Zircon U−Pb age and geochemical characteristics of biotite monzonitic granite and mineralization background in Xiaodachuan Pb−Zn−Cu deposit of Inner Mongolia, the southern Great Khingan Range
-
摘要:研究目的
大兴安岭南段新发现的小大川铅锌铜矿赋存于黑云母二长花岗岩体中,在空间上受到燕山晚期侵入岩的影响。其成岩成矿时代、岩石成因及成矿地质背景等尚不清楚,对其研究可以为区域内铅锌成矿规律提供新的依据。
研究方法采集大兴安岭南段小大川铅锌铜矿黑云母二长花岗岩样品,进行岩相学、锆石U−Pb测年,岩石地球化学及Sr−Nd同位素分析。
研究结果研究表明,小大川黑云母二长花岗岩的锆石U−Pb年龄为135.9±0.8 Ma和134.9±0.8 Ma,表明铅锌矿化发生在早白垩世。岩石地球化学特征显示,黑云母二长花岗岩富SiO2(71.29%~72.92%)、K2O+Na2O(7.17%~7.89%)、Al2O3(13.35%~14.48%),贫MgO(0.61%~0.64%)、CaO(1.24%~1.73%),富集Nb、Ta、Zr、Hf、Th元素,亏损Ba、K、Sr、P、Ti元素且稀土元素配分型式呈“海鸥型”分布,δEu值为0.35~0.47,负Eu异常明显,属于高钾钙碱性、过铝质A2型花岗岩。Sr−Nd同位素特征显示(87Sr/86Sr)i值为0.70545~0.70548,εNd(t)值为−1.7~−0.3,Nd同位素的二阶段模式年龄为957~1071 Ma。
结论结合年代学特征及地球化学特征,认为岩石成因为新生地壳和幔源物质混合同时受到上地壳混染。小大川黑云母二长花岗岩形成于蒙古-鄂霍茨克洋闭合造山后的伸展环境,该环境同时还导致了区域内成岩成矿作用的发生。
Abstract:ObjectiveThe newly discovered Xiaodachuan Pb−Zn−Cu deposit in the southern section of the Greater Khingan Range occurs in the biotite monzonitic granite body and is spatially affected by the late Yanshanian intrusive rocks. The age of diagenesis and mineralization, petrogenesis and metallogenic geological background are still unclear. The study can provide a new basis for the metallogenic regularity of lead and zinc in the area.
MethodsSamples of biotite monzogranite from the Xiaodachuan Pb−Zn−Cu deposit in the southern section of the Greater Khingan Range were collected for petrographic study, zircon U−Pb dating, whole rock geochemical analysis, and Sr−Nd isotopic investigations.
ResultsResearch shows that the zircon U−Pb ages of the biotite monzonitic granite are 135.9±0.8 Ma and 134.9±0.8 Ma, indicating that the Pb−Zn mineralization occurred in the Early Cretaceous. The rock geochemical characteristics show that the biotite monzonitic granite is rich in SiO2(71.29%~72.92%), K2O+Na2O(7.17%~7.89%), Al2O3(13.35%~14.48%), poor in MgO(0.61%~0.64%) and CaO(1.24%~1.73%), enriched in Nb, Ta, Zr, Hf and Th elements, depleted in Ba, K, Sr, P and Ti elements, and the rare earth distribution pattern is “seagull” type. The δEu value is 0.35~0.47, and the negative Eu anomaly is obvious. It belongs to high−potassium calc−alkaline and peraluminous A2−type granite. The Sr−Nd isotope characteristics show that the (87Sr/86Sr)i value is 0.70545~0.70548, the εNd(t) value is −1.7 ~ −0.3, and the two−stage model age of Nd isotope is 1071~957 Ma.
ConclusionsCombined with the chronological and geochemical characteristics, it is considered that the diagenetic material is a mixture of new crust and mantle−derived material and is contaminated by the upper crust. The Xiaodachuan biotite monzonitic granite was formed in an extensional environment after the closure of the Mongolia−Okhotsk Ocean, which also led to the occurrence of diagenesis and mineralization in the region.
创新点首次对小大川铅锌铜矿床开展锆石U−Pb定年、全岩地球化学及Sr−Nd同位素分析研究,确定了成岩成矿时间及成矿地质背景。
-
关于琼东南盆地内的烃源岩,前人重点对渐新统崖城组烃源岩特征及其对油气富集的控制作用进行了分析,而对始新统烃源岩方面的研究较少,主要是由于之前琼东南盆地几乎未钻遇过始新统(杨泽光等,2022)。随着勘探的深入,近期在琼东南盆地松西凹陷新钻探了S32-6-1井,钻遇一套75 m厚的始新统油页岩。这是琼东南盆地首次钻遇油页岩,取得了盆地油气勘探史上的新突破,对下一步油气勘探具有里程碑式的意义。为进一步评价该源岩,理清这套油页岩的地球化学特征及其生烃潜力,本文利用新钻探的S32-6-1井油页岩壁心、岩屑样品,通过一系列地球化学分析测试,在录井和测井资料基础上,结合地震资料解释及盆地模拟技术,精细分析了油页岩特征及生烃潜力,并对比分析了周缘地区原油的地球化学特征,厘清了油、源之间的关系,为琼东南盆地后续勘探选区提供决策参考。
1. 区域地质概况
琼东南盆地是位于南海西北部的新生代大陆边缘拉张性盆地,始新世—早渐新世,盆地受太平洋−欧亚板块相互作用及印度−欧亚板块作用,产生北西—南东向拉张应力场,形成北东向控凹断裂,盆地整体呈北东—南西走向。琼东南盆地平面上表现为“多坳多隆”的构造特征,纵向上具有“下断上坳”的双层结构(张功成等,2007;朱伟林等,2008;毛雪莲等,2021),自北向南可分为4个一级构造单元。北部坳陷位于盆地西北部,是主要的生油气区,北邻海南隆起,南接中部隆起(朱伟林等,2007;何家雄等,2020),自西往东可进一步划分为崖北凹陷、松西凹陷、松东凹陷3个次级凹陷(图1)。北部坳陷在5号断裂的控制下形成了北断南超的大型半地堑结构。在始新世处于断陷阶段,发育多个孤立凹陷,该时期海侵范围小,主要为湖相沉积。早期湖水较浅,发育滨浅湖相沉积,随着湖水加深,逐渐发育中深湖相沉积。渐新世处于断-坳转换阶段,海平面开始扩张,主要为滨浅海相沉积。至新近纪,发生大规模区域海侵,沉积了厚层的新近系海相地层。古近系自下而上为始新统岭头组、渐新统崖城组和陵水组(黄保家等,2014;徐新德等,2016;范彩伟等,2021),其中始新统油页岩是本次研究的目标层段。
