Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes
-
摘要:研究目的
大兴安岭南段黄岗梁锡铁矿区及外围发育大面积花岗岩类,加强其成岩时代、岩石成因类型、成岩成矿物质来源等研究,有利于探究该区成岩与成矿关系和早白垩世碰撞造山机制。
研究方法采集大兴安岭南段黄岗梁锡铁矿区及外围样品,进行岩相学、锆石U−Pb测年、岩石地球化学及Rb−Sr、Sm−Nd、Pb同位素研究。
研究结果获得岩浆结晶年龄为141.9~139.1 Ma,较成矿年龄早约3 Ma,形成于早白垩世。岩石具有高硅、低铝、低镁、富钾少钠特征,为高钾钙碱性A型花岗岩。(87Sr/86Sr)i和143Nd/144Nd值分别介于0.70031~0.70543和0.512572~0.512636之间,εNd(t)值为0.07~ 1.18,Nd同位素模式年龄TDM2为926 ~838 Ma。
结论黄岗梁矽卡岩型锡铁矿床成岩物质于新元古代从亏损地幔分离,在上升侵位过程中受到地壳物质混染。大兴安岭南段地区在早白垩世经历了蒙古–鄂霍次克洋碰撞闭合伸展作用和古太平洋高角度俯冲作用叠加。
Abstract:ObjectiveA large area of granitoids had been developed in the huanggangliang tin-iron mining and its surrounding area in the southern Great Hinggan Range. Thus, the study on its diagenetic age, petrogenetic type and source of diagenetic and ore-forming materials provides important insights to the mechanism of Early Cretaceous collision orogeny in this area and its relationship with mineralization.
MethodsSamples were collected from the Huanggangliang tin−iron mining area and its surrounding areas in the southern Great Hinggan Range for petrography, zircon U−Pb geochronology, rock geochemistry, and Rb−Sr, Sm−Nd, Pb isotope studies.
ResultsThe crystallization ages of these samples range from 141.9 Ma to 139.1 Ma, which was formed during the Early Cretaceous and was about 3 Ma earlier than the mineralization age. The rocks are belong to high potassium calcium alkaline A−type granites with characteristics of high silicon, low aluminum, low magnesium, high potassium and low sodium. The ratios of (87Sr/86Sr)i and 143Nd/144Nd are 0.70031~0.70543 and 0.512572~0.512636, respectively, the value of εNd (t) is 0.07~ 1.18, and the Nd isotope model age TDM2 ranges from 926 Ma to 838 Ma.
ConclusionsThe diagenetic materials of the Huanggangliang skarn tin−iron deposit were separated from the depleted mantle in Neoproterozoic, and experienced crustal contamination during ascending emplacement process. The southern Great Hinggan Range area experienced high−angle subduction of the Paleo−Pacific Ocean plate after post−collisional extension of the Mongol−Okhotsk Ocean closure.
创新点开展大兴安岭南段地区早白垩世典型多金属矿床成岩成矿对比研究和Pb同位素对比研究,提出黄岗梁矽卡岩型锡铁矿床的中酸性侵入岩较成矿年龄早3 Ma左右,代表了与碳酸盐岩的接触交代矿化期。
-
硒(Se)是人体必需的微量元素(Daniel,2008),被誉为“抗癌之王”(毛香菊等,2021;周墨等,2021)。人体补充Se元素最安全最有效的途径是通过天然富硒农产品等膳食摄入(Banuelos et al., 2015;杨奎等,2018;徐雪生等,2022),而富硒土壤是生产天然富硒产品的先决条件,富硒土地资源的开发利用也越来越受到关注(廖启林等,2020),已成为当前农业地质研究的一大热点(刘健等,2022)。江苏的富硒土壤资源稀缺,土壤Se分布极不均匀,含量最高值与最低值相差数百倍,全省表层土壤的Se含量均值为0.18 mg/kg,约1/2的市县存在不同程度的缺硒现象,成片富硒区主要分布于苏南宜溧低山—丘陵区,多出露煤系地层或产有煤矿,苏北大部分平原区基本未发现大面积富硒土地(廖启林等,2020)。廖启林等(2020)认为,江苏全省富硒来源主要可分为2类,一是与富硒岩石有关的“先天”来源,二是人类活动引起的“后天”来源。对于远离母岩的平原区富硒土壤的成因,大多研究表明(杨泽等,2021;柴冠群等,2022;王仁琪等,2022)与Se元素在地表的迁移密切相关,影响土壤硒富集的因素主要有地形、气候、成土母质、土壤质地、有机质、人为因素等(Umesh et al., 2010;Supriatin et al., 2015; Jones et al., 2017)。前人研究结果对于富硒土壤成因研究具有重要的意义,但对于成陆时间短,成陆期表生环境对于现今地表土壤硒富集的影响鲜见报道。
研究区位于江苏省里下河平原的边缘部位,现为江苏省粮食主产区,被称为江苏省的“粮仓”。江苏省1∶25万多目标区域地球化学调查结果揭示(廖启林等,2007),在里下河边缘潟湖相沉积区土壤Se含量多介于0.3~0.5 mg/kg之间,相比于周围地区,呈明显的相对富集特点,具有发展富硒特色农业的潜力。因此,在该区域寻找和挖掘更多的富硒土壤资源用于富硒农产品的开发具有重要的现实意义。该区第四系覆盖数百米厚,成土母质主要为河流冲积物和海相沉积物,这些物质远离母岩,在长期的风化搬运过程中,理化性质与母岩有很大差异。近期在里下河地区发现了约60 km2的硒富集区,本文在1∶5万土地质量调查的基础上,开展了平原区富硒土壤成因及控制因素研究,为类似地区富硒土壤的寻找和开发提供参考。
1. 材料与方法
1.1 研究区概况
研究区位于江苏省南通市西北部(图1),北纬32°27′~32°44′、东经120°11′~120°31′ 之间,总面积约500 km2(其中农用地面积约430 km2)。研究区属北亚热带季风气候,四季分明,年平均气温14.5℃,年平均降水量1025 mm,年平均相对湿度为60%~80%。区内大体属淮河水系,正常河网水位1.2 m;南部(通扬运河以南)属长江水系,正常河网水位2.5 m;主要河流有新通扬运河(东西向)、串场河、通榆河(均南北向)。地貌上,主体为里下河浅洼圩田平原,南部和东部跨少量高沙平原和滨海平原,其中里下河浅洼区为古潟湖相沉积和黄泛冲积平原区,沉积物主要为粉砂质粘土,多夹泥炭或淤泥质亚粘土;高沙平原为海积冲积相沙嘴沙洲堆积平原,河口相沉积的扬泰古沙嘴东缘由长江冲积而成;东部滨海平原为海积相滨海堆积平原。土壤类型主要为水稻土、滨海盐土、高沙土,其中里下河浅洼区主要土壤类型为水稻土,以渗育型、潴育型、脱潜型为主;南部为高沙土分布区,主要土壤类型有泡沙土、板而沙、夹沙土等;东部滨海平原为潮盐土地区,主要土壤类型为夹沙土、板而沙、粘土等。研究区第四系沉积物覆盖厚度在300 m左右,全新世以来,研究区经历了从海湾到三角洲,又从三角洲到陆地,以及几千年的沉积和地壳升降运动的过程(姜鹏等,2006)。境内成陆最早的是扬泰古沙嘴(扬泰岗地),在南莫镇青墩村、海安镇隆政村吉家墩、曲塘镇刘圩村等多处发现新石器时代遗址和哺乳动物化石,据同位素测定约为6000 a。
1.2 样品采集与测试
根据土地利用方式,结合遥感影像资料,在研究区农用地中采集了1800个表层土壤样品(0~20 cm),平均点密度约4个/ km2;深层土壤柱(0~180 cm)样品200个,平均点密度约1个/2 km2,每柱分5层采样:表层(0~20 cm)、犁底层(20~40 cm)、心土层(50~80 cm)、底土层(80~100 cm)和深层土(150~180 cm)。土壤样品采集时间为2022年1—2月。野外样品采集方法参照《土地质量地球化学评价规范》(DZ/T 0295—2016)(中华人民共和国国土资源部,2016)。表层土壤样以2021年遥感影像上确定的地块图斑中心位置为主样点,同时向四周辐射20~30 m,确定4个子样点(子样点均位于同一土地利用类型范围),混合均匀为1个样品;土壤柱采用深层取土器分土层采集样品。按照采样点位3%的比例采集重复样,由检查人员根据采样航点航迹在原点位处进行采集。样品加工:首先在制样室风干样品,然后用木锤碾压进行粗磨,过孔径10目尼龙筛,过筛后的样品一部分用于测试土壤pH值和粒度,另一部分继续进行细磨(过60目尼龙筛),用于测试有机质和Se含量。样品测试方法见表1。实验室内部质控为每隔12个样品插入1个国家一级标准物质,每10个样品做1个平行双样分析,标准物质测试相对偏差(RE)及平行双样相对偏差(RD)均在规范允许范围内,合格率均为100%。
表 1 土壤样品测试方法Table 1. Test method of soil sample测试指标 样品粒度 测试方法 检出限 RE RD 参照标准 pH ≤2 mm ISE 0.1 0.7~7.9% 1.6~15.8% 《土壤中pH的测定》
