岩层可以发现,琼东南盆地松西凹陷始新统与其具有相似的孢粉组合特征:均是以被子植物花粉栎粉为主,裸子植物花粉(主要为双束松粉)含量相对较低,反映为温度较高的亚热带气候;其次,在油页岩层段,湖相浮游藻类占绝对优势,以粒面球藻和盘星藻未定多种为主,葡萄藻未定多种在个别层段比较显著,指示中深湖相沉积环境。油页岩主要为灰黑色、灰褐色,泥质结构,性中硬、较脆,层状构造,具贝壳状断口,泛有油脂光泽。混杂少量石英等碎屑颗粒,见沥青条带,偶见黄铁矿,可见颜色较浅的粘土质条带或透镜体顺层理发育。闻着有很浓的油味,点火可燃,火苗呈黄色,岩屑搌碎后丙酮滴照呈乳白色中速扩散(图2)。

    图  2  S32-6-1井油页岩现场鉴定图片
    a—油页岩岩屑,呈灰黑色、灰褐色;b—油页岩壁心,层状构造,具贝壳状断口,泛油脂光泽;c—油页岩荧光,丙酮滴照呈乳白色扩散;d—油页岩点火,可燃,火苗呈黄色
    Figure  2.  S32-6-1 well oil shale field identification picture

    油页岩由于泥质、有机质含量高,在测井曲线上与砂岩和泥岩存在一定差异。一般来说,油页岩测井响应特征表现为“四高一低”的特点,即高自然伽马、高电阻率、高声波时差、高中子、低密度。根据录井岩性对S32-6-1井测井曲线进行分析,发现油页岩段对应的曲线存在明显差异,自然伽马明显较高(一般大于145 API),电阻率明显增大,中子明显较高,密度曲线特征不是很明显,仅部分段表现为低值,整体与下伏砂岩相近(2.3~2.6 g/cm3),推测与质不纯有关(图3)。

    图  3  S32-6-1井油页岩测井曲线特征
    Figure  3.  Characteristics of oil shale logging curves in well S32-6-1

    油页岩的形成环境一般为温暖湿润的还原环境,利于藻类的生长及有机质的保存。母源一般以湖相原生藻类体为主,陆源输入的高等植物为辅(曹涛涛等,2024)。微量元素地球化学参数Sr/Cu值对气候变化较敏感,是常用的古气候研究指标。在温暖湿润的气候环境中,Sr/Cu值呈现低值,一般为1.3~5.0;在干旱炎热的气候环境中,Sr/Cu值较高,一般大于5(Sarki Yandoka et al., 2014)。此外,气候指标C=(Fe+Mn+Cr+Ni+V+Co)/(Ca+Mg+Sr+Ba+K+Na)也可反映古气候条件。一般C>0.8代表温湿气候,0.2<C<0.8代表半湿润气候,C<0.2代表干热气候(Moradi et al., 2016)。S32-6-1油页岩段Sr/Cu平均值为3.66,C平均值为0.53,反映油页岩形成时为半湿润气候。油页岩段V/(V+Ni)和Th/U平均值分别为0.81、4.38,表明其形成于较缺氧的还原环境,有利于有机质的富集保存。另外,油页岩段反映其古盐度的指标Sr/Ba、Ga/(Ga+Fe)值均较低,平均值分别为0.15、0.001,表明其形成于陆相淡水环境。P、Cd被广泛用于古生产力研究。此外,研究表明,Mo与有机质的堆积速度一致,因此Mo元素也可以用来指示古湖泊生产力的大小(孙莎莎等,2015)。S32-6-1油页岩段P平均含量高达434.5×10−6,Cd平均含量高达0.3×10−6,Mo平均含量高达3.1×10−6,高于北美页岩中Mo的含量,反映该段油页岩具有很高的初级生产力。另外,该段油页岩中还有一定量的Ti,表明具有一定的陆源碎屑输入(于婷婷等,2022)。综上分析,松西凹陷油页岩沉积时期为温暖半湿润的还原淡水湖泊环境。P、Cd、Mo等营养元素输入增加,有利于藻类的大量繁殖,具有较高的古生产力,存在大量藻类、水生植物和少量陆源碎屑的供给,形成了有机质大量富集的厚层油页岩。

    从有机质丰度、类型、热演化程度等方面可研究分析有机质的性质。有机质丰度是表征烃源岩中有机质富集程度的指标,常用的参数较多,本次以总有机碳含量(TOC)、热解生烃潜量(S1+S2)指标来评价油页岩中的有机质丰度(卢双舫等,2008王元等,2018罗丽荣等,2022)。松西凹陷钻探的S32-6-1井的始新统油页岩样品TOC分布在1.33%~7.48%之间,平均为3.33%;S1+S2分布范围为6.43~52.41 mg/g,平均为22.2 mg/g,依据陆相烃源岩有机质丰度评价标准,该油页岩为好—优质级别的烃源岩(图4)。

    图  4  松西凹陷始新统油页岩有机质丰度评价
    Figure  4.  Evaluation of organic matter abundance of Eocene oil shale in Songxi Sag

    有机质类型不同,其生成的烃类特征会存在一定差异。通常有机质类型为腐泥型的,偏向于生油,有机质类型为腐殖型的,偏向于生气。利用烃源岩热解参数HITmax关系图(图5),对S32-6-1井钻遇的始新统油页岩的有机质类型进行研究判定。分析结果表明,琼东南盆地松西凹陷的这套始新统油页岩氢指数(HI)平均为606 mg/gTOC,有机质类型为Ⅰ~Ⅱ1型,为较好的生油母质类型。

    图  5  松西凹陷始新统油页岩有机质类型划分
    Figure  5.  Classification of organic matter types of Eocene oil shale in Songxi Sag

    有机质热演化程度是衡量烃源岩实际生烃能力的另一个重要指标,只有当有机质的热演化程度达到一定阶段时,才能大量生烃,热演化程度的高低直接影响了生油气的量和油气藏的规模(刘旭明等,2011王崇敬等,2018)。本次主要应用镜质体反射率(Ro/%)、岩石最高热解峰温(Tmax/℃)指标,根据《中华人民共和国石油天然气行业标准陆相烃源岩地球化学评价方法(SY/T 5735—1995)》(表1),对S32-6-1井钻遇的始新统油页岩成熟度进行判识。结果表明,琼东南盆地松西凹陷始新统油页岩Ro为0.7%~0.75%,Tmax为436~446℃,整体处于低熟—成熟阶段。