2. 油页岩基本特征及形成环境
2.1 油页岩基本特征
松西凹陷始新统岭头组岩性存在明显的上、中、下三分结构,上部岭头组一段主要为细砂岩、泥质细砂岩与泥岩不等厚互层,与顶部的渐新统崖城组整合接触。该段化石相对较丰富,以裸子植物花粉双束松粉为主,被子植物花粉含量相对较低,常见栎粉(小栎粉和小亨氏栎粉),其他藻类以葡萄藻未定多种为主,盘星藻未定多种和粒面球藻少量出现。根据孢粉组合特征,推断该段沉积环境为浅湖,地层时代应为早渐新世—晚始新世。下部岭头组三段为细砂岩、粉砂岩、粉砂质泥岩与泥岩不等厚互层,与底部的中生界花岗岩呈不整合接触。该段孢粉组合以被子植物花粉栎粉(包括小栎粉和小亨氏栎粉)为主,裸子植物花粉(包括双束松粉和巨大双束松粉)含量相对较低,推断该段沉积环境也为浅湖,地层时代应为始新世。中部岭头组二段为一套厚层油页岩,该段化石十分丰富,以被子植物花粉(小栎粉和小亨氏栎粉)为主,裸子植物花粉(主要为双束松粉)含量较低。此外,该段富含湖相浮游藻类,以粒面球藻为主,其次为葡萄藻未定多种,盘星藻未定多种零星出现。根据孢粉组合特征,结合藻类分析结果,推断该段沉积环境为中深湖,地层时代应为始新世。类比珠江口盆地顺德凹陷已证实的始新统文昌组及油页岩层可以发现,琼东南盆地松西凹陷始新统与其具有相似的孢粉组合特征:均是以被子植物花粉栎粉为主,裸子植物花粉(主要为双束松粉)含量相对较低,反映为温度较高的亚热带气候;其次,在油页岩层段,湖相浮游藻类占绝对优势,以粒面球藻和盘星藻未定多种为主,葡萄藻未定多种在个别层段比较显著,指示中深湖相沉积环境。油页岩主要为灰黑色、灰褐色,泥质结构,性中硬、较脆,层状构造,具贝壳状断口,泛有油脂光泽。混杂少量石英等碎屑颗粒,见沥青条带,偶见黄铁矿,可见颜色较浅的粘土质条带或透镜体顺层理发育。闻着有很浓的油味,点火可燃,火苗呈黄色,岩屑搌碎后丙酮滴照呈乳白色中速扩散(图2)。
油页岩由于泥质、有机质含量高,在测井曲线上与砂岩和泥岩存在一定差异。一般来说,油页岩测井响应特征表现为“四高一低”的特点,即高自然伽马、高电阻率、高声波时差、高中子、低密度。根据录井岩性对S32-6-1井测井曲线进行分析,发现油页岩段对应的曲线存在明显差异,自然伽马明显较高(一般大于145 API),电阻率明显增大,中子明显较高,密度曲线特征不是很明显,仅部分段表现为低值,整体与下伏砂岩相近(2.3~2.6 g/cm3),推测与质不纯有关(图3)。
2.2 油页岩形成环境
油页岩的形成环境一般为温暖湿润的还原环境,利于藻类的生长及有机质的保存。母源一般以湖相原生藻类体为主,陆源输入的高等植物为辅(曹涛涛等,2024)。微量元素地球化学参数Sr/Cu值对气候变化较敏感,是常用的古气候研究指标。在温暖湿润的气候环境中,Sr/Cu值呈现低值,一般为1.3~5.0;在干旱炎热的气候环境中,Sr/Cu值较高,一般大于5(Sarki Yandoka et al., 2014)。此外,气候指标C=(Fe+Mn+Cr+Ni+V+Co)/(Ca+Mg+Sr+Ba+K+Na)也可反映古气候条件。一般C>0.8代表温湿气候,0.2<C<0.8代表半湿润气候,C<0.2代表干热气候(Moradi et al., 2016)。S32-6-1油页岩段Sr/Cu平均值为3.66,C平均值为0.53,反映油页岩形成时为半湿润气候。油页岩段V/(V+Ni)和Th/U平均值分别为0.81、4.38,表明其形成于较缺氧的还原环境,有利于有机质的富集保存。另外,油页岩段反映其古盐度的指标Sr/Ba、Ga/(Ga+Fe)值均较低,平均值分别为0.15、0.001,表明其形成于陆相淡水环境。P、Cd被广泛用于古生产力研究。此外,研究表明,Mo与有机质的堆积速度一致,因此Mo元素也可以用来指示古湖泊生产力的大小(孙莎莎等,2015)。S32-6-1油页岩段P平均含量高达434.5×10−6,Cd平均含量高达0.3×10−6,Mo平均含量高达3.1×10−6,高于北美页岩中Mo的含量,反映该段油页岩具有很高的初级生产力。另外,该段油页岩中还有一定量的Ti,表明具有一定的陆源碎屑输入(于婷婷等,2022)。综上分析,松西凹陷油页岩沉积时期为温暖半湿润的还原淡水湖泊环境。P、Cd、Mo等营养元素输入增加,有利于藻类的大量繁殖,具有较高的古生产力,存在大量藻类、水生植物和少量陆源碎屑的供给,形成了有机质大量富集的厚层油页岩。
3. 油页岩有机地球化学特征
3.1 有机质性质
从有机质丰度、类型、热演化程度等方面可研究分析有机质的性质。有机质丰度是表征烃源岩中有机质富集程度的指标,常用的参数较多,本次以总有机碳含量(TOC)、热解生烃潜量(S1+S2)指标来评价油页岩中的有机质丰度(卢双舫等,2008;王元等,2018;罗丽荣等,2022)。松西凹陷钻探的S32-6-1井的始新统油页岩样品TOC分布在1.33%~7.48%之间,平均为3.33%;S1+S2分布范围为6.43~52.41 mg/g,平均为22.2 mg/g,依据陆相烃源岩有机质丰度评价标准,该油页岩为好—优质级别的烃源岩(图4)。
有机质类型不同,其生成的烃类特征会存在一定差异。通常有机质类型为腐泥型的,偏向于生油,有机质类型为腐殖型的,偏向于生气。利用烃源岩热解参数HI和Tmax关系图(图5),对S32-6-1井钻遇的始新统油页岩的有机质类型进行研究判定。分析结果表明,琼东南盆地松西凹陷的这套始新统油页岩氢指数(HI)平均为606 mg/gTOC,有机质类型为Ⅰ~Ⅱ1型,为较好的生油母质类型。
有机质热演化程度是衡量烃源岩实际生烃能力的另一个重要指标,只有当有机质的热演化程度达到一定阶段时,才能大量生烃,热演化程度的高低直接影响了生油气的量和油气藏的规模(刘旭明等,2011;王崇敬等,2018)。本次主要应用镜质体反射率(Ro/%)、岩石最高热解峰温(Tmax/℃)指标,根据《中华人民共和国石油天然气行业标准陆相烃源岩地球化学评价方法(SY/T 5735—1995)》(表1),对S32-6-1井钻遇的始新统油页岩成熟度进行判识。结果表明,琼东南盆地松西凹陷始新统油页岩Ro为0.7%~0.75%,Tmax为436~446℃,整体处于低熟—成熟阶段。
表 1 陆相烃源岩有机质成烃演化阶段划分及判别指标(据SY/T 5735—1995)Table 1. Hydrocarbon generation and evolution stages of organic matter in continental source rocks演化阶段 未成熟 低成熟 成熟 高成熟 过成熟 Ro/% <0.5 0.5~0.7 0.7~1.3 1.3~2 >2 Tmax/℃ <435 435~440 440~450 450~580 >580 ɑɑɑ-C2920S/(20S+20R) <0.2 0.2~0.4 >0.4 — — C29ββ/(ββ+ɑɑ) <0.2 0.2~0.4 >0.4 — — 3.2 生物标志化合物
生物标志化合物具有稳定的碳骨架,在沉积成岩和热演化的过程中基本能保持原始先质结构(Peters et al,2005),能反映原始先质的特征及古形成环境。因此,生物标志化合物在生源构成、沉积环境及有机质热演化方面应用广泛(孔庆云等,1987)。
琼东南盆地松西凹陷钻遇的始新统油页岩样品正构烷烃主要呈过渡的“平台型”(图6),反映其母质输入以混源为主。姥植比(Pr/Ph)是判定氧化-还原古沉积水体环境的常用指标(王铁冠等,1995);奇偶优势指数(OEP)<1指示偏咸水强还原环境,OEP>1指示偏淡水湖沼相沉积环境(黄谦等,2000)。松西凹陷始新统油页岩Pr/Ph分布在2.2~2.65之间(表2),OEP为1.25~1.44,表明其沉积环境为弱还原的淡水湖沼相环境。碳优势指数(CPI)为1.19~1.26,表明油页岩成熟度相对较低。