(NY/T 1377—2007)粒度分析 ≤2 mm 激光衍射法 0.01% 0.6~15% 2.1~19.5% 《粒度分布 激光衍射法》
(GB/T 19077—2016)有机质(SOM) ≤0.149 mm 重铬酸钾法 0.20‰ 0~4.1% 0.1~10% 《土壤检测 第6部分:土壤有机质的测定》(NY/T 1121.6—2006) 全Se ≤0.149 mm 原子荧光光谱法 0.01
mg/kg0.2~4.8% 3.0~12.8% 《土壤中全硒的测定》
(NY/T1104—2006)1.3 数据分析方法
本文数据分析方法如下所述:①采用Excel进行一般数据统计分析,采用SPSS 17软件进行相关性分析。地球化学分布图采用Surfer 11软件绘制,插值方法选用克里金插值法。②粒径公式:Ф= −log2D,D为颗粒直径(μm),Ф值越大,表明粒径越细,反之亦然。③母质层沉积相划分方法:以深层土壤(150~180 cm)段平均粒径划分成陆期母质沉积相,其中平均粒径≤5 Ф(粘粒含量低于5%)划为砂坝,5~7 Ф(粘粒含量5%~20%)为潟湖—砂坝过渡相,>7 Ф(粘粒含量高于20%)为潟湖相。④土壤质地类型划分方法:参照国际制土壤质地分类标准(农业大词典编辑委员会,1998;吴克宁等,2019)进行土壤质地类型分类。⑤多元线性回归分析方法:采用SPSS 17软件回归分析完成,根据土壤Se与其影响因子相关性结果,以土壤Se为因变量,选择与其出现极显著相关的影响因子为自变量,为消除不同因子之间数值的差异,对因变量和自变量进行对数转换;然后通过SPSS 17软件线性回归功能,按照相关系数大小依次引入自变量构建回归方程,检验方法选用德宾-沃森。
2. 结果与讨论
2.1 土壤硒地球化学分布特征
研究区土壤Se及主要理化指标统计结果如表2所示。土壤硒、有机质(SOM)含量由深层至表层逐渐增加,表生富集效应较明显。pH值由深层至表层逐渐减小,至犁底层中值约为7.89,总体上呈碱性,至耕作层pH值下降,总体略呈中性。平均粒径Ф值由深层至表层逐渐减小,总体为上部略粗下部较细。
表 2 土壤Se及主要理化指标特征统计结果Table 2. Characteristics of soil selenium and its main physicochemical indicators土壤层位 耕作层(0~20 cm) 犁底层(20~40 cm) 心土层(50~80 cm) 底土层(80~100 cm) 深土层(150~180 cm) 样本数 n=1800 n=200 n=200 n=200 n=200 Se/(mg·kg−1) 范围 0.07~0.63 0.05~0.37 0.04~0.32 0.04~0.28 0.05~0.23 均值 0.23 0.18 0.13 0.12 0.11 SOM/‰ 范围 6.2~64.5 3.6~28.4 3.2~23.1 1.3~25.2 0.3~25.4 均值 26.9 13.2 8.7 6.7 6.5 pH 范围 4.90~8.48 6.80~8.50 6.89~8.74 7.19~9.07 7.11~9.25 中值 7.24 7.89 8.01 8.23 8.41 平均粒径/Ф 范围 4.97~8.04 5.00~8.71 4.67~8.72 4.91~9.05 4.49~9.23 均值 5.91 6.18 6.27 6.43 6.47 参照《天然富硒土地划定与标识( 试行)》(DZ/T0380—2021)(中华人民共和国自然资源部,2021),对于碱性土壤Se含量高于0.3 mg/kg,即达到了富硒土地Se含量阈值,结合江苏全省和南通市表层土壤Se平均含量分别为0.18 mg/kg和0.16 mg/kg,在《土地质量地球化学评价规范》(DZ/T0295—2016)基础上,对土壤Se元素富集等级进行了一定的微调,分级标准如表3所示。参照表3,研究区各层位土壤Se分级如图2所示。
表 3 土壤Se分级标准Table 3. Soil selenium classification standard指标 缺乏 边缘 足硒 富集区 过剩 Se/(mg·kg−1) ≤0.125 0.125~0.175 0.175~0.3 0.3~3 >3 主要特征如下所述:①从深层土—底土层—心土层—犁底层—表层自下而上土壤Se逐渐出现富集,足硒和硒富集区逐渐扩大,尤其是表层和犁底层,足硒级以上区域已占主导地位。②深层土壤中约90%的区域处于边缘-缺硒级,仅在乐百年小镇(海安里下河湿地公园)周边约20 km2处于足硒级;底土层足硒区范围逐渐扩大,至心土层已在墩头-仇湖—吉庆一带形成连片区。③犁底层硒富集区扩大至40 km2(约占全区10%),足硒区约200 km2(约占全区50%),缺硒地区大幅收缩。表层土壤Se富集区(≥ 0.3 mg/kg)面积约66.25 km2,主要分布于北部里下河地区。足硒区域约占全区70%,边缘-缺硒地区主要分布于南部高沙平原、东部滨海平原及北部蒋阳村西南部。④从各层位土壤硒等级分区图看(图2),研究区土壤硒出现强烈的富集效应,尤其是在犁底层—表层土表聚性十分明显。从平面上看,研究区自深层土—表土层,各层位土壤Se含量均表现出不均匀性,总体为北部相对富集,南部和东部较贫化。
2.2 成土母质沉积环境
粒度特征是沉积物物源、地形地貌、水动力条件、搬运距离等综合作用的结果(Mclaren et al., 1985;Gao et al., 2019;梅西等,2020),可反映沉积介质的流体力学性质和能量(Liu,et al.,2006),平均粒径(Mz)指示了沉积物粒径频率分布的中心趋向,大小反映了沉积物的平均动能,故通过沉积物粒度特征可以反演母质层的沉积环境。
2.2.1 母质层粒度特征
据粒度分析结果,研究区深土层和底土层粒度特征如图3所示,主要特征如下。①研究区位于里下河古潟湖的边缘,在成壤前存在明显的沉积环境分异,沉积物粒度特征总体表现为古潟湖—砂坝沉积体系,二者粒度特征存在显著差异。母质层粒度特征均揭示,里下河区存有沉积物较细的潟湖相沉积物,中间为较粗的砂坝分割,其中东侧潟湖发育较完整,西侧则有较粗物质淤塞的趋势。②在潟湖区粒度明显细于砂坝区域(表4),平均粒径6.88 ~9.23 Ф,均值为8.14 Ф,其中在乐百年小镇一带出现8 Ф(约合3.906 μm)以上的细粒物质连片区。粘粒(粒径<2 μm,Ф≥9)含量一般在20%以上,平均为34.5%;粉粒(2~20 μm,粒径5.75 ~9 Ф)含量30%~51.29%,平均为44%;砂粒(20~2000 μm,粒径−1~5.75 Ф)含量9.28%~39.13%,平均为21.5%。该区域SOM含量相对较高,一般在10‰以上,局部区域达到20‰。Se含量为0.06~0.23 mg/kg,平均为0.14 mg/kg,为区域内含量最高的沉积单元。③潟湖之间为砂坝所分割,该砂坝平均粒径为4.56~7.36 Ф,粘粒含量平均约为2.1%,Se含量平均为0.1 mg/kg。在南部和东部均有较粗的砂坝分隔高沙平原和滨海平原,高沙平原区和滨海平原区平均粒径为5~6 Ф,粘粒含量均低于2%,砂粒含量一般大于50%,该区域SOM含量低,一般在3‰左右,Se平均含量在0.06 mg/kg左右。④对照深土层和底土层粒度特征,东侧潟湖仍较稳定,但沉积物粒度略变粗,平均粒径8 Ф以上较细物质分布区逐渐减小;西侧逐渐分割成大小湖荡,其中西北部的白甸—青墩一带已被较粗物质覆盖,今南莫河一带已与北部彻底被较粗物质分割。上述特征总体上表明,随着海平面下降,海岸线东移,区内受到长江、江淮等河流冲积物的影响,逐渐被较粗物质覆盖。
表 4 研究区各沉积单元粒度参数特征Table 4. Characteristics of particle size parameters of each sedimentary unit in the study area地貌分区 沉积单元 参数 平均粒径/Ф 粘粒/% 粉粒/% 砂粒/% SOM/‰ Se/(mg·kg−1) 里下河
浅洼区潟湖 范围 6.88~9.23 20~51.5 30~51.29 9.28~39.13 1.26~25.36 0.06~0.23 平均值 8.14 34.5 44.04 21.45 10.08 0.14 砂坝 范围 4.56~7.36 0.34~4.22 17.5~79.05 18.29~82.17 1.2~16.76 0.05~0.16 平均值 5.84 2.14 50.89 46.94 5.79 0.1 高沙平原 砂坝 范围 4.49~6.53 0.42~3.48 15.87~71.55 24.97~83.71 1.26~10.36 0.04~0.11 平均值 5.61 1.83 45.66 52.48 3.11 0.06 滨海平原 砂坝 范围 4.93~6.32 0.6~3.16 28.44~64.57 32.27~70.96 1.2~7.26 0.04~0.11 平均值 5.48 1.34 41.59 57.07 3.07 0.06 2.2.2 母质层沉积环境分区
参照国际制土壤分类标准(农业大词典编辑委员会,1998;吴克宁等,2019),研究区深层土土壤类型如图4所示,共识别出4种土壤类型:粘土、粘壤土、粉砂质壤土和砂质壤土,其中粘壤土的分布范围极小,仅零星分布于粘土覆盖区。粘土主要分布于里下河潟湖沉积区,粉砂质壤土全区均有分布,砂质壤土主要分布于南部高沙平原和东部的滨海平原。参照研究区地表高程、成陆历史及地质背景,深土层土壤大体为区内成陆期的地表层位。研究区沉积分区如图5所示,共分布有3种沉积相:潟湖相、砂坝—潟湖过渡相和砂坝相。
表层土壤Se富集区(≥0.3 mg/kg)主要分布于潟湖相及少量潟湖—砂坝过渡相沉积物上,无论是南部里下河地区还是东部滨海平原区的砂坝表层土壤均未形成土壤Se的富集,同时里下河地区南片区表层土壤也未形成Se的富集。因此,表层土壤Se的富集与潟湖相沉积母质密切相关,古潟湖的沉积环境是区内土壤Se富集的基础,一定程度上控制了Se的富集范围。在潟湖分布区的南、北部并未出现土壤Se的富集,表明土壤Se的富集还受其他因素的影响。
2.3 土壤Se富集成因分析
2.3.1 成土母质
土壤Se的含量虽然受多种因素的影响,但在很大程度上取决于成土母质的组成和性质(王莹,2008;杨泽等,2021)。在地表元素迁移的作用下,地球化学元素在局部区域会出现相对富集。有研究认为,成土母质与土壤硒有较大的相关性(章海波,2005;周殷竹等,2020),因此本文分析了表层土Se含量与下部各土层Se含量的相关性(表5)。结果表明,表层土壤Se含量与下部各土层均呈现出极显著的正相关性,相关系数分别为0.79、0.71、0.65和0.6(p<0.01),相关程度为强相关,与表层土壤Se含量的相关性总体表现为犁底层>心土层>底土层>深土层,随着土层深度的增加相关系数略有下降,这也反映表层土壤Se含量与母质层有极密切的关系,在母质层富集的区域表层土壤出现富集。因此,母质层的沉积环境对于表层土壤Se的富集有一定的控制作用。