    表  1  陆相烃源岩有机质成烃演化阶段划分及判别指标(据SY/T 5735—1995)
    Table  1.  Hydrocarbon generation and evolution stages of organic matter in continental source rocks
    演化阶段 未成熟 低成熟 成熟 高成熟 过成熟
    Ro/% <0.5 0.5~0.7 0.7~1.3 1.3~2 >2
    Tmax/℃ <435 435~440 440~450 450~580 >580
    ɑɑɑ-C2920S/(20S+20R) <0.2 0.2~0.4 >0.4
    C29ββ/(ββ+ɑɑ) <0.2 0.2~0.4 >0.4
    下载: 导出CSV 
    | 显示表格

    生物标志化合物具有稳定的碳骨架,在沉积成岩和热演化的过程中基本能保持原始先质结构(Peters et al,2005),能反映原始先质的特征及古形成环境。因此,生物标志化合物在生源构成、沉积环境及有机质热演化方面应用广泛(孔庆云等,1987)。

    琼东南盆地松西凹陷钻遇的始新统油页岩样品正构烷烃主要呈过渡的“平台型”(图6),反映其母质输入以混源为主。姥植比(Pr/Ph)是判定氧化-还原古沉积水体环境的常用指标(王铁冠等,1995);奇偶优势指数(OEP)<1指示偏咸水强还原环境,OEP>1指示偏淡水湖沼相沉积环境(黄谦等,2000)。松西凹陷始新统油页岩Pr/Ph分布在2.2~2.65之间(表2),OEP为1.25~1.44,表明其沉积环境为弱还原的淡水湖沼相环境。碳优势指数(CPI)为1.19~1.26,表明油页岩成熟度相对较低。

    图  6  松西凹陷始新统油页岩正构烷烃碳数分布
    Figure  6.  Carbon number distribution of n-Alkanes in Eocene oil shale in Songxi Sag
    表  2  松西凹陷始新统油页岩生物标志化合物参数
    Table  2.  Biomarker parameters of Eocene oil shale in Songxi Sag
    生标参数 深度/m
    3536 3568 3586 3598
    nC21+nC22)/(nC28+nC29 0.81 0.88 0.85 0.77
    CPI 1.24 1.26 1.19 1.19
    OEP 1.27 1.44 1.31 1.25
    Pr/Ph 2.2 2.32 2.22 2.65
    Pr/nC17 1.99 1.3 1.22 2.01
    Ph/nC18 0.68 0.44 0.36 0.6
    C19TT/C23TT 0.19 0.36 0.4 0.25
    C24TeT/C26TT 0.77 1.4 1.22 0.91
    OL/C30H 0.1 0.17 0.16 0.16
    Ga/C30H 0.06 0.07 0.06 0.06
    Ts/Tm 1.71 1.74 1.96 2.35
    C27/C29ɑɑɑR 0.86 0.83 0.8 1.06
    C2920S/(20S+20R 0.36 0.4 0.39 0.42
    C29ββ/(ββ+ɑɑ 0.47 0.51 0.56 0.54
    4-甲基甾烷/C29甾烷 0.92 0.6 0.69 1
    下载: 导出CSV 
    | 显示表格

    此外,松西凹陷钻遇的始新统油页岩中普遍检测出了长链三环萜烷(TT)、四环萜烷(TeT)和五环三萜烷化合物。三环萜烷碳数分布主峰为C21TT,表明沉积环境为淡水湖相环境(肖洪等,2019)。伽马蜡烷是常用的沉积水体盐度指示参数(包建平等,2010),油页岩的伽马蜡烷指数(Ga/C30H)为0.06左右,表明其沉积水体为淡水环境。前人研究认为,C19TT/C23TT和C24TeT/C26TT对陆源输入指示作用较强,受成熟度影响较小(Hao et al,2011)。松西凹陷油页岩C19TT/C23TT值较低,分布在0.19~0.4之间,奥利烷指数(OL/C30H)为0.1~0.17,均较低,反映油页岩的母源输入中低等水生藻类较多,而该套油页岩的C24TeT/C26TT值分布在0.77~1.4之间,反映油页岩母质中含有一定量的陆源输入。对于甾烷系列化合物,通常在C27~C29规则甾烷系列中,C27规则甾烷来自低等水生生物和藻类,C29规则甾烷主要来源于高等植物。4-甲基甾烷可指示沟鞭藻和甲藻的贡献(陈建平等,2016)。松西凹陷这套始新统油页岩C27-C28-C29规则甾烷呈近“V”形,C27规则甾烷/C29规则甾烷值平均为0.89,表现出C29规则甾烷相对占优势,反映生源构成中具有一定量陆生高等植物输入;4-甲基甾烷指数为0.6~1,平均为0.8,含量较高,指示该套始新统油页岩生源构成中低等藻类含量较高。此外,松西凹陷油页岩C29甾烷ββ/(ββ+ɑɑ)值在0.47~0.56之间,表明其成熟度为低熟—成熟。综上所述,琼东南盆地松西凹陷油页岩的母质构成既有低等水生生物,又有高等陆生植物,具有混源输入特征,沉积环境为淡水湖沼相环境,热演化程度为低熟—成熟阶段。

    根据烃源岩的有机质性质,结合分布发育特征,对琼东南盆地松西凹陷S32-6-1井钻遇的始新统油页岩地球化学特征进行了研究。松西凹陷这套始新统油页岩有机质丰度高,类型为Ⅰ~Ⅱ1型,处于低熟—成熟阶段,生源构成具有混源输入特征,沉积环境为弱还原的淡水湖沼相环境,分布范围较广,发育厚度较大,具有良好的生烃潜力。

    围区内即北部坳陷带Y9、S34-3-1、S24-1-1等井(图1)均钻获原油,碳同位素对比发现,这些原油的全油碳同位素(δ13CPDB)值分布范围为−28.9‰~−24.83‰,与松西凹陷的S32-6-1井钻遇的始新统油页岩干酪根同位素(−28.5‰~−25.78‰)分布范围相近。