表 2 松西凹陷始新统油页岩生物标志化合物参数Table 2. Biomarker parameters of Eocene oil shale in Songxi Sag生标参数 深度/m 3536 3568 3586 3598 (nC21+nC22)/(nC28+nC29) 0.81 0.88 0.85 0.77 CPI 1.24 1.26 1.19 1.19 OEP 1.27 1.44 1.31 1.25 Pr/Ph 2.2 2.32 2.22 2.65 Pr/nC17 1.99 1.3 1.22 2.01 Ph/nC18 0.68 0.44 0.36 0.6 C19TT/C23TT 0.19 0.36 0.4 0.25 C24TeT/C26TT 0.77 1.4 1.22 0.91 OL/C30H 0.1 0.17 0.16 0.16 Ga/C30H 0.06 0.07 0.06 0.06 Ts/Tm 1.71 1.74 1.96 2.35 C27/C29ɑɑɑR 0.86 0.83 0.8 1.06 C2920S/(20S+20R) 0.36 0.4 0.39 0.42 C29ββ/(ββ+ɑɑ) 0.47 0.51 0.56 0.54 4-甲基甾烷/C29甾烷 0.92 0.6 0.69 1 此外,松西凹陷钻遇的始新统油页岩中普遍检测出了长链三环萜烷(TT)、四环萜烷(TeT)和五环三萜烷化合物。三环萜烷碳数分布主峰为C21TT,表明沉积环境为淡水湖相环境(肖洪等,2019)。伽马蜡烷是常用的沉积水体盐度指示参数(包建平等,2010),油页岩的伽马蜡烷指数(Ga/C30H)为0.06左右,表明其沉积水体为淡水环境。前人研究认为,C19TT/C23TT和C24TeT/C26TT对陆源输入指示作用较强,受成熟度影响较小(Hao et al,2011)。松西凹陷油页岩C19TT/C23TT值较低,分布在0.19~0.4之间,奥利烷指数(OL/C30H)为0.1~0.17,均较低,反映油页岩的母源输入中低等水生藻类较多,而该套油页岩的C24TeT/C26TT值分布在0.77~1.4之间,反映油页岩母质中含有一定量的陆源输入。对于甾烷系列化合物,通常在C27~C29规则甾烷系列中,C27规则甾烷来自低等水生生物和藻类,C29规则甾烷主要来源于高等植物。4-甲基甾烷可指示沟鞭藻和甲藻的贡献(陈建平等,2016)。松西凹陷这套始新统油页岩C27-C28-C29规则甾烷呈近“V”形,C27规则甾烷/C29规则甾烷值平均为0.89,表现出C29规则甾烷相对占优势,反映生源构成中具有一定量陆生高等植物输入;4-甲基甾烷指数为0.6~1,平均为0.8,含量较高,指示该套始新统油页岩生源构成中低等藻类含量较高。此外,松西凹陷油页岩C29甾烷ββ/(ββ+ɑɑ)值在0.47~0.56之间,表明其成熟度为低熟—成熟。综上所述,琼东南盆地松西凹陷油页岩的母质构成既有低等水生生物,又有高等陆生植物,具有混源输入特征,沉积环境为淡水湖沼相环境,热演化程度为低熟—成熟阶段。
根据烃源岩的有机质性质,结合分布发育特征,对琼东南盆地松西凹陷S32-6-1井钻遇的始新统油页岩地球化学特征进行了研究。松西凹陷这套始新统油页岩有机质丰度高,类型为Ⅰ~Ⅱ1型,处于低熟—成熟阶段,生源构成具有混源输入特征,沉积环境为弱还原的淡水湖沼相环境,分布范围较广,发育厚度较大,具有良好的生烃潜力。
4. 油源对比
围区内即北部坳陷带Y9、S34-3-1、S24-1-1等井(图1)均钻获原油,碳同位素对比发现,这些原油的全油碳同位素(δ13CPDB)值分布范围为−28.9‰~−24.83‰,与松西凹陷的S32-6-1井钻遇的始新统油页岩干酪根同位素(−28.5‰~−25.78‰)分布范围相近。
油源色谱质谱指纹特征分析表明,围区内Y9、S34-3-1、S24-1-1等井已钻获的原油与S32-6-1井钻遇的始新统油页岩在母源特征上有良好的相似性(图7)。具体如下:奥利烷含量均很低,C27,C28,C29规则甾烷均呈弱“L”形或近“V”形,4-甲基甾烷含量整体较高,C27重排甾烷较高,伽马蜡烷含量低。但S32-6-1井油页岩成熟度明显较低,与原油成熟度不匹配。由此推测,围区内原油来自凹陷内部这套成熟的始新统源岩生成的页岩油。
此外,选取了反映生源构成、沉积环境等的多项生物标志物参数,对琼东南盆地北部坳陷带内的原油与始新统油页岩进行了对比研究(图8),两者整体表现出较强的相似性,进一步说明北部坳陷带原油主要来自成熟的始新统油页岩。
图 8 琼东南盆地北部坳陷带原油及烃源岩生物标志物参数对比P1—奥利烷/C30藿烷;P2—伽马蜡烷/C30藿烷;P3—C31S藿烷/(S+R);P4—(藿烷+莫烷)C29/C30;P5—Ts/(Ts+Tm);P6—C27/C29ɑɑɑR;P7—C28/C29ɑɑɑR;P8—C2920S/(20S+20R);P9—C29ββ/(ββ+ɑɑ);P10—4-甲基甾烷/C29甾烷)Figure 8. Comparison of biomarker parameters between crude oil and source rock in the northern depression of Qiongdongnan Basin琼东南盆地松西凹陷始新统烃源岩的钻揭发现,打开了琼东南盆地原油勘探新格局,实现了新领域突破。北部坳陷带原油生标特征与S32-6-1井钻遇的始新统源岩相似,反映北部坳陷带原油主要来自始新统成熟源岩,证实了这套始新统源岩的生烃能力。
5. 油页岩生烃潜力
松西凹陷的油页岩地震相可类比阳江、开平等其他勘探成功的凹陷。油页岩层段地震相表现为低频、连续强反射特征。地震资料解释研究表明,松西凹陷的油页岩主要发育在凹陷的东洼,在洼陷中心部位沉积最厚,往南部的缓坡方向上倾尖灭(图9)。
用地震资料落实了松西凹陷始新统油页岩的规模、埋深及空间展布特征。松西凹陷油页岩/页岩的面积约102 km2,平均厚度282 m(图10),埋深3200~4800 m。根据松西凹陷周缘已钻井Ro统计结果,松西凹陷生油门限(Ro=0.5%)约为3200 m。结合实际钻井资料进行盆地模拟,结果显示,松西凹陷主体部位,即凹陷内始新统油页岩/页岩的Ro为0.8%~1.3%,表明已进入成熟大量生油阶段,生油强度大,原油资源量约3760×104 t。凹陷边缘斜坡带即S32-6-1井所处位置,始新统油页岩/页岩成熟度较低,Ro为0.5%~0.7%,还未大量生烃,生油强度较小,原油资源潜力仅380×104 t(图11、图12)。经计算,松西凹陷可产生的原油资源潜力约为4140×104 t(主要是凹陷内成熟源岩),原油资源丰富,是有利的原油勘探领域。
松西凹陷始新统油页岩的生烃潜力分析研究表明,松西凹陷油页岩发育且品质高,该套油页岩整装且源储配置好,既具备常规油气勘探的成藏条件,又是探索页岩油勘探的有利区带。探索发现,琼东南盆地北部坳陷带的其他各凹陷及顺德凹陷和北礁凹陷中均发育相似地震相的始新统,表明皆有较大的勘探潜力。因此,松西凹陷始新统油页岩的评价对琼东南盆地勘探具有重要的指导意义。
6. 结 论
(1)琼东南盆地松西凹陷始新统油页岩沉积环境为弱还原的淡水湖沼相环境,具有低等水生生物和高等陆生植物混源输入的特征。有机质丰度高、类型好,成熟度存在明显的分带性,凹陷内部成熟度较高,周缘斜坡成熟度较低。综合评价为好—优质级别烃源岩,凹陷内具备良好的生烃潜力。
(2)油源色谱质谱指纹特征分析表明,北部坳陷带内原油与这套始新统油页岩有良好的亲属性,反映北部坳陷带原油主要来自始新统油页岩,证实了该套始新统油页岩的生烃能力
(3)琼东南盆地松西凹陷始新统油页岩的面积为102 km2,平均厚度为282 m,埋深3200~4800 m,凹陷主体部位已进入成熟大量生油阶段,原油资源潜力约为4140×104 t。围区圈闭发育且成藏条件匹配好,常规油气和页岩油均有较大的勘探潜力。
-
图 1 大兴安岭南段大地构造位置(a)和地质矿产简图(b)(据Mi et al., 2022修改)
Figure 1. Geotectonic position (a) and geological and mineralogical sketch map (b) of the southern section of the Great khingan Range
图 2 小大川铅锌铜矿床地质简图(据赤峰盛源地质勘查有限公司,2018)
1—第四系;2—下二叠统哲斯组;3—燕山期黑云母二长花岗岩;4—花岗斑岩脉;5—花岗岩脉;6—闪长玢岩脉;7—矿体位置及编号;8—采样位置;9—断裂