表 5 表层土壤Se含量与下部各土壤Se含量相关系数(n=200)Table 5. Relationship between Se content in surface soil and Se content in lower soil土层/cm 犁底层(20~40) 心土层(50~80) 底土层(80~100) 深土层(150~180) 表层(0~20) 0.79** 0.71** 0.65** 0.60** 注:**表示在0.01水平(双侧)上显著相关 2.3.2 地形条件
地形条件是地表元素迁移重要的影响因素。依据本次200个点土壤剖面获得的地表高程(基准面为1985国家高程基准)数据,编制了研究区地形图(图6)。从图6可以看出,表层土富集区与地表低洼地带高度相关,即表土硒的富集范围为地势低的区域。地表高程与潜水位埋深呈显著正相关(图7),相关系数为0.56 (p<0.01,n=200),表明地势越高潜水位埋深越深。表6为地表高程与各层位Se、SOM、粘粒、Mz相关系数,结果表明:①地表高程与各土层Se含量均出现极显著负相关,相关系数均在−0.6(p<0.01,n=200)左右,地势越高土壤Se含量越低,反之亦然,表明地形条件对Se的富集有重要影响。②地表高程与各土层SOM含量也出现极显著的负相关性,相关系数在−0.5(p<0.01,n=200)左右,地势越高土壤SOM含量越低,表明地形条件对SOM也有显著影响。③地表高程与各土层粘粒、Mz的关系较复杂,在80 cm的上部土壤,呈微弱的负相关,在80 cm以下土层,相关系数为 −0.3~−0.4(p<0.01,n=200),表明地形条件对粘粒物质产生了一定的影响,总体趋势为地势越低的区域,粘粒含量越高。
表 6 地表高程与各层位Se、SOM、粘粒、Mz相关系数(n=200)Table 6. Correlation coefficient between surface elevation and Se, SOM, Clay, Mz of each layer项目 土层/cm 0~20 20~40 50~80 80~100 150~180 地表高程-Se −0.600** −0.646** −0.590** −0.621** −0.577** 地表高程-SOM −0.401** −0.519** −0.488** −0.492** −0.539** 地表高程-Clay −0.116 −0.101 −0.247** −0.246** −0.318** 地表高程-Mz −0.178* −0.164* −0.296** −0.281** −0.405** 注:**表示在0.01 水平(双侧)上显著相关;*表示在 0.05 水平(双侧)上显著相关(下同) 综上所述,地形条件对研究区Se的富集也有较明显的影响,同时影响SOM及粘粒物质的含量。
2.3.3 土壤理化指标
土壤理化指标是硒富集重要的影响因素(戴慧敏等,2015;陈锦平等,2018;柴龙飞等,2019),研究区土壤Se含量与主要理化指标土壤有机质(SOM)、pH值、粘粒(Clay)、粉粒(Silt)、砂粒(Sand)及平均粒径(Mz))的相关系数如表7所示。
表 7 各土层Se全量与土壤主要理化性质的相关系数Table 7. Correlation coefficient between total soil Se content and main physicochemical properties土层/cm 有机质 pH 粘粒 粉粒 砂粒 平均粒径 0~20 0.46** −0.04 0.20** 0.23** −0.23** 0.15* 20~40 0.82** −0.64** 0.16* 0.31** −0.39** 0.28** 50~80 0.83** −0.55** 0.26** 0.34** −0.52** 0.39** 80~100 0.86** −0.65** 0.47** 0.15* −0.62** 0.54** 150~180 0.87** −0.64** 0.55** 0.27** −0.67** 0.65** 0~180 0.86** −0.70** 0.36** 0.30** −0.29** 0.11* 分析结果表明:①研究区土壤全硒含量均与有机质(SOM)呈极显著正相关,表土层、犁底层、心土层、底土层、深土层及全土层(0~180 cm)相关系数分别为0.46、0.82、0.83、0.86、0.87、0.86(p<0.01)。总体表现为在犁底层以下的土层,全硒含量均与SOM呈极显著正相关,说明在成壤过程中有机质对硒具有一定的吸附和固定作用(吴俊,2018;柴冠群等,2022),硒能够以腐殖质缔合的形态存在并在土壤中固定下来,SOM对于土壤Se的富集起决定性的作用。也有研究发现,土壤全硒含量与土壤有机质无明显的相关性(陈俊坚等,2012;周越等,2014)。王松山等(2011)研究认为,在相同母质下,有机质含量越高,Se含量越高。②各土层中,除表土层土壤Se全量与pH值未出现显著相关性外,其他土层均出现显著负相关,犁底−心土层、心土层、底土层、深土层及全土层相关系数分别为−0.64、−0.55、−0.65、−0.64、−0.70 (p<0.01)。有研究表明,土壤pH 值对硒的影响主要是影响其形态及生物有效性,与其全量相关性不大(周越等,2014)。但也有研究认为, pH 值与Se全量有一定的负相关性,pH可以通过影响土壤中硒的形态和价态,改变土壤硒的迁移转化能力,进而影响土壤Se含量(黄春雷等,2013;刘永贤等,2018)。本文相关性揭示出的下层土壤与pH有一定的负相关,而表层几乎没有关系,中下层土壤环境较稳定,一般不易流失。研究区母质环境为碱性—强碱性土壤环境,SOM与pH有较显著的负相关,而SOM与Se全量有一定的正相关性,中下层土壤出现Se全量与pH值的负相关,很可能是在SOM高含量区,即Se全量高值区,其土壤受SOM的影响pH值相对较低,因此在相关性分析过程中出现了一定的负相关。③土壤全Se与土壤质地出现显著相关性,与粘粒(Clay)的关系在底土层(80~100 cm)和深土层(150~180 cm)出现中等强度正相关,相关系数分别为0.47和0.55 (p<0.01),其他层位均为弱相关;与粉粒均为中等强度正相关;与砂粒均为负相关,在心土层(50~80 cm)、底土层(80~100 cm)、深土层(150~180 cm)3个层位出现中等—强相关;与平均粒径均为正相关,其中在底土层(80~100 cm)和深土层(150~180 cm)为强相关,其他层位为弱相关。总体而言,在深层土壤,土壤全硒与质地有较好的相关性,总体表现为细粒物质Se全量高。而在表层土壤,受农业生产及高沙土治理等影响,表层土壤质地已与深层出现明显变化,土壤质地不是影响Se含量的单一因素。
2.3.4 土壤硒富集主要控制因素
研究区潟湖-砂坝沉积体系控制了土壤硒的初始富集范围,地形条件和有机质对硒的富集起决定性作用。研究区地处古潟湖边缘水陆交接处,地势低洼处沉积物粒度较细,有机质含量较高,细粒物质中粘土矿物含量高,有机质和粘土矿物均对土壤硒有一定的固定和富集作用。平面上,在地表元素迁移作用下,砂性土壤Se易流失,Se元素往地势低的区域迁移,而地势低的区域是SOM含量高的地区,SOM对Se有较好的吸附作用和固定作用,硒能够以腐殖质缔合的形态存在并在土壤中固定下来。垂向上由于上部土壤SOM含量总体高于下部,在SOM的吸附作用下,Se元素向表层不断聚集迁移。
为揭示研究区SOM对土壤Se富集的控制程度,本次利用多元线性回归技术分析了SOM对Se富集的控制作用。前文分析表明,研究区与土壤Se富集相关的关键土壤理化因子包括SOM、pH、质地等。土壤质地包括粘粒(Clay)、粉粒(Silt)、砂粒(Sand)及平均粒径(Mz),由于具有一定的同质性,本次选择Mz代表质地指标。以获得的土壤柱5个土层1000个样本数据为基础,通过对数转换,然后以土壤Se为因变量,以SOM、pH、Mz为自变量,应用多元回归分析技术,构建土壤Se与其影响因子的线性模型(表8)。
表 8 全土层(0 ~ 180 cm)Se含量多元回归线性模型Table 8. Multiple regression linear model for Se content in the entire soil layer (0~180 cm)因子 预测方程 (n=1000) R2 p 德宾-沃森值 F 单因子 SOM lg Sesoil= 0.480 lg SOM – 1.298 0.747 <0.01 1.225 322.52 pH lg Sesoil= - 3.96 lg pH + 2.703 0.456 <0.01 1.075 84.22 Mz lg Sesoil= 0.682 lg Mz – 1.391 0.046 <0.01 0.477 17.53 双因子 SOM+pH lg Sesoil= 0.449 lg SOM – 0.443 lg pH – 0.873 0.764 <0.01 1.203 163.50 SOM+Mz lg Sesoil= 0.476 lg SOM + 0.157 lg Mz – 1.419 0.765 <0.01 1.238 162.79 三因子 SOM+Mz+pH lg Sesoil= 0.436 lg SOM + 0.213 lg Mz
– 0.561 lg pH – 0.9220.779 <0.01 1.220 110.87 注:式中,Sesoil为土壤Se含量(单位为mg/kg);SOM为土壤有机质含量(单位:‰);Mz为平均粒径(单位:Ф)。R2为回归分析中自变量变异对因变量的解释度,即相对控制程度,范围为0~1;p为显著性水平,p < 0.05为有显著性,p < 0.01为极显著性,p>0.05为没有显著性;德宾-沃森值为检验变量自相关性的指标,若在0~4之间,符合数据独立性;F值为组间和组内的离差平方和与自由度的比值,在p < 0.01下其值越大表明模型越具统计学意义 (1)分别引入单因子SOM、pH、Mz构建模型,R2分别为0.747、0.456和0.046(p<0.01),表明SOM、pH、Mz单因子对土壤Se的控制精度分别为74.7%、45.6%和4.6%。