    油源色谱质谱指纹特征分析表明,围区内Y9、S34-3-1、S24-1-1等井已钻获的原油与S32-6-1井钻遇的始新统油页岩在母源特征上有良好的相似性(图7)。具体如下:奥利烷含量均很低,C27,C28,C29规则甾烷均呈弱“L”形或近“V”形,4-甲基甾烷含量整体较高,C27重排甾烷较高,伽马蜡烷含量低。但S32-6-1井油页岩成熟度明显较低,与原油成熟度不匹配。由此推测,围区内原油来自凹陷内部这套成熟的始新统源岩生成的页岩油。

    图  7  琼东南盆地北部坳陷带油源色谱质谱对比
    Figure  7.  Comparison of chromatographic mass spectra between crude oil and source rock in the northern depression of Qiongdongnan Basin

    此外,选取了反映生源构成、沉积环境等的多项生物标志物参数,对琼东南盆地北部坳陷带内的原油与始新统油页岩进行了对比研究(图8),两者整体表现出较强的相似性,进一步说明北部坳陷带原油主要来自成熟的始新统油页岩。

    图  8  琼东南盆地北部坳陷带原油及烃源岩生物标志物参数对比
    P1—奥利烷/C30藿烷;P2—伽马蜡烷/C30藿烷;P3—C31S藿烷/(S+R);P4—(藿烷+莫烷)C29/C30;P5—Ts/(Ts+Tm);P6—C27/C29ɑɑɑR;P7—C28/C29ɑɑɑR;P8—C2920S/(20S+20R);P9—C29ββ/(ββ+ɑɑ);P10—4-甲基甾烷/C29甾烷)
    Figure  8.  Comparison of biomarker parameters between crude oil and source rock in the northern depression of Qiongdongnan Basin

    琼东南盆地松西凹陷始新统烃源岩的钻揭发现,打开了琼东南盆地原油勘探新格局,实现了新领域突破。北部坳陷带原油生标特征与S32-6-1井钻遇的始新统源岩相似,反映北部坳陷带原油主要来自始新统成熟源岩,证实了这套始新统源岩的生烃能力。

    松西凹陷的油页岩地震相可类比阳江、开平等其他勘探成功的凹陷。油页岩层段地震相表现为低频、连续强反射特征。地震资料解释研究表明,松西凹陷的油页岩主要发育在凹陷的东洼,在洼陷中心部位沉积最厚,往南部的缓坡方向上倾尖灭(图9)。

    图  9  松西凹陷始新统油页岩展布图
    Figure  9.  Distribution map of Eocene oil shale in Songxi Sag

    用地震资料落实了松西凹陷始新统油页岩的规模、埋深及空间展布特征。松西凹陷油页岩/页岩的面积约102 km2,平均厚度282 m(图10),埋深3200~4800 m。根据松西凹陷周缘已钻井Ro统计结果,松西凹陷生油门限(Ro=0.5%)约为3200 m。结合实际钻井资料进行盆地模拟,结果显示,松西凹陷主体部位,即凹陷内始新统油页岩/页岩的Ro为0.8%~1.3%,表明已进入成熟大量生油阶段,生油强度大,原油资源量约3760×104 t。凹陷边缘斜坡带即S32-6-1井所处位置,始新统油页岩/页岩成熟度较低,Ro为0.5%~0.7%,还未大量生烃,生油强度较小,原油资源潜力仅380×104 t(图11图12)。经计算,松西凹陷可产生的原油资源潜力约为4140×104 t(主要是凹陷内成熟源岩),原油资源丰富,是有利的原油勘探领域。

    图  10  松西凹陷始新统油页岩/页岩厚度分布图
    Figure  10.  Thickness distribution map of Eocene oil shale&shale in Songxi Sag
    图  11  松西凹陷始新统油页岩/页岩成熟度Ro平面分布图
    Figure  11.  Plane distribution map of vitrinite reflectance of Eocene oil shale&shale in Songxi Sag
    图  12  松西凹陷始新统油页岩/页岩生油强度分布图
    Figure  12.  Distribution of oil generation intensity of Eocene oil shale&shale in Songxi Sag

    松西凹陷始新统油页岩的生烃潜力分析研究表明,松西凹陷油页岩发育且品质高,该套油页岩整装且源储配置好,既具备常规油气勘探的成藏条件,又是探索页岩油勘探的有利区带。探索发现,琼东南盆地北部坳陷带的其他各凹陷及顺德凹陷和北礁凹陷中均发育相似地震相的始新统,表明皆有较大的勘探潜力。因此,松西凹陷始新统油页岩的评价对琼东南盆地勘探具有重要的指导意义。

    (1)琼东南盆地松西凹陷始新统油页岩沉积环境为弱还原的淡水湖沼相环境,具有低等水生生物和高等陆生植物混源输入的特征。有机质丰度高、类型好,成熟度存在明显的分带性,凹陷内部成熟度较高,周缘斜坡成熟度较低。综合评价为好—优质级别烃源岩,凹陷内具备良好的生烃潜力。

    (2)油源色谱质谱指纹特征分析表明,北部坳陷带内原油与这套始新统油页岩有良好的亲属性,反映北部坳陷带原油主要来自始新统油页岩,证实了该套始新统油页岩的生烃能力

    (3)琼东南盆地松西凹陷始新统油页岩的面积为102 km2,平均厚度为282 m,埋深3200~4800 m,凹陷主体部位已进入成熟大量生油阶段,原油资源潜力约为4140×104 t。围区圈闭发育且成藏条件匹配好,常规油气和页岩油均有较大的勘探潜力。

  • 图  1   大瑶山地区地质简图(据陈懋弘等,2015修改)

    Figure  1.   Regional geological map of the Dayaoshan district

    图  2   金竹洲金矿床矿区地质图(a)和00号勘探线设计剖面图(b)(据广西昭平县金竹洲金矿勘查(变更)实施方案,2017修改)

    Figure  2.   Geological map of Jinzhuzhou gold deposit (a) and design section of exploration line 00 (b)