Figure 2. Geological sketch map of the Xiaodachuan Pb−Zn−Cu deposit
图 4 小大川矿区Ⅰ、Ⅱ、Ⅲ号铜矿体的0号勘查线(a)和Ⅵ号铅锌矿体的3号勘查线(b)剖面图(据赤峰盛源地质勘查有限公司,2018)
Figure 4. Profile of survey line 0 for Cu ore bodies No. 1, No. 2 and No. 3 (a) and survey line 3 for Pb−Zn ore body No. 6 (b) in the Xiaodachuan deposit
图 5 小大川铅锌铜矿黑云母二长花岗岩TAS图解(a)和SiO2−K2O判别图解(b)(a图据Middlemost,1994;b图据Peccerillo and Taylor,1976)
Figure 5. Illustration of TAS (a) and SiO2−K2O discrimination (b) for the biotite monzogranite of the Xiaodachuan Pb−Zn−Cu deposit
图 6 小大川铅锌铜矿黑云母二长花岗岩A/CNK−A/NK图解(据Middlemost,1985)
Figure 6. A/CNK−A/NK diagram for the biotite monzogranite of the Xiaodachuan Pb−Zn−Cu deposit
图 7 小大川铅锌铜矿黑云母二长花岗岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化数据分别据Sun and McDonough,1989)
Figure 7. Chondrite-normalized rare earth element partition curves (a) and primitive mantle normalized trace element spiderweb plots (b) of biotite monzogranite from the Xiaodachuan Pb−Zn−Cu deposit
图 10 小大川铅锌铜矿黑云母二长花岗岩类型判别图解(底图据Collins et al.,1982;Whalen et al.,1987;Eby,1992)
a—10000*Ga/Al−(Na2O+K2O)图解;b—10000*−TFeO/MgO图解;c—Y/Nb−Rb/Nb图解;d—Y/Nb−Sc/Nb图解。A—A型花岗岩区域;I&S—I型和S型花岗岩区域
Figure 10. Illustration of the type discrimination of the biotite monzogranite in the Xiaodachuan Pb−Zn−Cu deposit
图 11 小大川铅锌铜矿床黑云母二长花岗岩La−La/Sm 图解(a)和(La/Yb)N−Nb/La图解(b)(底图据Allegre and Minster,1978)
Figure 11. La−La/Sm diagram (a) and (La/Yb)N−Nb/La diagram (b) for the biotite monzogranite of the Xiaodachuan Pb−Zn−Cu deposit
图 12 小大川铅锌铜矿床黑云母二长花岗岩和邻区典型矿床与成矿有关岩浆岩(87Sr/86Sr)i−εNd(t)图解(a)和源区与熔体混染的混合计算图(b)(底图据Jahn et al.,1999,2004;Wu et al.,2000)
DM—亏损地幔;MORB—大洋中脊玄武岩;EMⅠ—富集地幔Ⅰ;EMⅡ—富集地幔Ⅱ;PM—原始地幔
Figure 12. Illustration of (87Sr/86Sr)i−εNd(t) of the biotite monzogranite of the Xiaodachuan Pb−Zn−Cu deposit and typical deposits in the neighboring area that are related to metallogenic magmatism (a) and mixing calculations for source and melt contarninations (b)
图 13 小大川铅锌铜矿黑云母二长花岗岩SiO2−TFeO/(TFeO+MgO)(a)和(Y+Nb)−Rb(b)构造环境判别图解(底图据Pearce et al.,1984;Maniar and Piccoli et al.,1989)
Figure 13. SiO2−TFeO/(TFeO+MgO) (a) and (Y+Nb)−Rb (b) tectonic setting discrimination diagrams of the biotite monzogranite in the Xiaodachuan Pb−Zn−Cu deposit
图 14 小大川铅锌铜矿邻区典型矿床矿石的铅同位素△β−△γ分类图解(a)和硫同位素组成图解(b)(a图据朱炳泉,1998;b图据Zhai et al.,2014)
1—地幔源铅;2—上地壳源铅;3—上地壳与地幔混合的俯冲铅 (3a—岩浆作用,3b—沉积作用);4—化学沉积型铅;5—海底热水作用铅;6—中深变质作用;7—深变质下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质铅
Figure 14. Lead isotope △β−△γ classification diagram(a)and sulfur isotope composition diagram(b)of typical ore deposits in Xiaodachuan Pb−Zn−Cu deposit adjacent area
表 1 小大川铅锌铜矿黑云母二长花岗岩主量、微量和稀土元素含量
Table 1 Major, trace and rare earth elements content of biotite monzogranite in the Xiaodachuan Pb−Zn−Cu deposit
元素 XBC
5-1XBC
5-2XBC-6 XBC-7 XBC-8 元素 XBC
5-1XBC
5-2XBC-6 XBC-7 XBC-8 SiO2 71.36 71.29 72.92 72.34 71.33 Zn 62 61 120 261 301 Al2O3 14.48 14.40 13.35 13.57 13.73 Li 30.2 29.5 31.1 32.1 36.4 CaO 1.73 1.72 1.50 1.25 1.24 V 24 27 26 29 29 Fe2O3 0.73 0.76 0.60 0.54 0.44 Ni 0.6 0.6 0.6 0.6 0.6 K2O 4.01 4.00 3.36 3.73 3.83 Y 23.9 23.9 23.6 25.6 22.4 MgO 0.61 0.63 0.64 0.62 0.61 Co 3.2 3.0 3.0 3.1 3.1 MnO 0.05 0.05 0.08 0.09 0.10 Ga 22.1 21.4 20.2 19.75 20.8 Na2O 3.88 3.86 3.81 3.94 3.98 Sc 5.4 5.2 4.9 4.7 5.4 P2O5 0.09 0.09 0.09 0.09 0.10 Be 3.48 3.41 3.59 3.00 2.85 TiO2 0.29 0.29 0.29 0.31 0.30 Rb/Sr 0.55 0.56 0.48 0.72 0.70 FeO 1.60 1.58 1.73 1.82 1.99 Rb/Ba 0.28 0.28 0.33 0.33 0.35 烧失量 1.25 1.36 1.41 1.77 1.63 La 21.7 21.2 24.8 33.2 24.6 Na2O+K2O 7.89 7.86 7.17 7.67 7.81 Ce 47.2 47.4 53.7 70.5 52.5 Na2O/K2O 0.97 0.97 1.13 1.06 1.04 Pr 5.56 5.59 6.33 7.79 5.94 Mg# 32.49 33.12 