(2)由于研究区土壤剖面pH与SOM呈极显著负相关,且研究区成土第一环境以碱性—强碱性土为主体,pH下降有很大一部分因素是受SOM升高造成的,因此,虽然pH单因子对土壤Se的控制程度为45.6%,但并不代表完全因酸碱度的影响造成Se的富集。为此分别引入SOM + pH、SOM + Mz进入模型,2组模型R2分别为0.764和0.765(p<0.01),表明双因子下对土壤Se的控制程度分别为76.4%和76.5%,扣除SOM单因子的控制精度,pH和Mz对Se的贡献度分别为1.5%和1.8%。
(3)当同时引入SOM + pH + Mz三因子时,模型R2为0.779(p<0.01),说明上述3个指标对土壤Se的控制程度为77.9%。对于土壤Se的控制,主体是受SOM的影响,SOM对土壤Se的控制程度为74.7%。
(4)上述模型德宾-沃森值均在0~4之间,表明自变量之间符合独立性,F值均大于10且很小的p值意味着至少有一个自变量对应因变量是显著的。
(5)为验证该模型准确度,本文从1800个表层土壤样品中选取了100个点位实测数据对三因子lg Sesoil= 0.436 lg SOM + 0.213 lg Mz – 0.561 lg pH – 0.922 方程进行验证,即以实测的SOM、Mz、pH值经对数转换后代入上述方程,得出该点位土壤Se含量预测值,与实测值进行对比,统计结果如表9所示,模型含量最大偏差为0.13 mg/kg,最大相对偏差约为30%,相对偏差绝对值平均约为17.2%,总体上该模型精度较可靠。
表 9 土壤Se实测值与模型预测值偏差统计Table 9. Deviation between measured soil Se values and model predictions项目 含量偏差/
(mg·kg−1)实测值/
(mg·kg−1)预测值/
(mg·kg−1)相对偏差/% 最大正偏差 0.07 0.22 0.29 31.8 最大负偏差 −0.13 0.44 0.31 −29.5 均值 −0.001 0.24 0.23 −1.1 绝对值均值 0.035 0.24 0.23 17.2 注:含量偏差=预测值−实测值;相对偏差=含量偏差/实测值 3. 结 论
(1)江苏海安里下河地区土壤硒出现了强烈的表生富集效应,富集区主要分布于潟湖相沉积低洼区的表层土壤,富集面积达66 km2,Se最高含量达0.63 mg/kg。
(2)研究区成陆期母质沉积环境主要受潟湖-砂坝体系控制,据粒度特征可分为潟湖相、潟湖-砂坝过渡相、砂坝相,其中潟湖相低洼区出现硒的相对富集,该区域有机质含量高,土壤质地较细,在此基础上发育的土壤进一步富集硒,至表层已达富硒土地标准。
(3)土壤硒与深土母质、有机质、地形条件、土壤质地等均出现极显著的相关性,总体表现为母质Se和有机质含量越高、地势越低、土壤质地越细,土壤中Se含量越高,母质沉积环境和地形控制了土壤硒富集边界,有机质对硒具有重要的吸附作用和固定作用。
(4)研究区富硒土壤是发育于古潟湖相的母质经表生富集作用形成的,成因类型为沉积型(古潟湖相),有机质对于研究区Se的富集起到了决定性作用,对土壤硒的贡献率达70%。区内有机质丰富,土壤硒有稳定的来源,具有发展富硒产业的资源基础。
致谢:工作中得到江苏省地质局海洋院“海安富硒土壤调查项目部”野外一线人员的大力支持和审稿专家的悉心指导,在此一并表示衷心感谢。
-
图 2 黄岗梁锡铁矿区地质图(a)及深部剖面图(b, c)(据Mei et al.,2015修改)
Figure 2. Geological map (a) and cross sections (b, c) of the Huanggangliang Fe-Sn deposit
图 6 黄岗梁地区正长花岗岩Q−A−P图解(a, 底图据Streckeisen et al., 1979)和SiO2−K2O图解(b, 底图据Peccerillo et al., 1976)
1—富石英花岗岩; 2—碱性长石花岗岩; 3a—正长花岗岩; 3b—二长花岗岩;4—花岗闪长岩; 5—云英闪长岩; 6*—石英碱性长石正长岩; 7*—石英正长岩; 8*—石英二长岩; 9*—石英二长闪长岩/石英二长辉长岩; 10*—石英闪长岩/石英辉长岩; 6—碱性长石正长岩; 7—正长岩; 8—二长岩; 9—二长闪长岩/二长辉长岩; 10—闪长岩/辉长岩/斜长岩
Figure 6. Q−A−P diagram(a) and SiO2−K2O diagram(b) of the syenogranites in Huanggangliang area
图 7 黄岗梁地区正长花岗岩微量元素原始地幔标准化图解(a)和稀土元素球粒陨石标准化图解(b)(标准值据Sun et al., 1989; 天山-兴安平均值据史长义等, 2007)
Figure 7. Primitive mantle-normalized trace elements patterns (a) and chondrite-normalized REE patterns (b) of the syenogranites in Huanggangliang area
图 9 黄岗梁地区正长花岗岩成因类型判别图(a, b, c图底图据Whalen et al., 1987; d, e图底图据Eby, 1992; f图底图据Dall’ Agnol et al., 2007)
Figure 9. A-type granite of discrimination diagrams of the syenogranites in Huanggangliang area
图 10 Pb同位素构造模式图(a, 底图据Zartman et al., 1981)和(87Sr/86Sr)i-(143Nd/144Nd)i图解(b, 底图据Zindler et al., 1986)(a图黄岗梁花岗岩5件样品据蔡剑辉等, 2004; Zhou et al., 2012; 黄岗梁矿石14件样品据要梅娟等, 2012; 刘智等, 2013; 白音诺尔11件样品据Jiang et al., 2017; Zhao et al., 2020;浩布高5件样品据 Wang et al., 2018; 道伦达坝14件样品据周振华等, 2014; 维拉斯托8件样品据刘瑞麟等, 2018. b. 黄岗梁花岗岩6件样品据Zhou et al., 2012; 苏荣昆等, 2022; 白音诺尔24件样品据Jiang et al., 2017; Zhao et al., 2020; 浩布高5件样品据Wang et al., 2018; 双尖子山12件样品据Dai et al., 2022)
Figure 10. Pb isotopic compositions diagram(a) and (87Sr/86Sr)i-(143Nd/144Nd)i diagram(b)
图 11 黄岗梁地区正长花岗岩R1−R2图解 (a, 底图据Batchelor et al., 1985)和(Y+Nb)−Rb图解(b, 底图据Pearce et al., 1984)(R1=[4Si-11(Na + K)-2(Fe + Ti)]; R2=(Al + 2Mg + 6Ca))
1—地幔分异(斜长花岗岩); 2—破坏性活动板块边缘(板块碰撞前)花岗岩; 3—板块碰撞后隆起期花岗岩; 4—晚造山期花岗岩; 5—非造山期A型花岗岩; 6—同碰撞S型花岗岩; 7—造山期后A型花岗岩;ORG—洋中脊花岗岩; Syn-COLG—同碰撞花岗岩; VAG—火山弧花岗岩; WPG—板内花岗岩
Figure 11. R1−R2 diagram (a) and (Y+Nb)−Rb diagram (b) of the syenogranites in Huanggangliang area
表 1 黄岗梁地区正长花岗岩锆石U−Th−Pb同位素数据
Table 1 U−Th−Pb data of zircons obtained from the syenogranites in Huanggangliang area
测点 普通Pb/% U/10−6 Th/10−6 232Th/
238U放射性Pb/
10−6206Pb*/
238U1σ/% 207Pb*/
235U1σ/% 207Pb*/
206Pb*1σ/% 误差相
关系数206Pb/238U
年龄/Ma207Pb/206Pb
年龄/Ma不谐和度/% DS223-1 1.1 0.61 223 90 0.42 4.29 0.02221 1.9 0.1538 6.0 0.0502 5.7 0.312 141.6±2.6 205±130 31 2.1 1.45 268 98 0.38 5.16 0.02208 2.0 0.149 13 0.0490 13 0.150 140.8±2.7 147±300 5 3.1 1.12 286 131 0.47 5.46 0.02199 1.9 0.156 12 0.0514 12 0.162 140.2±2.7 259±270 46 4.1 2.28 130 55 0.44 2.49 0.02185 2.4 0.157 20 0.052 20 0.121 139.3±3.4 295±450 53 5.1 1.70 306 121 0.41 5.81 0.02176 1.9 0.144 12 0.0481 12 0.156 138.8±2.6 103±280 −34 6.1 2.65 213 83 0.40 4.09 0.02180 2.0 0.146 14 0.0485 14 0.138 139.0±2.7 125±330 −11 7.1 0.42 1206 401 0.34 23.1 0.02222 1.6 0.1476 3.5 0.0482 3.1 0.463 141.6±2.3 108±73 −31 8.1 0.61 667 192 0.30 12.4 0.02143 1.7 0.1436 5.7 0.0486 5.4 0.299 136.7±2.3 128±130 −6 9.1 1.91 258 112 0.45 4.97 0.02199 2.0 0.150 18 0.0495 18 0.111 140.2±2.7 171±410 18 10.1 5.40 79 27 0.35 1.40 0.01964 3.4 0.146 36 0.054 36 0.095 125.3±4.2 366±810 66 11.1 2.85 180 69 0.40 2.94 0.0185 5.5 0.126 21 0.049 21 0.256 117.9±6.4 169±480 30 