    图  3   金竹洲金矿床矿物共生组合

    Figure  3.   Mineral paragenesis of the Jinzhuzhou gold deposit

    图  4   金竹洲金矿床典型地质特征照片

    a—Ⅰ阶段和Ⅱ阶段石英脉及脉内黄铁矿等硫化物; b—Ⅰ阶段石英脉中的自形-半自形粒状结构黄铁矿(50 ~ 800 μm)和毒砂(50 ~ 100 μm); c—Ⅰ阶段石英脉中的绢云母; d—Ⅱ阶段黄铁矿发育更多孔洞和矿物包裹体,并明显交代Ⅰ阶段黄铁矿; e—Ⅱ阶段闪锌矿、方铅矿交代Ⅰ阶段毒砂,闪锌矿与黄铜矿呈固溶体分离结构; f—Ⅱ阶段毒砂多呈半自形粒状结构和碎裂结构,并交代Ⅰ阶段黄铁矿; g—Ⅱ阶段呈他形粒状结构的自然金(5 ~ 30 μm)与他形粒状结构的磁黄铁矿共生; h—Ⅱ阶段呈他形粒状结构的黝锡矿、黄铜矿、辉银矿、闪锌矿、锡石、银黝铜矿共生,并交代Ⅰ阶段黄铁矿(BSE); i—Ⅱ阶段中金红石与黄铁矿共生; j—Ⅱ阶段他形粒状结构磁黄铁矿与辉砷钴矿共生; k—Ⅲ阶段石英、方解石、绿泥石共生,其中绿泥石呈蠕虫状; l—Ⅲ阶段中方解石与呈他形粒状结构毒砂共生。Apy—毒砂; Arn—辉银矿; Au—自然金; Cal—方解石; Cbt—辉砷钴矿; Ccp—黄铜矿; Chl—绿泥石; Cst—锡石; Frb—银黝铜矿; Gn—方铅矿; Po—磁黄铁矿; Py—黄铁矿; Qtz—石英; Rt—金红石; Ser—绢云母; Sp—闪锌矿; Stn—黝锡矿

    Figure  4.   Typical geological characteristics of the Jinzhuzhou gold deposit

    图  5   金竹洲金矿床黄铁矿典型背散射图像

    a—Ⅰ阶段黄铁矿发育明显的核(Py1a)-幔(Py1b)-边(Py1c)结构,Py2交代Py1b; b ~ d—Py2发育大量孔洞和矿物包裹体

    Figure  5.   Representative BSE images of pyrite from the Jinzhuzhou gold deposit

    图  6   金竹洲金矿床不同类型黄铁矿微量元素箱线图

    Figure  6.   Box diagram showing trace element concentrations of pyrite from the Jinzhuzhou gold deposit

    图  7   金竹洲金矿床黄铁矿剥蚀信号图

    Figure  7.   Representative LA−ICP−MS time-resolved signals of pyrite from the Jinzhuzhou gold deposit

    图  8   金竹洲金矿床黄铁矿微量元素二元图

    Figure  8.   Binary diagrams of trace elements in the pyrite from the Jinzhuzhou gold deposit

    表  1   金竹洲金矿床手标本特征

    Table  1   Hand specimen characteristics of the Jinzhuzhou gold deposit

    序号 样品号 主要矿物组合 手标本特征 成矿阶段
    1 J1-7 石英-黄铁矿 石英脉,脉中含黄铁矿细脉 Ⅰ阶段
    2 J4-2 石英-黄铁矿 石英脉,脉中含少量黄铁矿 Ⅰ阶段
    3 J5-3 石英-黄铁矿 石英脉,脉中含黄铁矿细脉 Ⅰ阶段
    4 J6-4 石英-黄铁矿 石英脉边部蚀变晕 Ⅰ阶段
    5 J1-5a 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英脉及两侧蚀变带,脉中含大量硫化物 Ⅱ阶段
    6 J1-5b 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英脉及两侧蚀变带,脉中含大量硫化物 Ⅱ阶段
    7 J5-1a 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英脉,脉中黄铁矿等多金属硫化物呈细脉状 Ⅱ阶段
    8 J5-1b 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英脉,脉中黄铁矿等多金属硫化物呈细脉状 Ⅱ阶段
    9 J7-1 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英硫化物脉,脉中含大量硫化物 Ⅱ阶段
    10 J7-2 石英-黄铁矿-毒砂-方铅矿-闪锌矿 石英脉,脉中含少量硫化物 Ⅱ阶段
    下载: 导出CSV

    表  2   金竹洲金矿床黄铁矿电子探针分析结果

    Table  2   Electron microprobe analyses of pyrite from the Jinzhuzhou gold deposit %

    样品黄铁矿类型SFeAsCoNiCuPbSbAgAu总量
    J1-7Py1a53.7746.140.23------0.02100.17
    J1-7Py1a53.6946.200.25------0.04100.18
    J1-7Py1a53.8446.370.02-0.07-0.02---100.32
    J5-1bPy1a53.8446.230.96-------101.04
    J5-1bPy1a53.6246.400.64-------100.66
    J1-7Py1b53.1246.131.48--0.01----100.74
    J1-7Py1b52.8745.801.50---0.04--0.02100.23
    J5-1bPy1b52.1045.842.27--0.02----100.22
    J5-1bPy1b53.1146.091.45--0.01----100.67
    J5-1bPy1b53.4946.261.31---0.03---101.06
    J1-7Py1c54.2346.33-------0.03100.60
    J1-7Py1c53.4946.23--0.01-----99.74
    J1-7Py1c54.0646.24-------0.05100.36
    J1-7Py1c52.8046.00---0.02--0.010.0298.86
    J1-7Py1c53.7646.05-------0.0599.86
    J5-1bPy254.4946.50--------101.00
    J5-1bPy254.3346.44---0.030.02---100.83
    J5-1bPy254.2046.58---0.010.09--0.02100.89
    J5-1bPy253.9946.52--------100.51
    J5-1bPy254.1146.520.05-0.01-0.03---100.73
      注:“-”表示低于检出限
    下载: 导出CSV

    表  3   金竹洲金矿床黄铁矿微量元素含量

    Table  3   Electron microprobe analyses of pyrite from the Jinzhuzhou gold deposit 10−6