33.47 32.42 31.31 Nd 21.1 21.3 22.5 29.2 22.5 σ 2.20 2.18 1.72 2.01 2.15 Sm 4.82 4.88 5.02 6.08 4.93 DI 85.07 85.04 85.57 86.71 86.29 Eu 0.67 0.72 0.60 0.65 0.67 A/NK 1.35 1.35 1.35 1.29 1.28 Gd 4.70 4.34 4.51 5.05 4.35 A/CNK 1.04 1.04 1.06 1.06 1.06 Tb 0.75 0.75 0.70 0.82 0.70 Sr 291 288 291 243 241 Dy 4.23 4.23 4.04 4.66 3.83 Rb 160 160 140 175 168 Ho 0.82 0.85 0.84 0.89 0.80 Ba 573 565 426 524 483 Er 2.42 2.42 2.32 2.49 2.26 Th 11.15 10.98 12.85 12.85 11.63 Tm 0.37 0.36 0.36 0.39 0.35 U 4.29 4.22 4.63 5.29 2.34 Yb 2.43 2.39 2.31 2.55 2.23 Cr 3.00 2.00 3.00 2.00 3.00 Lu 0.37 0.37 0.35 0.39 0.34 Ta 0.75 0.74 0.71 0.72 0.60 ΣLREE 101.1 101.1 113.0 147.4 111.1 Nb 9.80 9.70 9.30 9.50 9.30 ΣHREE 16.09 15.71 15.43 17.24 14.86 Zr 174 168 193 187 174 (La/Sm)N 2.83 2.73 3.11 3.43 3.14 Hf 5.0 4.9 5.8 5.3 5.0 (Gd/Yb)N 1.56 1.47 1.58 1.60 1.57 Cu 6.3 5.9 76.0 47.4 122.5 (La/Yb)N 6.02 5.98 7.23 8.78 7.44 Pb 20 19.8 96 155 276 δEu 0.43 0.47 0.38 0.35 0.43 注:主量元素含量单位为%,微量和稀土元素含量单位为10−6 表 2 小大川铅锌铜矿床黑云母二长花岗岩LA−ICP−MS锆石U−Th−Pb数据
Table 2 LA−ICP−MS zircon U−Th−Pb geochronological data for the biotite monzogranite from the Xiaodachuan Pb−Zn−Cu deposit
测点号 Pb/10−6 Th/10−6 U/10−6 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ XBC-7-02 82 678 2009 0.34 0.04913 0.00295 0.1458 0.0083 0.02138 0.00037 138.2 7.4 136.4 2.4 XBC-7-03 68 720 1153 0.62 0.04856 0.00532 0.1459 0.0170 0.02172 0.00075 138.3 15.1 138.5 4.7 XBC-7-04 28 268 658 0.41 0.04924 0.00354 0.1451 0.0095 0.02162 0.00049 137.6 8.4 137.9 3.1 XBC-7-05 84 836 1752 0.48 0.04899 0.00279 0.1453 0.0081 0.02146 0.00032 137.8 7.2 136.9 2.0 XBC-7-07 74 723 1125 0.64 0.04504 0.01004 0.1466 0.0317 0.02167 0.00068 138.9 28.1 138.2 4.3 XBC-7-08 89 897 1930 0.46 0.04864 0.00183 0.1403 0.0052 0.02090 0.00019 133.3 4.6 133.3 1.2 XBC-7-09 73 629 1665 0.38 0.04875 0.00345 0.1445 0.0102 0.02153 0.00038 137.1 9.1 137.3 2.4 XBC-7-10 81 830 1666 0.50 0.04867 0.00199 0.1453 0.0059 0.02160 0.00021 137.8 5.3 137.7 1.3 XBC-7-11 35 361 707 0.51 0.04869 0.00769 0.1385 0.0176 0.02122 0.00113 131.7 15.7 135.4 7.2 XBC-7-12 52 459 1211 0.38 0.04897 0.00220 0.1429 0.0062 0.02121 0.00025 135.6 5.5 135.3 1.6 XBC-7-13 65 669 1216 0.55 0.05105 0.00668 0.1438 0.0144 0.02140 0.00054 136.4 12.8 136.5 3.4 XBC-7-14 56 525 1214 0.43 0.04840 0.00200 0.1452 0.0064 0.02156 0.00022 137.6 5.6 137.5 1.4 XBC-7-15 28 246 484 0.51 0.04905 0.00341 0.1473 0.0100 0.02189 0.00047 139.5 8.9 139.6 3.0 XBC-7-17 51 522 1240 0.42 0.04937 0.00300 0.1418 0.0081 0.02101 0.00032 134.6 7.2 134.0 2.0 XBC-7-18 42 473 742 0.64 0.04899 0.00446 0.1460 0.0131 0.02178 0.00049 138.3 11.6 138.9 3.1 XBC-7-19 80 831 1614 0.52 0.04903 0.00198 0.1435 0.0055 0.02137 0.00024 136.2 4.9 136.3 1.5 XBC-7-21 58 534 1400 0.38 0.04858 0.00246 0.1435 0.0073 0.02134 0.00030 136.1 6.5 136.1 1.9 XBC-7-22 48 469 1009 0.46 0.04904 0.00270 0.1443 0.0075 0.02139 0.00036 136.9 6.6 136.4 2.2 XBC-7-23 96 1024 1738 0.59 0.04831 0.00246 0.1428 0.0069 0.02136 0.00026 135.6 6.2 136.2 1.6 XBC-7-24 98 1062 2034 0.52 0.04870 0.00293 0.1395 0.0080 0.02071 0.00029 132.6 7.1 132.1 1.8 XBC-7-25 28 229 743 0.31 0.04778 0.00645 0.1469 0.0210 0.02165 0.00035 139.2 18.6 138.1 2.2 XBC-7-26 57 568 1142 0.50 0.04732 0.00312 0.1391 0.0095 0.02077 0.00047 132.2 8.4 132.5 3.0 XBC-7-27 59 579 1253 0.46 0.04712 0.00297 0.1400 0.0089 0.02080 0.00043 133.1 7.9 132.7 2.7 XBC-7-28 38 387 741 0.52 0.04705 0.00418 0.1424 0.0120 0.02100 0.00047 135.2 10.7 134.0 3.0 XBC-7-29 59 594 1024 0.58 0.04710 0.00306 0.1436 0.0087 0.02134 0.00045 136.2 7.7 136.1 2.8 XBC-7-30 62 489 938 0.52 0.04574 0.00571 0.1443 0.0181 