12.1 0.77 243 138 0.59 4.50 0.02134 2.1 0.151 10 0.0513 9.9 0.209 136.1±2.8 256±230 47 13.1 3.36 158 75 0.49 3.07 0.02183 2.3 0.154 21 0.051 21 0.110 139.2±3.2 247±480 44 14.1 1.47 256 123 0.49 5.00 0.02241 1.9 0.153 13 0.0496 13 0.151 142.9±2.7 179±300 20 15.1 1.76 237 95 0.41 4.49 0.02171 2.0 0.148 14 0.0495 14 0.138 138.5±2.7 171±340 19 DS229-1 1.1 1.09 463 161 0.36 9.17 0.02278 1.9 0.142 11 0.0451 11 0.167 145.2±2.7 −52±270 381 2.1 1.59 447 172 0.40 8.66 0.02220 2.0 0.141 17 0.0461 17 0.118 141.5±2.8 1±410 −26820 3.1 0.86 569 192 0.35 11.2 0.02268 1.8 0.151 9.6 0.0484 9.4 0.193 144.6±2.6 117±220 −24 4.1 1.40 424 130 0.32 8.17 0.02213 1.8 0.153 7.3 0.0501 7.1 0.243 141.1±2.5 198±160 29 5.1 4.74 115 16 0.14 2.38 0.02295 2.8 0.161 31 0.051 31 0.090 146.2±4.1 231±720 37 6.1 2.12 245 88 0.37 4.65 0.02161 2.0 0.170 14 0.0571 13 0.149 137.8±2.8 496±300 72 7.1 0.54 1633 397 0.25 31.9 0.02261 1.7 0.1534 3.6 0.0492 3.2 0.463 144.1±2.4 157±75 8 8.1 4.81 131 50 0.39 2.64 0.02228 2.8 0.154 31 0.050 30 0.091 142.0±3.9 203±710 30 9.1 1.26 262 106 0.42 5.20 0.02279 2.0 0.171 14 0.0543 14 0.143 145.3±2.9 383±320 62 10.1 7.20 67 24 0.38 1.35 0.02175 3.4 0.160 41 0.053 41 0.082 138.7±4.7 344±930 60 11.1 2.02 286 100 0.36 5.50 0.02191 1.9 0.152 13 0.0503 13 0.146 139.7±2.7 207±310 32 12.1 0.88 576 174 0.31 10.9 0.02176 1.8 0.1565 6.0 0.0522 5.7 0.293 138.8±2.4 292±130 52 13.1 2.63 245 96 0.41 4.85 0.02245 2.0 0.165 15 0.0533 15 0.135 143.1±2.9 342±340 58 14.1 1.59 192 74 0.40 3.70 0.02205 2.1 0.162 15 0.0534 15 0.135 140.6±2.9 346±340 59 15.1 1.07 370 103 0.29 7.11 0.02210 1.8 0.146 8.4 0.0478 8.2 0.216 140.9±2.5 90±190 −56 DS231-5 1.1 1.27 206 97 0.49 3.82 0.02131 2.0 0.156 13 0.0532 13 0.155 135.9±2.7 336±280 60 2.1 2.41 437 193 0.46 8.33 0.02162 1.8 0.150 13 0.0503 13 0.142 137.9±2.5 210±290 34 3.1 1.37 431 148 0.36 8.27 0.02202 1.8 0.148 9.5 0.0488 9.3 0.187 140.4±2.5 139±220 −1 4.1 1.21 360 165 0.47 6.58 0.02104 1.8 0.140 7.8 0.0484 7.6 0.228 134.2±2.4 118±180 −14 5.1 0.60 350 172 0.51 6.66 0.02205 1.7 0.1506 4.8 0.0495 4.5 0.360 140.6±2.4 174±110 19 6.1 0.57 495 156 0.33 8.71 0.02036 1.7 0.1453 4.7 0.0518 4.4 0.362 130.0±2.2 275±100 53 7.1 0.21 1890 632 0.35 36.3 0.02230 1.6 0.1509 2.4 0.0491 1.9 0.647 142.2±2.2 151±44 6 8.1 0.38 1541 722 0.48 30.3 0.02278 1.6 0.1581 2.6 0.0503 2.1 0.605 145.2±2.3 210± 49 31 9.1 0.40 854 281 0.34 16.5 0.02236 1.6 0.1545 4.1 0.0501 3.7 0.403 142.6±2.3 199±87 28 10.1 0.40 513 205 0.41 9.41 0.02126 1.7 0.1479 5.5 0.0505 5.2 0.314 135.6±2.3 217±120 38 11.1 1.46 227 82 0.37 4.23 0.02133 2.1 0.147 17 0.0498 17 0.122 136.0±2.8 187±400 27 12.1 0.47 1107 354 0.33 21.0 0.02201 1.6 0.1469 4.2 0.0484 3.9 0.390 140.3±2.3 120±91 −17 13.1 0.31 1642 486 0.31 31.6 0.02231 1.6 0.1505 3.5 0.0489 3.1 0.465 142.3±2.3 143±72 1 14.1 1.18 256 82 0.33 4.82 0.02166 1.9 0.153 12 0.0513 12 0.159 138.1±2.6 254±270 46 15.1 1.03 516 211 0.42 9.80 0.02187 1.9 0.151 7.9 0.0499 7.7 0.244 139.5±2.7 190±180 27 DS231−6 1.1 0.92 354 116 0.34 6.73 0.02195 1.9 0.152 6.9 0.0503 6.7 0.279 139.9±2.7 207±150 32 2.1 5.92 778 361 0.48 15.2 0.02144 1.8 0.160 10 0.0543 10 0.168 136.8±2.4 382±230 64 3.1 0.41 937 337 0.37 18.2 0.02251 1.6 0.1489 4.2 0.0480 3.9 0.384 143.5±2.3 99± 92 −45 4.1 0.17 1795 648 0.37 35.0 0.02263 1.6 0.1506 2.7 0.0483 2.1 0.596 144.3±2.3 113± 50 −28 5.1 0.35 524 202 0.40 9.75 0.02159 1.7 0.1486 5.3 0.0499 5.0 0.321 137.7±2.3 192±120 28 6.1 0.84 381 171 0.46 7.24 0.02196 1.7 0.145 8.2 0.0480 8.1 0.210 140.0±2.4 101±190 −39 7.1 2.31 1693 908 0.55 31.7 0.02130 1.7 0.152 14 0.0516 13 0.123 135.9±2.2 268±310 49 8.1 − 837 251 0.31 15.8 0.02194 1.6 0.1531 2.6 0.0506 2.0 0.637 139.9±2.3 224± 46 37 9.1 0.36 573 186 0.34 10.7 0.02158 1.7 0.1441 5.6 0.0484 5.4 0.302 137.7±2.3 119±130 −15 10.1 0.19 811 438 0.56 15.2 0.02184 1.7 0.1521 3.3 0.0505 2.9 0.496 139.3±2.3 218± 67 36 11.1 1.54 740 274 0.38 14.2 0.02192 1.7 0.1447 6.3 0.0479 6.1 0.267 139.8±2.3 93±140 −50 12.1 1.25 621 137 0.23 11.0 0.02035 1.7 0.1417 5.9 0.0505 5.6 0.291 129.8±2.2 219±130 41 13.1 0.00 617 291 0.49 11.3 0.02127 1.7 0.1502 3.1 0.0512 2.7 0.538 135.7±2.3 251±61 46 14.1 0.67 574 218 0.39 10.8 0.02166 1.8 0.145 7.8 0.0484 7.6 0.224 138.2±2.4 119±180 −16 15.1 1.52 317 178 0.58 6.08 0.02198 1.9 0.161 11 0.0532 11 0.176 140.1±2.6 337±240 58 DS234-1 1.1 0.82 272 125 0.47 5.26 0.02234 1.9 0.163 9.8 0.0530 9.6 0.197 142.4±2.7 328±220 57 2.1 0.13 1129 309 0.28 21.3 0.02189 1.7 0.1594 2.5 0.0528 1.9 0.672 139.6±2.3 321± 42 57 3.1 − 656 442 0.70 12.3 0.02184 1.8 0.1643 2.9 0.0545 2.3 0.621 139.3±2.5 394± 50 65 4.1 