    类型 点号
    Co Ni Cu Zn Ge As Se Mo Ag Sb Te Au Tl Pb Bi
    Py1aJ1-7-PY1-3.240.500-3.983356-------0.061-
    Py1aJ1-7-PY50.6240.9136.460.9343.299587--1.055.84-4.110.36718.10.234
    Py1aJ1-7-PY90.10421058657393.548233--26.56.11-0.2610.05331.20.554
    Py1aJ1-7-PY110.25038.91.997.672.69100686.82-0.3831.17-1.520.02413.90.162
    Py1aJ1-7-PY140.1221.334509.062.61196139.04-13.945.1-14.00.4302010.300
    Py1aJ1-7-PY192.66151310529283542.622639--26921.7-1.530.1711110.970
    Py1aJ4-2PY2111.547.632642.43.1923884--17.846.1-2.240.23489.90.567
    Py1aJ4-2PY224.51-11.16.172.91282833.9-3.9837.7--0.20373.90.482
    Py1aJ5-1aPY252.292.4426.29.602.621919011.70.0601.859.61-2.650.16068.2-
    Py1aJ7-1PY310.1570.80410.01.473.00153044.74-21.428.3-2.700.238209870.287
    Py1aJ7-1PY370.0800.94484.53.183.542827838.9-65.5117-12.10.324525734.79
    Py1aJ1-5bPY48--10.2-1.232038115.30.0430.2690.512-6.180.0525.85-
    Py1aJ1-5bPY4976.01109.692.613.802560823.80.4445.024.94-4.960.15995450.186
    Py1aJ1-5bPY54-2.662.931.072.58735--4.675.86-0.3210.05413.1-
    Py1aJ1-5bPY57--5.230.9502.607676--8.2313.4-0.3030.13672.2-
    Py1bJ1-7-PY4--60.8-3.4932623--1.422.36-7.530.04416.40.026
    Py1bJ1-7-PY120.1430.71588.61.502.9518949--14.5119-4.261.114350.175
    Py1bJ1-7-PY160.77610.834714.22.892016016.2-8.5523.2-36.80.59960.20.070
    类型点号
    CoNiCuZnGeAsSeMoAgSbTeAuTlPbBi
    Py1bJ7-1PY270.313-1010.7703.7523947--78.3305-8.500.5251947-
    Py1bJ7-1PY29--1310.6992.8823449-0.097109429-9.060.7992539-
    Py1bJ7-1PY331.331.1981.81.143.37571284.82-69.2301-3.780.7321665-
    Py1bJ7-1PY380.1672.0863.7-3.141872873.3-1862681.414.960.67158792351.6
    Py1bJ5-1bPY412.7220.648.61.572.79243256.960.1927.0824.5-3.690.2001610.008
    Py1bJ5-1bPY420.0571.903451.763.32236566.950.07116.572.0-10.80.4306650.184
    Py1bJ5-1bPY45--82.31.963.18353689.710.0423.7131.8-13.50.0752080.042
    Py1bJ5-1bPY460.089-13939.13.302607110.01.2312.835.6-12.90.3094140.077
    Py1bJ1-5bPY52--13.9-3.3723581-0.0860.1320.435-2.21-8.20-
    Py1bJ1-5bPY56--1240.7912.7633410-0.0576.7927.4-7.690.030130-
    Py1bJ1-5bPY58--2450.8253.1550595-0.0454.125.880.05814.70.04121.1-
    Py1bJ7-1@5016.542316211.3-35921--146532-9.740.86327430.178
    Py1cJ1-7-PY2--71.5-3.518218--1.089.30-0.9370.0429.05-
    Py1cJ1-7-PY3--24.10.6964.35---2.1315.1--0.7666.00-
    Py1cJ1-7-PY7--28.0-4.31206--2.637.72--0.0681.93-
    Py1cJ1-7-PY8--15835.634.3410649-0.06317.632.9-3.061.4669.30.040
    Py1cJ1-7-PY10--56.8-3.1616912-0.0440.9458.31-1.060.12411.4-
    Py1cJ1-7-PY15--46.7-3.26237--3.8016.5-0.1880.5852.00-
    Py1cJ1-7-PY18--71027.23.11579--9.0834.4-0.8245.7042.40.019
    Py1cJ7-1PY26--36.317.01.3213206-0.03032.8109-5.350.228686-
    类型点号
    CoNiCuZnGeAsSeMoAgSbTeAuTlPbBi
    Py1cJ7-1PY340.161-3.472.842.728316--1.550.942-3.620.01016.4-
    Py1cJ7-1PY36--8.271.083.2621571--1.504.91-3.43-33.4-
    Py1cJ7-1PY39-1.9731.32.102.8212356--19.870.9-5.690.1738210.086
    Py1cJ1-5bPY51--1.101.603.377206-----0.159-0.701-
    Py1cJ1-5bPY551.94-34.97.663.3456854--9.6812.1-2.390.07960.8-
    Py1cJ1-5a@14--3.13--7312--2.455.72-0.3200.03419.4-
    Py1cJ1-5a@15--5.49--19224-----0.650-0.390-
    Py2J1-7-PY60.6900.799261281.43.694443-0.05163.9146-1.069.866460.066
    Py2J1-7-PY13--27978753.631849--84.3218-0.2421.6314870.112
    Py2J5-1aPY231.0624.66551262.92894-0.501127130-0.4871.3225500.558
    Py2J5-1aPY24--6571032.931059011.6-82.3223-0.5920.693114980.030
    Py2J7-1PY40-0.76816.91.233.063191--20.061.2-0.0670.37544960.049
    Py2J5-1bPY437.026.8117409.013.2962049.570.17921.99.70-0.5920.0992450.077
    Py2J5-1bPY44--7838183.442503.760.64341.546.3-0.2330.6361354-
    Py2J1-5bPY470.3456.011671623.517572--495138-0.8791.2510380.354
    Py2J1-5bPY50--1131542.971568--2.184.33-0.081-84.40.027
    Py2J1-5bPY53--91436.12.568.77--12.86.80--0.00658.40.028
    元素平均检出限0.0980.8060.8271.430.6961.565.970.1250.0490.2380.5100.0510.0080.0710.016
      注:“-”表示低于检出限
    下载: 导出CSV
  • Barker S L L, Hickey K A, Cline J S, et al. 2009. Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin−type gold deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 104(7): 897−904. doi: 10.2113/econgeo.104.7.897

    Belousov I, Large R R, Meffre S, et al. 2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration[J]. Ore Geology Reviews, 79: 474−499. doi: 10.1016/j.oregeorev.2016.04.020

    Blanchard M, Alfredsson M, Brodholt J P, et al. 2007. Arsenic incorporation into FeS 2 pyrite and its influence on dissolution: A DFT study[J]. Geochimica et Cosmochimica Acta, 71(3): 624−630. doi: 10.1016/j.gca.2006.09.021

    Bralia A, Sabatini G, Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353−374.