0.02124 0.00075 136.9 16.0 135.5 4.7 XBC-9-01 28 251 611 0.41 0.04675 0.00503 0.1401 0.0135 0.02087 0.00064 133.1 12.1 133.2 4.1 XBC-9-02 30 276 819 0.34 0.04731 0.00598 0.1450 0.0202 0.02148 0.00068 137.5 17.9 137.0 4.3 XBC-9-03 60 514 1681 0.31 0.04924 0.00508 0.1393 0.0111 0.02075 0.00047 132.4 9.9 132.4 3.0 XBC-9-05 25 206 735 0.28 0.04717 0.00706 0.1435 0.0227 0.02154 0.00048 136.2 20.2 137.4 3.0 XBC-9-06 58 583 1236 0.47 0.04858 0.00360 0.1434 0.0102 0.02130 0.00045 136.1 9.0 135.9 2.9 XBC-9-07 32 303 641 0.47 0.04977 0.00390 0.1437 0.0101 0.02132 0.00041 136.3 9.0 136.0 2.6 XBC-9-10 54 516 1402 0.37 0.04980 0.00506 0.1409 0.0128 0.02091 0.00027 133.8 11.4 133.4 1.7 XBC-9-11 38 343 906 0.38 0.04837 0.00263 0.1418 0.0088 0.02113 0.00031 134.7 7.8 134.8 2.0 XBC-9-12 40 410 831 0.49 0.04941 0.00403 0.1405 0.0105 0.02092 0.00039 133.5 9.3 133.5 2.5 XBC-9-13 54 450 1262 0.36 0.04985 0.00274 0.1444 0.0072 0.02133 0.00027 136.9 6.4 136.0 1.7 XBC-9-14 45 471 983 0.48 0.04838 0.00337 0.1427 0.0101 0.02128 0.00032 135.4 9.0 135.8 2.0 XBC-9-15 18 147 408 0.36 0.04977 0.00432 0.1431 0.0119 0.02132 0.00045 135.8 10.6 136.0 2.9 XBC-9-16 84 896 1531 0.59 0.04869 0.00205 0.1415 0.0058 0.02112 0.00025 134.3 5.2 134.7 1.6 XBC-9-17 48 423 1151 0.37 0.04935 0.00322 0.1406 0.0086 0.02088 0.00031 133.5 7.6 133.2 2.0 XBC-9-18 50 466 1166 0.40 0.04869 0.00286 0.1390 0.0076 0.02080 0.00030 132.2 6.8 132.7 1.9 XBC-9-19 91 855 2383 0.36 0.04946 0.00412 0.1429 0.0112 0.02118 0.00044 135.6 9.9 135.1 2.8 XBC-9-21 46 411 1059 0.39 0.04828 0.00355 0.1437 0.0108 0.02142 0.00034 136.4 9.6 136.6 2.1 XBC-9-22 65 593 1252 0.47 0.04895 0.00864 0.1418 0.0232 0.02110 0.00045 134.6 20.6 134.6 2.8 XBC-9-23 73 643 1807 0.36 0.04910 0.00322 0.1429 0.0087 0.02121 0.00029 135.6 7.7 135.3 1.8 XBC-9-24 60 550 1366 0.40 0.04892 0.00330 0.1431 0.0099 0.02121 0.00049 135.8 8.8 135.3 3.1 XBC-9-26 56 536 1117 0.48 0.04871 0.00180 0.1420 0.0052 0.02114 0.00023 134.8 4.6 134.8 1.4 XBC-9-27 57 513 1574 0.33 0.04888 0.00196 0.1407 0.0054 0.02098 0.00022 133.7 4.8 133.8 1.4 XBC-9-28 83 841 1728 0.49 0.04860 0.00167 0.1442 0.0051 0.02145 0.00023 136.8 4.5 136.8 1.5 XBC-9-30 44 431 918 0.47 0.04841 0.00462 0.1400 0.0129 0.02099 0.00064 133.0 11.5 133.9 4.1 表 3 小大川铅锌铜矿黑云母二长花岗岩全岩Sr−Nd同位素分析结果
Table 3 Sr−Nd isotope analysis results of whole rock of biotite monzogranite from the Xiaodachuan Pb−Zn−Cu deposit
样号 Rb/10−6 Sr/10−6 87Rb/86Sr 87Sr/86Sr 2σ ISr(t) Sm/10−6 Nd/10−6 XBC-6 140 291 1.39311 0.708139 0.000022 0.70545 5.02 22.5 XBC-7 175 243 2.08536 0.709484 0.000022 0.70546 6.08 29.2 XBC-8 168 241 2.01856 0.709374 0.000021 0.70548 4.93 22.5 样号 147Sm/144Nd 143Nd/144Nd 2σ INd(t) εNd(t) fSm/Nd TDM/Ma T2DM/Ma XBC-6 0.13489 0.512494 0.000013 0.512374 −1.7 -0.31 1271 1071 XBC-7 0.12589 0.512558 0.000009 0.512446 −0.3 -0.36 1030 957 XBC-8 0.13247 0.512518 0.000008 0.512400 −1.2 −0.33 1188 1030 表 4 小大川铅锌铜矿及邻区典型矿床成岩成矿年龄
Table 4 Ages of diagenesis and mineralization of typical deposits in Xiaodachuan Pb−Zn−Cu deposit and its adjacent areas
矿床名称 矿床类型 矿种 围岩锆石
U−Pb年龄矿化年龄 参考文献 双尖子山 热液脉型 铅−锌−银 花岗斑岩
135.2±1.4 Ma135.0±0.6 Ma
Re-Os年龄Zhai et al.,2020
王祥东,2017白音诺尔 矽卡岩型 铅−锌−银 长石斑岩
136±2 Ma138.8±0.9 Ma
Re-Os年龄Jiang et al.,2017 小井子 热液脉型 铜−铅−锌−银 黑云母二长花岗岩
136.2±1.1 Ma早白垩世 Mi et al.,2022 姚儿吐 热液脉型 铅−锌−银 二长花岗岩
137.1±0.4 Ma早白垩世 Mi et al.,2021 白音额勒布 热液脉型 银−铅−锌 花岗斑岩
141.6±1.6 Ma144.1±2.1 Ma 宋开瑞,2019 边家大院 斑岩-热液脉型 锡−银−铅−锌−铜 花岗斑岩
140.8±0.9 Ma
140.2±0.6 Ma140.0±1.7 Ma Re-Os年龄 Ruan et al.,2015
Zhai et al.,2017小大川 热液脉型 铜−铅−锌 黑云母二长花岗岩
135.9±0.8 Ma早白垩世 本文 -
Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1−25.
Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29. doi: 10.1016/j.lithos.2006.12.007
Chen Y J, Chen H Y, Zaw K, et al. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: an overview[J]. Ore Geology Reviews, 31(1-4): 139−169. doi: 10.1016/j.oregeorev.2005.01.001
Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200.
Eby G N. 1992. Chemical subdivision of the A−type granitoids; petrogenetic and tectonic implications[J]. Geology (Boulder), 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Frost B R, Barnes C G, Collins W J. 2001. A Geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033
Goldfarb R J, Mao J W, Qiu K F, et al. 2021. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics[J]. Gondwana Research, 100: 223−250. doi: 10.1016/j.gr.2021.02.020
Goldstein S J, Jacobsen S B. 1988. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 89(1): 35−47. doi: 10.1016/0012-821X(88)90031-3
Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.
Gu Y C, Chen R Y, Jia B, et al. 2017. Zircon U−Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb−Zn−Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101−117 (in Chinese with English abstract).
Jacobsen S B, Wasserburg G J. 1984. Sm−Nd isotopic evolution of chondrites and achondrites, II[J]. Earth and Planetary Science Letters, 67(2): 137−150. doi: 10.1016/0012-821X(84)90109-2
Jahn B M, Capdevila R, Liu D Y, et al. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor−Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences, 23(5): 629−653.
Jahn B M, Wu F Y, Lo C H, et al. 1999. Crust−mantle interaction induced by deep subduction of the continental crust: geochemical and Sr−Nd isotopic evidence from post−collisional mafic−ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1−2): 119−146.
Jiang H Y, Zhao Z D, Zhu X Y, et al. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).
Jiang S H, Chen C L, Bagas L, et al. 2017. Two mineralization events in the Baiyinnuoer Zn−Pb deposit in Inner Mongolia, China: Evidence from field observations, S−Pb isotopic compositions and U−Pb zircon ages[J]. Journal of Asian Earth Sciences, 144: 339−367.
King P L, White A J R, Chappell B W, et al. 1997. Characterization and Origin of Aluminous A−type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371−391.
Koschek, G. 1993. Origin and significance of the SEM cathodoluminescence from zircon[J]. Microsc, 171(3): 223−232. doi: 10.1111/j.1365-2818.1993.tb03379.x
Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3/4): 207−224. doi: 10.1016/j.jseaes.2005.09.001
Liu J M, Zhang R, Zhang Q Z. 2004. The regional metallogeny of da hinggan ling, China[J]. Geoscience Frontiers, 11(1): 269−277 (in Chinese with English abstract).
Liu L J, Zhou T F, Zhang D Y, et al. 2018. S isotopic geochemistry, zircon and cassiterite U−Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Xing’an Range, NE China[J]. Ore Geology Reviews, 93: 168−180.
Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148.
Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U−Pb isotope and trace element analyses by LA−ICP−MS[J]. Chinese Science Bulletin, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4
Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 4.
Lv Z C, Duan G Z, Liu C Q, et al. 2000. Types of Silver Deposits, Metallogenic Series, and Metallogenic Geochemical Characteristics in the Greater Khingan Mountains Region[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 305−309 (in Chinese with English abstract).
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 715−729 (in Chinese with English abstract).
McDonough W F, Sun S S, Ringwood A E, et al. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 56(3): 1001−1012. doi: 10.1016/0016-7037(92)90043-I
Metelkin D V, Vernikovsky V A, Kazansky A Y. 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 18(2/3): 400−419.
Mi K F, Lu Z C, Li C F, et al. 2017. Origin of the Badaguan porphyry Cu−Mo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology[J]. Ore Geology Reviews, 81(1): 154−172. doi: 10.1016/j.oregeorev.2016.09.029
Mi K F, Lu Z C, Liu Q, et al. 2021. Zircon U−Pb ages and geochemical characteristics of granites in the Yaoertu deposit: Implications for Pb−Zn−Ag mineralization in the southern Great Xing’an Range, NE China[J]. Ore Geology Reviews, 220: 106666. doi: 10.1016/j.oregeorev.2021.104160
Mi K F, Lu Z C, Yan T J, et al. 2020. Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing'an Range, Northeast China: Implications for the timing of mineralization and ore genesis[J]. Geological Journal, 55(7): 5062−5081. doi: 10.1002/gj.3729
Mi K F, Lü Z C, Zhao S J, et al. 2021. Petrogenesis and metallogenic implications of the Late Jurassic Dagayin pluton, southern Great Xing'an Range, northeast China: Integrated geochronological, petrological, and geochemical constraints[J]. Journal of Geochemical Exploration, (220): 106666.
Mi, K F, Lü Z C, Yan, T J, et al. 2022. Zircon U−Pb geochronology and Sr−Nd−Hf−O isotopic constraints on the relationship between Mo and Pb−Zn mineralization in the Haisugou pluton in the southern Great Xing'an Range, northeast China[J]. Ore Geology Reviews, 144: 104838. doi: 10.1016/j.oregeorev.2022.104838
Middlemost E A, Magmas K, Rocks M. 1985. An introduction to igneous petrology[J]. Magma and magmatic Rocks, Longmans.
Middlemost E A. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 215−224.
Ouyang H G, Mao J W, Zhou Z H. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27(3): 1153−1172.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745
Pei Q M, Zhang S T, Santosh M, et al. 2017. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 83: 174−190.
Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab−derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0
Ren W K, Wang S Y, Chen L B, et al. 2020. LA−ICP−MS zicon U−Pb geochronology, geochemistry and geological significance of granodiorites in Lancai Area, Tongren, Qinghai[J]. Journal of Jilin University: Earth Science Edition, 50(4): 1059−1074 (in Chinese with English abstract).
Ruan B X, Lv X B, Yang W, et al. 2015. Geology geochemistry and fluid inclusions of the Bianjiadayuan Pb−Zn−Ag deposit, Inner Mongolia, NE China: Implications for tectonic setting and metallogeny(Article)[J]. Ore Geology Reviews, 71: 121−137. doi: 10.1016/j.oregeorev.2015.05.004
Rudnick R L, Gao S, Holland H D, et al. 2003. Composition of the continental crust[J]. The Crust, 3: 1−64.
Shellnutt J S, Jahn B M. 2010. Formation of the Late Permian Panzhihua plutonic−hypabyssal−volcanic igneous complex: Implications for the genesis of Fe−Ti oxide deposits and A−type granites of SW China[J]. Earth and Planetary Science Letters, 289(3/4): 509−519.
Sheng J F, Fu X Z, et al. 1999. Metallogenic Environment and geological characteristics of copper−polymetallic deposits in the central section of the Greater Khingan Mountains[M]. Beijing: Seismological Press: 1− 216 (in Chinese with English abstract).