0.17 346 118 0.35 6.50 0.02181 2.0 0.165 6.4 0.0550 6.1 0.310 139.1±2.7 411±140 66 5.1 0.24 8903 12035 1.40 193 0.02514 1.8 0.1688 2.1 0.0487 1.1 0.858 160.0±2.8 134± 25 −19 6.1 0.02 726 359 0.51 13.3 0.02123 1.9 0.1603 4.0 0.0547 3.5 0.481 135.4±2.6 402±78 66 7.1 0.15 3585 2252 0.65 72.8 0.02359 1.7 0.1651 2.2 0.0508 1.4 0.777 150.3±2.5 230±31 35 8.1 0.01 2278 562 0.25 43.0 0.02194 1.7 0.1512 2.2 0.05 1.4 0.776 139.9±2.4 194±32 28 9.1 0.19 2625 715 0.28 50.3 0.02226 1.7 0.1494 2.4 0.0487 1.7 0.706 141.9±2.4 133±40 −7 10.1 0.32 2294 578 0.26 44.0 0.02225 1.7 0.1475 2.8 0.0481 2.3 0.606 141.8±2.4 104±53 −36 11.1 0.49 266 140 0.54 5.03 0.02190 2.0 0.173 6.6 0.0574 6.3 0.302 139.6±2.7 508±140 73 12.1 0.23 2546 646 0.26 49.7 0.02267 1.7 0.1527 2.4 0.0488 1.6 0.724 144.5±2.5 140±38 −3 13.1 0.23 1527 640 0.43 29.8 0.02263 1.8 0.1516 3.3 0.0486 2.8 0.530 144.3±2.5 128±66 −13 14.1 0.18 2249 487 0.22 43.4 0.02243 1.7 0.1537 2.2 0.0497 1.4 0.765 143.0±2.4 181± 34 21 15.1 0.18 2865 708 0.26 55.9 0.02267 1.7 0.1540 2.6 0.0493 1.9 0.671 144.5±2.4 160±44 10 表 2 黄岗梁地区正长花岗岩主量、微量和稀土元素含量
Table 2 Major, trace elements and rare earth elements compositions of the syenogranites in Huanggangliang area
元素 DS223-1 DS231-5 DS231-6 DS229-1 DS234-1 天山-兴安 SiO2 73.41 74.34 75.11 73.35 75.16 72.73 TiO2 0.20 0.17 0.08 0.22 0.09 0.26 Al2O3 13.89 13.15 13.13 13.93 14.14 14.04 Fe2O3 2.17 1.88 0.93 2.38 1.22 0.90 FeO 1.03 1.53 0.72 0.65 0.76 0.89 MnO 0.05 0.04 0.04 0.05 0.04 0.04 MgO 0.19 0.18 0.09 0.19 0.08 0.46 CaO 0.70 1.11 1.56 0.61 0.88 1.32 Na2O 3.25 3.73 2.82 3.04 3.08 3.86 K2O 5.08 4.82 5.62 5.22 4.93 4.09 P2O5 0.05 0.04 0.02 0.05 0.03 0.07 烧失量 0.90 0.45 0.52 0.89 0.25 - 总量 100.9 101.4 100.6 100.5 100.67 - TFeO 2.98 3.22 1.56 2.79 1.86 1.70 Na2O+K2O 8.33 8.55 8.44 8.26 8.01 7.95 K2O/Na2O 1.56 1.29 1.99 1.72 1.60 1.06 A/CNK 1.14 0.98 0.97 1.18 1.18 - A/NK 1.28 1.16 1.22 1.31 1.36 - DI 90.1 90.1 90.5 90.5 90.72 - σ43 2.28 2.34 2.22 2.24 2.00 - AR 2.61 3.19 2.25 2.44 2.39 - M 1.55 1.79 1.89 1.50 1.49 - t 792 760 756 815 741 - Hf 10.30 7.04 7.28 7.16 3.92 4.70 Ta 2.25 3.72 2.23 2.20 1.50 0.92 Th 15.90 45.11 49.93 13.82 17.32 12.80 U 2.51 19.73 16.54 3.52 7.11 2.13 Ba 343.44 151.91 108.45 386.59 260.82 461 Cr 2.91 6.47 5.35 5.60 2.07 4 Ga 23.23 24.17 22.84 24.25 19.11 18 Pb 90.48 14.34 8.36 30.23 18.79 19 Nb 17.93 20.85 3.94 18.91 8.44 11 Rb 347.92 527.66 537.74 237.14 282.65 125 Sr 59.49 54.09 53.72 78.71 117.81 179 Zr 193.83 163.62 168.21 241.19 99.75 141 Y 64.37 56.28 45.79 27.70 27.90 19 10000*Ga/Al 3.16 3.47 3.29 3.29 2.55 2.42 Nb/Ta 7.97 5.61 1.77 8.59 5.64 11.95 Zr/Hf 18.83 23.24 23.11 33.69 25.44 30.0 La 45.66 56.64 49.87 19.91 21.31 26 Ce 93.67 113.10 103.80 92.61 42.23 52 Pr 11.78 12.38 11.97 5.35 5.10 5.76 Nd 43.22 42.31 41.44 20.34 18.31 21.2 Sm 8.64 8.62 8.78 5.38 4.25 3.9 Eu 0.83 0.90 0.82 0.99 0.74 0.72 Gd 7.41 7.68 7.66 4.85 3.60 4.50 Tb 1.24 1.30 1.29 0.86 0.62 0.55 Dy 6.89 7.37 6.92 4.87 3.32 3.70 Ho 1.12 1.24 1.16 0.85 0.57 0.74 Er 3.00 3.61 3.12 2.36 1.65 2.18 Tm 0.32 0.44 0.37 0.30 0.22 0.38 Yb 2.25 3.16 2.42 2.05 1.53 2.20 Lu 0.24 0.36 0.28 0.25 0.18 0.33 ΣREE 226.27 259.10 239.91 160.97 103.61 124.16 LREE/HREE 9.07 9.30 9.33 8.82 7.87 7.52 Eu /Eu* 0.32 0.34 0.31 0.59 0.58 0.17 注:A/CNK=(Al2O3)/[(CaO)+(Na2O)+(K2O)],DI(标准矿物组分:石英+正长石+钠长石+霞石+白榴石+六方钾霞石)。M=(Na+K+2Ca)/(Al×Si)(阳离子比率);t(°C)=12900/{ln[ 496000 /ω(Zr)]+0.85M+2.95}−273.5,据Watson et al.(1983)。主量元素含量单位为%,微量和稀土元素含量单位为10−6表 3 黄岗梁地区正长花岗岩Rb−Sr、Sm−Nd、Pb同位素数据
Table 3 Rb−Sr, Sm−Nd and Pb isotopic compositions of the syenogranites in Huanggangliang area
样号 DS223-1 DS229-1 DS231-5 DS231-6 DS234-1 Rb/10−6 382 232 593 561 286 Sr/10−6 56.4 89.5 51.8 47.1 102 87Rb/86Sr 19.6 7.4917 33.0899 34.4911 8.0822 87Sr/86Sr 0.742105 0.719977 0.765734 0.773669 0.719964 误差 0.000014 0.000013 0.000013 0.000014 0.000014 (87Sr/86Sr)i 0.70321 0.70487 0.70031 0.70543 0.70369 εSr(t) −16 7.6 −57.2 15.5 −9.1 Sm/10−6 10.3 4.54 8.57 9.35 4.52 Nd/10−6 51.8 20.6 46.3 46 21.2 147Sm/144Nd 0.1202 0.1331 0.112 0.1228 0.129 143Nd/144Nd 0.512572 0.51261 0.512591 0.512629 0.512636 误差 0.000007 0.000008 0.000008 0.000007 0.000007 (143Nd/144Nd)i 0.512462 0.512486 0.512489 0.512517 0.512516 εNd(0) −1.29 −0.55 −0.92 −0.18 −0.04 εNd(t) 0.07 0.6 0.59 1.13 1.18 fSm/Nd −0.39 −0.32 −0.43 −0.38 −0.34 TDM/Ma 945 1024 841 877 928 TDM2/Ma 926 885 885 840 838 208Pb/204Pb 38.426 38.381 38.984 39.942 38.905 误差 0.003 0.005 0.005 0.005 0.009 207Pb/204Pb 15.543 15.541 15.608 15.609 15.609 误差 0.001 0.002 0.002 0.002 0.003 206Pb/204Pb 18.683 18.565 19.91 19.979 19.789 误差 0.002 0.002 0.002 0.003 0.003 表 4 大兴安岭南段典型矿床年龄及与成矿有关岩体年龄