    Butler B I, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta, 64(15): 2665−2672. doi: 10.1016/S0016-7037(00)00387-2

    Cai M H, Liu G Q. 2000. Petrogenesis and gold mineralization of silicalite from cambrian peidi formation in east Guangxi[J]. South China Geology, (1): 29−33 (in Chinese with English abstract).

    Cao G S, Zhang Y, Chen H Y. 2023. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism[J]. Acta Petrologica Sinica, 39(8): 2330−2346(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.06

    Chen G Y, Sun D S, Yin H A. 2004. The genetic mineralogy and prospecting mineralogy[M]. Chongqing: Chongqing Publishing & Media Co. , Ltd. (in Chinese).

    Chen M H, Li Z Y, Li Q, et al. 2015. A preliminary study of multi−stage granitoids and related metallogenic series in Dayaoshan area of Guangxi, China[J]. Earth Science Frontiers, 22(2): 41−53 (in Chinese with English abstract).

    Chen M H, Dang Y, Zhang Z Q, et al. 2019. Multi−stage magmatism and mineralization in Dayaoshan area of Guangxi[M]. Beijing: Geology Press(in Chinese).

    Clark C, Grguric B, Mumm A S. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia[J]. Ore Geology Reviews, 25(3/4): 237−257.

    Cook J N, Ciobanu L C, Meria D, et al. 2013. Arsenopyrite−pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273

    Dang Y, Chen M H, Mao J W, et al. 2020. Weakly fractionated I−type granitoids and their relationship to tungsten mineralization: A case study from the early Paleozoic Shangmushui deposit, Dayaoshan area, South China[J]. Ore Geology Reviews, 117: 103281. doi: 10.1016/j.oregeorev.2019.103281

    Deditius A P, Utsunomiya S, Renock D, et al. 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 72(12): 2919−2933. doi: 10.1016/j.gca.2008.03.014

    Deditius A P, Utsunomiya S, Reich M, et al. 2011. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 42(1): 32−46. doi: 10.1016/j.oregeorev.2011.03.003

    Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 140: 644−670. doi: 10.1016/j.gca.2014.05.045

    Duan R C, Ling W L, Li Q, et al. 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with metallogenesis in South China: Geochemical constraints from the Longtoushan gold ore deposit of the Dayaoshan area, Guangxi Province[J]. Acta Geologica Sinica, 85(10): 1644−1658(in Chinese with English abstract).

    Feng Y Z, Zhang Y, Xie Y L, et al. 2020. Pyrite geochemistry metallogenic implications of Gutaishan Au deposit in Jiangnan Orogen, South China[J]. Ore Geology Reviews, 117: 103298. doi: 10.1016/j.oregeorev.2019.103298

    Fougerouse D, Micklethwaite S, Tomkins G A, et al. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution−reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 178: 143−159. doi: 10.1016/j.gca.2016.01.040

    Fougerouse D, Micklethwaite S, Ulrich S, et al. 2017. Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana[J]. Economic Geology, 112(1): 3−22. doi: 10.2113/econgeo.112.1.3

    Geisler T, Schaltegger U, Tomaschek F. 2007. Re−equilibration of zircon in Aqueous fluids and melts[J]. Elements, 3(1): 43−50. doi: 10.2113/gselements.3.1.43

    Gregory D D, Large R R, Halpin J A, et al. 2015. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 110(6): 1389−1410. doi: 10.2113/econgeo.110.6.1389

    Hastie C E, Kontak J D, Lafrance B. 2020. Gold remobilization: Insights from gold deposits in the Archean Swayze greenstone belt, Abitibi Subprovince, Canada[J]. Economic Geology, 115(2): 241−277. doi: 10.5382/econgeo.4709

    Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370: 519−527.

    Hu H, Lentz D, Li J W, et al. 2015. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 110(1): 1−8. doi: 10.2113/econgeo.110.1.1

    Hu Q F, Li Y, Hua E. 2011. Research on the ore−forming condition and mineralization laws on the gold deposit in Dayaoshan region, eastern Guangxi[J]. Mining Technology, 11(1): 81−83(in Chinese with English abstract).

    Huston D L, Sie S H, Suter G F, et al. 1995. Trace elements in sulfide minerals from eastern Australian volcanic−hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 90(5): 1167−1196. doi: 10.2113/gsecongeo.90.5.1167

    Keith M, Smith D J, Jenkin G R T, et al. 2018. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore−forming processes[J]. Ore Geology Reviews, 96: 269−282. doi: 10.1016/j.oregeorev.2017.07.023

    Keith M, Smith D J, Doyle K, et al. 2020. Pyrite chemistry: A new window into Au−Te ore−forming processes in alkaline epithermal districts, Cripple Creek, Colorado[J]. Geochimica et Cosmochimica Acta, 274: 172−191. doi: 10.1016/j.gca.2020.01.056

    Keith M, Haase K M, Chivas A R, et al. 2022. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems[J]. Geochimica et Cosmochimica Acta, 329: 185−205. doi: 10.1016/j.gca.2022.05.015

    Klose L, Keith M, Hafermaas D, et al. 2021. Trace element and isotope systematics in vent fluids and sulphides from Maka Volcano, North Eastern Lau Spreading Centre: Insights into three−component fluid mixing[J]. Frontiers in Earth Science, 9: 776925. doi: 10.3389/feart.2021.776925

    Koglin N, Frimmel H E, Minter L W E, et al. 2010. Trace−element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45(3): 259−280. doi: 10.1007/s00126-009-0272-0

    Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (−Mo−Au) systems[M]. Society of Economic Geologists, Special Publication, 16: 573−618.

    Lai X, Pang B C, Li Y Q, et al. 2017. Genesis of the Wandao gold deposit in Guangxi, China: Evidences from fluid inclusions and H−O−S−Pb isotopes[J]. Geoscience, 31(5): 1006−1021(in Chinese with English abstract).

    Large R R, Danyushevsky L, Hollit C, et al. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin−style sediment−hosted deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 104(5): 635−668. doi: 10.2113/gsecongeo.104.5.635

    Large R R, Halpin J A, Danyushevsky L, et al. 2014. Trace element content of sedimentary pyrite as a new proxy for deep−time ocean−atmosphere evolution[J]. Earth and Planetary Science Letters, 389: 209−220. doi: 10.1016/j.jpgl.2013.12.020

    Li X Z, Wang Y J, Li Y X, et al. 2022. Micro−geochemical characteristic of pyrites in the Heilongou gold deposit of Penglai area and its implications for ore−forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 41(6): 1023−1038 (in Chinese with English abstract).