Song K R. 2019. The Metallogenic Relationship between fluorite deposits and silver−polymetallic deposits and its prospecting significance in the Linxi Area of Inner Mongolia[D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.
Taylor S. R, McLennan S M. 1985. The continental crust: Its composition and evolution[M]. Blackwell Scientific Pub.: 1−312.
Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn−polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021
Wang H, Li F, Zhang G H. 2019. Genesis and prospecting indicators of the Xiaodachuan lead−zinc−copper polymetallic deposit in Inner Mongolia[J]. Inner Mongolia Science Technology and Economy, (6): 66 (in Chinese with English abstract).
Wang J B, Wang Y W, Wang L J, et al. 2001. Tin−polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 51(4): 283−291.
Wang X D, Xu D M, Lv X B, et al. 2018. Origin of the Haobugao skarn Fe−Zn polymetallic deposit, Southern Great Xing'an Range, NE China: geochronological, geochemical, and Sr−Nd−Pb isotopic constraints[J]. Ore Geology Reviews, 94: 58−72.
Wang X D. 2017. Diagenesis and Metallogenesis of the Silver−Lead−Zinc Polymetallic Deposit in the Lindong Area, Inner Mongolia[D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
Wang T, Guo L, Zhang L, et al. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol−Okhotsk Belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic Settings[J]. Journal of Asian Earth Sciences, 97(1): 365−392.
Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419.
Wickham S M, Alberts A D, Zanvillevich A N, et al. 1996. A stable isotope study of anorogenic magmatism in East Central Asia[J]. Journal of Petrology, 37(5): 1063−1095. doi: 10.1093/petrology/37.5.1063
Wu F Y, Jahn B M, Wilde S A, et al. 2003. Highly fractionated I−type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 64(3/4): 191−204.
Wu F Y, Jahn B M, Wilde S W, et al. 2000. Phanerozoic crustal growth: U−Pb and Sr−Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, (1/2): 89−113.
Wu F Y, Sun D Y, Li H M, et al. 2002. A−type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2): 143−173.
Yang J H, Wu F Y, Chung S L, et al. 2007. A hybrid origin for the Qianshan A−type granite, northeast China: geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106.
Yao L, Lv Z C, Ye T Z, et al. 2017. Zircon U−Pb age, geochemical and Nd−Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183−3199 (in Chinese with English abstract).
Zhai D G, Liu J J, Wang J P, et al. 2014. Zircon U−Pb and molybdenite Re−Os geochronology, and whole−rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China[J]. Journal of Asian Earth Sciences, 79(1): 144−160. doi: 10.1016/j.jseaes.2013.09.008
Zhai D G, Liu J J, Zhang A L, et al. 2017. U−Pb, Re−Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag−Pb−Zn−Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events[J]. Economic Geology, (8): 2041−2059.
Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The genesis of the giant Shuangjianzishan epithermal Ag−Pb−Zn deposit, Inner Mongolia, northeastern China[J]. Economic Geology, 115(1): 101−128.
Zhang L L, Jiang S H, Bagas L, et al. 2019. Element behaviour during interaction of magma and fluid: A case study of Chamuhan Granite, implications on the genesis of W−Mo mineralisation[J]. Lithos, 342: 31−44.
Zhang W, Lentz D R, Thorne K G, et al. 2020. Late Silurian−Early Devonian slab break−off beneath the Canadian Appalachians: Insights from the Nashwaak Granite, west−central New Brunswick, Canada[J]. Lithos, 358: 105393.
Zhao G L, Yang G L, Fu J Y. 1989. Mesozoic volcanic rocks in the central and southern parts of the Greater Khingan Mountains[M]. Beijing: Beijing Science and Technology Press: 1−252 (in Chinese).
Zhao J Q, Zhou Z H, Ouyang H G, et al. 2022. Zircon U−Pb age and geochemistry of quartz syenite porphyry in Shuangjianzishan Ag−Pb−Zn(Sn) deposit, Inner Mongolia, and their geological implications[J]. Mineral Deposits, 41(2): 324−344 (in Chinese with English abstract).
Zhao Y M, Wang D W, Zhang D Q, et al. 1994. Geological conditions for copper−polymetallic metallogenesis and prospecting models in the southeastern part of Inner Mongolia[M]. Beijing: Seismological Press: 1− 234 (in Chinese with English abstract).
Zhou Z H, Mao J W, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A−type granites from the Huanggang Sn−Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 48: 272−286.
Zhu B Q. 1998. Study on chemical heterogeneities of mantle crustal systems and geochemical boundaries of blocks[J]. Earth Science Frontiers, 5(1): 72−82 (in Chinese with English abstract).
Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt, Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306(1): 33−56.
赤峰盛源地质勘查有限公司. 2018. 内蒙古自治区巴林右旗小大川矿区铅锌铜矿详查报告[R]. 顾玉超, 陈仁义, 贾斌, 等. 2017. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101−117. doi: 10.12029/gc20170108 蒋昊原, 赵志丹, 祝新友, 等. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 11(1): 269−277. doi: 10.3321/j.issn:1005-2321.2004.01.024 吕志成, 段国正, 刘丛强, 等. 2000. 大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征[J]. 矿物岩石地球化学通报, 19(4): 305−309. doi: 10.3969/j.issn.1007-2802.2000.04.037 毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 715−729. doi: 10.3969/j.issn.0258-7106.2013.04.006 任纪舜, 陈廷愚, 牛宝贵, 等. 1992. 中国东部及邻区大陆岩石圈的构造演化与成矿[M]. 北京: 科学出版社: 90−103. 任文恺, 王生云, 陈礼标, 等. 2020. 青海同仁兰采地区花岗闪长岩LA−ICP−MS锆石U−Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 50(4): 1059−1074. 盛继福, 傅先政, 等. 1999. 大兴安岭中段成矿环境与铜多金属矿床地质特征[M]. 北京: 地震出版社: 1− 216. 宋开瑞. 2019. 内蒙古林西地区萤石矿与银多金属矿成矿关系及找矿意义[D]. 中国地质大学(北京)博士学位论文. 王河, 李峰, 张国辉. 2019. 内蒙古小大川铅锌铜多金属矿矿床成因与找矿标志[J]. 内蒙古科技与经济, (6): 66. 王祥东. 2017. 内蒙古林东地区银铅锌多金属矿床成岩成矿作用[D]. 中国地质大学(北京)博士学位论文. 姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和Nd−Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199. 赵国龙, 杨桂林, 傅嘉有. 1989. 大兴安岭中南部中生代火山岩[M]. 北京: 北京科学技术出版社: 1−252. 赵家齐, 周振华, 欧阳荷根, 等. 2022. 内蒙古双尖子山银铅锌(锡)矿床石英正长斑岩U−Pb年龄地球化学及其地质意义[J]. 矿床地质, 41(2): 324−344. 赵一鸣, 王大畏, 张德全, 等. 1994. 内蒙古东南部铜多金属成矿地质条件及找矿模式[M]. 北京: 地震出版社: 1−234. 朱炳泉. 1998. 壳幔化学不均一性与块体地球化学边界研究[J]. 地学前缘, 5(1): 72−82. doi: 10.3321/j.issn:1005-2321.1998.01.008