Table 4 Age data of typical ore deposits and the granitic intrusions associated with the mineralization of southern Great Hinggan Range
矿床名称 矿床类型 测试对象 样号 测试方法 年龄 资料来源 黄岗梁
锡−铁−锌矿床矽卡岩型 矿石 HG-4-1;HG-2-28 ~ HG-2-31 辉钼矿Re−Os 135.3 ± 0.85 Ma 周振华等,2010a 矿石 07HGL-04 辉钼矿Re−Os 141.2 ± 4.3 Ma 要梅娟等,2016 矿石 07HGL-05 辉钼矿Re−Os 134.9 ± 5.2 Ma 翟德高等,2012 锡矿脉 —— 钾长石K−Ar 137 ± 3 Ma Ishiyama et al., 2001 钻孔1337.5 m矽卡岩 HGL-93 石榴石U−Pb LA−ICP−MS 136.03 ± 1.22 Ma Li et al., 2022 钻孔1250 m锡矿石 HGL-220 锡石U−Pb 137.10 ± 3.65 Ma Li et al., 2022 钻孔1200 m花岗岩 HGL-243 锆石U−Pb LA−ICP−MS 138.45 ± 0.45 Ma Li et al., 2022 矿区细粒花岗岩 —— 白云母K−Ar 142 ± 3 Ma Ishiyama et al., 2001 矿区花岗岩 WL1 锆石U−Pb LA−ICP−MS 139.96 ± 0.87 Ma 翟德高等,2012 矿区钾长花岗岩 HG-1-7 锆石U−Pb LA−ICP−MS 136.7 ± 1.1 Ma 周振华等,2010b 矿区花岗斑岩 HG-3-5 锆石U−Pb LA−ICP−MS 136.8 ± 0.57 Ma 周振华等,2010b 当中营子钾长花岗岩 14RS-7 锆石U−Pb LA−ICP−MS 137.7 ± 1.2 Ma 赵辉等,2015 浩布高
铅−锌−铜−锡
矿床矽卡岩型 矿石 HL13 辉钼矿Re−Os 142 ± 1 Ma Liu et al.,2017 矿石 HBG01 ~ HBG05 辉钼矿Re−Os 138 ± 3 Ma Wang et al.,2018 矿石 17HBG-1 辉钼矿Re−Os 138.27 ± 0.81 Ma Hong et al.,2021 矿石 17HBG-2 辉钼矿Re−Os 138.82 ± 0.80 Ma Hong et al.,2021 矿石 Grt A 石榴石U−Pb LA−ICP−MS 139.10 ± 5.40 Ma Hong et al.,2021 矿石 Grt B 石榴石U−Pb LA−ICP−MS 140.70 ± 1.89 Ma Hong et al.,2021 矿区花岗岩 HBG-9 锆石U−Pb LA−ICP−MS 143.49 ± 0.76 Ma Hong et al.,2021 矿区黑云母花岗岩 HBG-10 锆石U−Pb LA−ICP−MS 141.10 ± 1.40 Ma Hong et al.,2021 矿区蚀变花岗斑岩 HBG-1 锆石U−Pb LA−ICP−MS 140.97 ± 0.73 Ma Hong et al.,2021 矿区花岗斑岩 HBG-13 锆石U−Pb LA−ICP−MS 140.85 ± 0.75 Ma Hong et al.,2021 矿区黑云母花岗岩 ZK2507-17-2 锆石U−Pb LA−ICP−MS 140.9 ± 0.8 Ma Niu et al.,2022 钻孔920 m花岗岩 ZK0605 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Wang et al.,2018 小罕山二长花岗岩 XHS-02 锆石U−Pb LA−ICP−MS 143.9 ± 1.1 Ma 周桐等,2022 小罕山石英二长斑岩 XHS 锆石U−Pb LA−ICP−MS 140 ± 2 Ma Liu et al.,2021 乌兰坝黑云母花岗岩 WLB 锆石U−Pb LA−ICP−MS 142 ± 2 Ma Liu et al.,2021 乌兰楚鲁特花岗岩 WLCLT 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Liu et al.,2021 双尖子山
铅−锌−银矿床岩浆热液型 矿石 17SJ-34; 17SJ-35;
17SJ-41辉钼矿Re−Os 134.9 ± 3.4 Ma Zhai et al.,2020 矿石 15SJ-10; 15SJ-16;
17SJ-26; 15SJ-114黄铁矿Re−Os 135.0 ± 0.6 Ma Zhai et al.,2020 矿石 SJ-30-1 ~ 4; SJ-55-
1 ~ 3; SJ-68-1 ~ 3闪锌矿Rb−Sr 132.7 ± 3.9 Ma 吴冠斌等,2014 石英正长斑岩 NS-17 锆石U−Pb LA−ICP−MS 131.4 ± 0.5 Ma 赵家齐等,2022 矿区正长花岗岩 SJ-52 锆石U−Pb LA−ICP−MS 133.71 ± 0.64 Ma 吴冠斌等,2014 钻孔1021 m花岗斑岩 DS233-8 锆石U−Pb SHRIMP 133.4 ± 1.2 Ma 顾玉超等,2017a 斑状花岗闪长岩 14SJ55 锆石U−Pb LA−ICP−MS 130 ± 6 Ma Liu et al.,2016 矿区花岗岩 17SJ-87 锆石U−Pb LA−ICP−MS 135.2 ± 1.4 Ma Zhai et al.,2020 矿区粗粒花岗岩 17SJ-53 锆石U−Pb LA−ICP−MS 134.4 ± 1.0 Ma Zhai et al.,2020 矿区细粒花岗岩 17SJ-59 锆石U−Pb LA−ICP−MS 134.4 ± 1.0 Ma Zhai et al.,2020 钻孔细粒正长花岗岩 ZK1237-4 锆石U−Pb LA−ICP−MS 140.72 ± 0.44 Ma Dai et al.,2022 钻孔二长花岗岩 ZK101-1 锆石U−Pb LA−ICP−MS 142.7 ± 0.82 Ma Dai et al.,2022 道伦达坝
锡−铜−钨矿床岩浆热液型 矿石 DL 石英包裹体Ar−Ar 140.6 ± 2.2 Ma 张雪冰等,2021 矿石 DX3 锡石U−Pb 136.8 ± 7.4 Ma 陈公正等,2018 矿石 DX1 锡石U−Pb 134.7 ± 6.6 Ma 陈公正等,2018 矿石 DL2 独居石U−Pb LA−ICP−MS 136 ± 2.3 Ma 陈公正等,2021 矿石 D8-2 独居石U−Pb LA−ICP−MS 135.1 ± 2.2 Ma 陈公正等,2021 矿石 DX8 独居石U−Pb LA−ICP−MS 134.7 ± 2.8 Ma 陈公正等,2021 矿石 D13 绢云母Ar−Ar 140.0 ± 1.1 Ma 陈公正等,2021 张家营子似斑状花岗岩 DW1-2 锆石U−Pb LA−ICP−MS 135 ± 1 Ma 陈公正等,2018 张家营子细粒花岗岩 DW3-9 锆石U−Pb LA−ICP−MS 136 ± 1 Ma Chen et al.,2021b 张家营子细粒花岗岩 DW3-3 锆石U−Pb LA−ICP−MS 134 ± 1 Ma Chen et al.,2021b 张家营子细粒花岗岩 ZYZ 全岩Rb−Sr 139.3 ± 2.9 Ma 毛骞等,2001 维拉斯托−拜仁达坝
锡−铜−钨−铅−锌−银
矿床岩浆热液型 矿石 WLST09-7 辉钼矿Re−Os 135 ± 11 Ma Liu et al.,2016 矿化石英斑岩 AY1 锡石U−Pb 138 ± 6 Ma Wang et al.,2017 矿化云英岩 AY2 锡石U−Pb 135 ± 6 Ma Wang et al.,2017 石英脉矿石 W22 锡石U−Pb 136.0 ± 6.1 Ma 刘瑞麟等,2018 北大山花岗岩 BD1-1 锆石U−Pb LA−ICP−MS 140 ± 2 Ma 刘瑞麟等,2018 北大山二长花岗岩 WH-01 锆石U−Pb LA−ICP−MS 140 ± 3 Ma Liu et al.,2016 北大山岩体外围花岗岩 BR2011-10 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Liu et al.,2016 钻孔1550 m石英斑岩 ZK809-1 锆石U−Pb LA−ICP−MS 138 ± 2 Ma Liu et al.,2016 钻孔500 m石英斑岩 WL1 锆石U−Pb LA−ICP−MS 135.7 ± 0.9 Ma 翟德高等,2016 矿区碱长花岗岩 WLST01 锆石U−Pb LA−ICP−MS 139.5 ± 1.2 Ma 祝新友等,2016 边家大院
铅−锌−银矿床岩浆热液型 矿石 BJ-07 ~ BJ-11 辉钼矿Re−Os 140.7 ± 1.7 Ma Zhai et al.,2017 矿石 —— 绢云母Ar−Ar 137.9 ± 4.1 Ma Zhai et al.,2017 矿区黑云母二长花岗岩 BJN2 锆石U−Pb LA−ICP−MS 143.2 ± 1.2 Ma Wang et al.,2016 矿区正长花岗岩 DS211-1 锆石U−Pb LA−ICP−MS 140.31 ± 0.34 Ma 顾玉超等,2017b 钻孔884 m石英斑岩 BJ-58 锆石U−Pb LA−ICP−MS 140.2 ± 1.2 Ma 王喜龙等,2014b 矿区花岗闪长岩 BJY-YT 锆石U−Pb LA−ICP−MS 143.2 ± 1.5 Ma 阮班晓等,2013 花岗斑岩 BJP1-C22 锆石U−Pb LA−ICP−MS 138.2 ± 0.8 Ma 蒋昊原等,2020 辉石闪长岩 BJP1-C31 锆石U−Pb LA−ICP−MS 137.4 ± 0.7 Ma 蒋昊原等,2020 乌兰坝粗粒花岗岩 HL02 锆石U−Pb LA−ICP−MS 138.0 ± 1.4 Ma Xu et al.,2022 乌兰坝粗粒花岗岩 HL04 锆石U−Pb LA−ICP−MS 137.1 ± 0.6 Ma Xu et al.,2022 -
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 48(1): 43−55.