    Li Z Y, Dang Y, Le X W. 2018. Caledonian quartz vein type gold mineralization in the Dayaoshan area, Guangxi: Constraint from the muscovite 39Ar/40Ar dating in the Shangmushui gold deposit[J]. Geological Journal of China Universities, 24(5): 637−644(in Chinese with English abstract).

    Liu G Q, Cai M H. 2004. Ore−forming condition and genetic analysis on the gold deposit in Dayaoshan region, eastern Guangxi[J]. Bulletin of Geological Science and Technology, 23(2): 37−44(in Chinese with English abstract).

    Liu T F. 1997. Geological features and genesis of Au ore deposits in east Guangxi[J]. Contributions to Geology and Mineral Resources, 12(3): 11−23(in Chinese with English abstract).

    Lu H Z. 1990. Inclusions geochemistry[M]. Beijing: Geology Press(in Chinese).

    Ma Y, Jiang S Y, Frimmel H E, et al. 2022. In situ chemical and isotopic analyses and element mapping of multiple−generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China[J]. American Mineralogist, 107(6): 1133−1148.

    Maslennikov V V, Maslennikova S P, Large R R, et al. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman−Kasy volcanic−hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation−inductively coupled plasma mass spectrometry (LA−ICPMS)[J]. Economic geology and the bulletin of the Society of Economic Geologists, 104(8): 1111−1141. doi: 10.2113/gsecongeo.104.8.1111

    Migdisov A, Zezin D, Williams−Jones A E. 2011. An experimental study of cobalt (Ⅱ) complexation in Cl and H2S bearing hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 75(14): 4065−4079. doi: 10.1016/j.gca.2011.05.003

    Pokrovski G S, Borisova A Y, Bychkov A Y. 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors[J]. Reviews in Mineralogy and Geochemistry, 76(1): 165−218. doi: 10.2138/rmg.2013.76.6

    Pokrovski G S, Kokh Maria A, Proux O, et al. 2019. The nature and partitioning of invisible gold in the pyrite−fluid system[J]. Ore Geology Reviews, 109: 545−563. doi: 10.1016/j.oregeorev.2019.04.024

    Putnis A. 2009. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry, 70(1): 87−124. doi: 10.2138/rmg.2009.70.3

    Qian G, Xia F, Brugger J, et al. 2011. Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220℃: An experimental study of reaction textures and mechanisms[J]. American Mineralogist, 96(11/12): 1878−1893.

    Qian L H, Lai J Q, Hu L F, et al. 2019. Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi: Implication for Petrogenesis and Mineralization[J]. Journal of Earth Science, 30(2): 309−322. doi: 10.1007/s12583-018-1204-7

    Qin Y, Zhang Q W, Kang Z Q, et al. 2015. Geochronological framework of granitoids in Dayaoshan metallogenic belt, eastern Guangxi Province[J]. Journal of Jilin University(Earth Science Edition), 45(6): 1735−1756(in Chinese with English abstract).

    Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011

    Reich M, Deditius A, Chryssoulis S, et al. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 104: 42−62. doi: 10.1016/j.gca.2012.11.006

    Roedder E. 1972. Barite fluid inclusion geothermometry, Cartersville Mining District, Northwest Georgia; discussion[J]. Economic Geology, 67(6): 821−822. doi: 10.2113/gsecongeo.67.6.821

    Román N, Reich M, Leisen M, et al. 2019. Geochemical and micro−textural fingerprints of boiling in pyrite[J]. Geochimica et Cosmochimica Acta, 246: 60−85. doi: 10.1016/j.gca.2018.11.034

    Rottier B, Kouzmanov K, Wälle M, et al. 2016. Sulfide replacement processes revealed by textural and LA−ICP−MS trace element analyses: Example from the early mineralization stages at Cerro de Pasco, Peru[J]. Economic Geology, 111(6): 1347−1367. doi: 10.2113/econgeo.111.6.1347

    Savage K S, Tingle T N, Peggy A O, et al. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California[J]. Applied Geochemistry, 15(8): 1219−1244. doi: 10.1016/S0883-2927(99)00115-8

    Sheng Z H. 2005. Gold metallogenic pattern in Dayaoshan ore belt[J]. Contributions to Geology and Mineral Resources Research, B08: 61−63(in Chinese with English abstract).

    Simon G, Kesler E S, Chryssoulis S. 1999. Geochemistry and textures of gold−bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin−type deposits[J]. Economic Geology, 94(3): 405−421. doi: 10.2113/gsecongeo.94.3.405

    Sun P F, Wang Q F, Li H J, et al. 2020. Geology and pyrite sulfur isotopes of the Suoluogou gold deposit: Implication for crustal continuum model of orogenic gold deposit in northwestern margin of Yangtze Craton, SW China[J]. Ore Geology Reviews, 122: 103487. doi: 10.1016/j.oregeorev.2020.103487

    Sung Y H, Brugger J, Ciobanu C L, et al. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia[J]. Mineralium Deposita, 44(7): 765−791. doi: 10.1007/s00126-009-0244-4

    Tan H J, Shao Y J, Liu Q Q, et al. 2022. Textures, trace element geochemistry and in−situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis[J]. Ore Geology Reviews, 144: 104843. doi: 10.1016/j.oregeorev.2022.104843

    Thomas H V, Large R R, Bull S W, et al. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: Insights for ore genesis[J]. Economic geology and the bulletin of the Society of Economic Geologists, 106(1): 1−31. doi: 10.2113/econgeo.106.1.1

    Velásquez G, Béziat D, Salvi S, et al. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Venezuela[J]. Economic Geology, 109(2): 457−486. doi: 10.2113/econgeo.109.2.457

    Wang G M, Huang C X, Wei Z R, et al. 2017. Spatial and temporal distribution of metal deposits in Dali area, Guangxi, South China[J]. Geology and Mineral Resources of South China, 33(1): 47−64(in Chinese with English abstract).

    Wang J C, Hu Y H, Ye L. 2010. Metallotectonical types and indication of the gold deposits in Dayaoshan area in the east of Guangxi[J]. Journal of Guilin University of Technology, 30(4): 467−473(in Chinese with English abstract).

    Wang X Y, Liu M C, Zhou G F, et al. 2013. A correlation study of au−polymetallic mineralization and granite−porphyry magmatism in the Xinping mining area of the Dayaoshan metallogenic belt, eastern Guangxi Province[J]. Geoscience, 27(3): 585−592(in Chinese with English abstract).

    Wu Y F, Evans K, Li J W, et al. 2019. Metal remobilization and ore−fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 245: 98−117. doi: 10.1016/j.gca.2018.10.031

    Xiao L Y, Chen M H, Zhang Z Q, et al. 2015. The deposit type, mineralization age and their geological significance of the Wandao gold deposit in Zhaoping County, Guangxi Province[J]. Earth Science Frontiers, 22(2): 118−130 (in Chinese with English abstract).

    Zeng C Y. 1996. The relation of the feature of the deep structure to gold mineralization in the upwarping region of Dayao mountain in eastern Guangxi[J]. Journal of Guilin University of Technology, 16(3): 245−251 (in Chinese with English abstract).

    Zhang Y, Shao Y J, Chen H Y, et al. 2017. A hydrothermal origin for the large Xinqiao Cu−S−Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 88: 534−549.

    Zhang Y, Tian J, Hollings P, et al. 2020a. Mesozoic porphyry Cu−Au mineralization and associated adakite−like magmatism in the Philippines: Insights from the giant Atlas deposit[J]. Mineralium Deposita, 55(5): 881−900. doi: 10.1007/s00126-019-00907-2

    Zhang Y, Hollings P, Shao Y J, et al. 2020b. Magnetite texture and trace−element geochemistry fingerprint of pulsed mineralization in the Xinqiao Cu−Fe−Au deposit, Eastern China[J]. American Mineralogist, 105(11): 1712−1723. doi: 10.2138/am-2020-7414

    Zhang Y, Chen H Y , Cheng J M, et al. 2022. Pyrite geochemistry and its implications on Au−Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China[J]. American Mineralogist, 107(10): 1910−1925.

    Zhang Z W, Li H, Yu B, et al. 2014. The Mineralization Age of the Gupao Gold Deposit, Guangxi[J]. Applied Mechanics and Materials, 2974(501/504): 327−330.

    Zhu G T. 2002. Study on geological character and genesis of Longtoushan gold deposit of Guangxi[J]. Mineral Resources and Geology, 16(5): 266−272 (in Chinese with English abstract).

    蔡明海, 刘国庆. 2000. 桂东寒武系培地组硅质岩成因与金的富集[J]. 华南地质与矿产, (1): 29−33.
    曹根深, 张宇, 陈华勇. 2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报, 39(8): 2330−2346. doi: 10.18654/1000-0569/2023.08.06
    陈光远, 孙岱生, 殷辉安. 2004. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社.
    陈懋弘, 李忠阳, 李青, 等. 2015. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J]. 地学前缘, 22(2): 41−53.
    陈懋弘, 党院, 张志强, 等. 2019. 广西大瑶山地区多期次岩浆活动及成矿作用[M]. 北京: 地质出版社.
    段瑞春, 凌文黎, 李青等. 2011. 华南燕山晚期构造-岩浆事件与成矿作用: 来自广西大瑶山龙头山金矿床的地球化学约束[J]. 地质学报, 85(10): 1644−1658.
    广西壮族自治区第一地质队. 2017. 广西昭平县金竹洲金矿勘查(变更)实施方案[R].
    胡乔帆, 李毅, 华二. 2011. 大瑶山地区金矿成矿条件及成矿规律研究[J]. 采矿技术, 11(1): 81−83. doi: 10.3969/j.issn.1671-2900.2011.01.031
    赖昕, 庞保成, 李院强, 等. 2017. 广西昭平湾岛金矿的成因: 流体包裹体和H−O−S−Pb同位素地球化学约束[J]. 现代地质, 31(5): 1006−1021. doi: 10.3969/j.issn.1000-8527.2017.05.011
    李秀章, 王勇军, 李衣鑫, 等. 2022. 胶东蓬莱黑岚沟金矿床黄铁矿微区地球化学特征及对成矿流体的启示[J]. 地质通报, 41(6): 1023−1038.
    李忠阳, 党院, 乐兴文. 2018. 广西大瑶山地区加里东期石英脉型金矿: 上木水金矿白云母Ar−Ar年龄约束[J]. 高校地质学报, 24(5): 637−644.
    刘国庆, 蔡明海. 2004. 桂东大瑶山地区金矿成矿条件及成因分析[J]. 地质科技情报, 23(2): 37−44.
    刘腾飞. 1997. 桂东金矿成矿地质特征及矿床成因[J]. 地质找矿论丛, 12(3): 11−23.
    卢焕章. 1990. 包裹体地球化学[M]. 北京: 地质出版社.
    秦亚, 张青伟, 康志强, 等. 2015. 桂东大瑶山成矿带花岗岩类岩石年代学格架的厘定[J]. 吉林大学学报(地球科学版), 45(6): 1735−1756.
    盛志华. 2005. 大瑶山成矿带金矿成矿规律[J]. 地质找矿论丛, B08: 61−63. doi: 10.3969/j.issn.1001-1412.2005.01.012
    汪劲草, 胡云沪, 叶琳. 2010. 桂东大瑶山地区金矿床的成矿构造类型及其成矿指示[J]. 桂林理工大学学报, 30(4): 467−473. doi: 10.3969/j.issn.1674-9057.2010.04.001
    王功民, 黄赤新, 韦子任, 等. 2017. 广西大黎地区金属矿床时空分布规律[J]. 华南地质与矿产, 33(1): 47−64.
    王新宇, 刘名朝, 周国发, 等. 2013. 桂东大瑶山成矿带新坪矿区花岗斑岩与金多金属成矿作用关系[J]. 现代地质, 27(3): 585−592. doi: 10.3969/j.issn.1000-8527.2013.03.009
    肖柳阳, 陈懋弘, 张志强, 等. 2015. 广西昭平湾岛金矿矿床类型、成矿时代及其地质意义[J]. 地学前缘, 22(2): 118−130.
    曾崇义. 1996. 桂东大瑶山隆起区深部构造特征与金矿成矿作用的关系[J]. 桂林工学院学报, 16(3): 245−251.
    朱桂田. 2002. 广西龙头山金矿床地质特征及成因研究[J]. 矿产与地质, 16(5): 266−272. doi: 10.3969/j.issn.1001-5663.2002.05.003
图(8)  /  表(3)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  156
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2024-02-02
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回