Black L P, Kamo S L, Allen C M, et al. 2003. TEMORA 1: A new zircon standard for Phanerozoic U−Pb geochronology[J]. Chemical Geology, 200(1/2): 155−170. doi: 10.1016/S0009-2541(03)00165-7
Cai J H, Yan G H, Xiao C D, et al. 2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in Taihang−Da Hinggan Mountains tectonomagmatic belt and their source region[J]. Acta Petrologica Sinica, 20(5): 1225−1242 (in Chinese with English abstract).
Cao H H, Xu W L, Pei F P, et al. 2013. Zircon U−Pb geochronology and petrogenesis of the Late Paleozoic−Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 170/171: 191–207.
Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173−174.
Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1−26.
Che Y W, Liu J F, Zhao S, et al. 2021. Early Early−Cretaceous post−collisional tectonic setting of the southern segment of the Great Xing’an Range: Evidence from the Lanjiayingzi gabbro−diorite in Linxi area[J]. Geological Bulletin of China, 40(1): 152–163 (in Chinese with English abstract).
Chen G Z, Wu G, Li T G, et al. 2018. LA−ICP−MS zircon and cassiterite U−Pb ages of Daolundaba copper−tungstentin deposit in Inner Mongolia and their geological significance[J]. Mineral Deposits, 37(2): 225−245 (in Chinese with English abstract).
Chen G Z, Wu G, Li T G, et al. 2021a. Mineralization of the Daolundaba Cu−W−Sn deposit in the southern Great Xing’an Range: Constraints from zircon and monazite U−Pb and sericite 40Ar−39Ar ages[J]. Acta Petrologica Sinica, 37(3): 865−885 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.14
Chen G Z, Wu G, Li T G, et al. 2021b. Mineralization of the Daolundaba Cu−Sn−W−Ag deposit in the southern Great Xing’an Range, China: Constraints from geochronology, geochemistry, and Hf isotope[J]. Ore Geology Reviews, 133: 104117.
Clemens J D, Holloway J R, White A J R. 1986. Origin of an A−type granite: Experimental constraints[J]. American Mineralogist, 71(3/4): 317−324.
Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895
Dai M, Yan G S, Li Y S, et al. 2022. The origin of microgranular enclaves in the Early Cretaceous Shuangjianzishan granites in southern Great Hinggan Range, NE China[J]. Geological Journal, 57(7): 2631–2655.
Dall’Agnol R, Carvalho de Oliveira D. 2007. Oxidized, magnetite−series, rapakivi−type granites of Carajas, Brazil: Implications for classification and petrogenesis of A−type granites[J]. Lithos, 93: 215−233. doi: 10.1016/j.lithos.2006.03.065
Deng J F, Zhao G C, Su S G, et al. 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era[J]. Geotectonica et Metallogenia 29(2): 157–165 (in Chinese with English abstract).
Dickin A P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure[J]. Geological Magazine, 131(3): 329−333. doi: 10.1017/S0016756800011092
Duan X X, Zeng Q D, Yang Y H, et al. 2015. Triassic magmatism and Mo mineralization in northeast China: geochronological and isotopic constraints from the Laojiagou porphyry Mo deposit[J]. International Geology Review, 57(1): 55−75. doi: 10.1080/00206814.2014.989546
Eby G N. 1992. Chemical subdivision of the A−type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin[J]. Special Paper of the Geological Society of America, 206(9): 1−60.
Fan W M, Guo F, Wang Y J, et al. 2003. Late Mesozoic calc−alkaline volcanism of post−orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 121: 115−135. doi: 10.1016/S0377-0273(02)00415-8
Feng Y Z, Yang J H, Sun J F, et al. 2020. Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo−Pacific slab[J]. Science China Earth Sciences, 63: 690−700 (in Chinese with English abstract). doi: 10.1007/s11430-019-9564-4
Frost C D, Frost B R. 1997. Reduced rapakivi−type granites: the tholeiite connection[J]. Geology, 25(7): 647−650. doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
Gu Y C, Chen R Y, Jia B, et al. 2017a. Zircon U−Pb dating and geochemistry of the granite porphyry from the Shuangjianzishan silver polymetallic deposit in Inner Mongolia and tectonic implications[J]. Geology and Exploration, 53(3): 495−507 (in Chinese with English abstract).
Gu Y C, Chen R Y, Jia B, et al. 2017b. Zircon U−Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb−Zn−Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101−117 (in Chinese with English abstract).
Guo Z J, Zhou Z H, Li G T, et al. 2012. SHRIMP U−Pb zircon dating and petrogeochemistral characteristics of the intermediate−acid intrusive rocks in the Aoergai copper deposit of Inner Mongolia[J]. Geology in China, 39(6): 1487−1500 (in Chinese with English abstract).
Han B F, Wang S G, Jahn B, et al. 1997. Depleted−mantle source for the Ulungur River A−type granites from North Xinjiang, China: Geochemistry and Nd−Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 138(3/4): 135−159. doi: 10.1016/S0009-2541(97)00003-X
Harris C, Marsh J S, Milner S C. 1999. Petrology of the alkaline core of the Messum igneous complex, Nambibia: Evidence for the progressively decreasing effect of crustal contamination[J]. Journal of Petrology, 40(9): 1377−1397. doi: 10.1093/petroj/40.9.1377
Hong J X, Zhang H Y, Zhai D G, et al. 2021. The geochronology of the Haobugao skarn Zn−Pb deposit (NE China) using garnet LA−ICP−MS U−Pb dating[J]. Ore Geology Reviews, 139: 1−23.
Hou Z Q. 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30−58 (in Chinese with English abstract).
Ishiyama D, Mizuta T, Ishikawa Y, et al. 2001. Geochemical characteristics of igneous rocks and tin−copper mineralization[R]. Project Final Report of Chinese Research Center for Mineral Resources Exploration, 4: 115–138.
Jiang H Y, Zhao Z D, Zhu X Y, et al. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).
Jiang S H, Chen C L, Bagas L, et al. 2017. Two mineralization events in the Baiyinnuoer Zn−Pb deposit in Inner Mongolia, China: Evidence from field observations, S−Pb isotopic compositions and U−Pb zircon ages[J]. Journal of Asian Earth Sciences, 144: 339−367. doi: 10.1016/j.jseaes.2016.12.042
King P L, White A J R, Chappell B W, et al. 1997. Characterization and origin of aluminous A−type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrelogy, 38: 371−391. doi: 10.1093/petroj/38.3.371
Kravchinsky V A, Cogne J P, Harbert W P, et al. 2002. Evolution of the Mongol−Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148: 34−57. doi: 10.1046/j.1365-246x.2002.01557.x
Li J F, Wang K Y, Quan H Y, et al. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb−Zn deposit in the southern Da Xing’an Mountains[J]. Acta Petrologica Sinica, 32(5): 1529−1542 (in Chinese with English abstract).
Li M X. 2020. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in the Mandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 39(2/3): 224−233 (in Chinese with English abstract).
Li Y S, Liu Z F, Shao Y J, et al. 2022. Genesis of the Huanggangliang Fe−Sn polymetallic deposit in the southern Da Hinggan Range, NE China: Constraints from geochronology and cassiterite trace element geochemistry[J]. Ore Geology Reviews, 151: 105226. doi: 10.1016/j.oregeorev.2022.105226
Li Y, Xu W L, Wang F, et al. 2017. Triassic volcanism along the eastern margin of the Xing'an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol–Okhotsk tectonic regime[J]. Gondwana Research, 48: 205−223. doi: 10.1016/j.gr.2017.05.002
Lin Q, Ge W C, Wu F Y, et al. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403−412 (in Chinese with English abstract).
Liu C H, Bagas L, Wang F X. 2016. Isotopic analysis of the super−large Shuangjianzishan Pb−Zn−Ag deposit in Inner Mongolia, China: Constraints on magmatism, metallogenesis, and tectonic setting[J]. Ore Geology Reviews, 75: 252−267. doi: 10.1016/j.oregeorev.2015.12.019
Liu F, Wang X, Hai L F, et al. 2021. Zircon U−Pb ages, Hf isotope and extensional tectonics of monzogranite in the Hansumu area of southern Great Khingan[J]. Geology in China, 48(5): 1609−1622 (in Chinese with English abstract).
Liu J M, Zhang R, Zhang Q Z. 2004. The regional metallogency of Da Hinggan Ling, China[J]. Earth Science Frontiers, 11(1): 269–277 (in Chinese with English abstract).
Liu J L, Ji L, Ni J L, et al. 2022. Dynamics of the Early Cretaceous lithospheric thinning and destruction of the North China craton as the consequence of Paleo−Pacific type active continental margin[J]. Acta Geologica Sinica, 96(10): 3360−3380 (in Chinese with English abstract).
Liu L J, Zhou T F, Fu B, et al. 2021. Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: Geochronology, geochemistry and Sr−Nd−Hf−O isotope constraints[J]. Lithos, 406/407: 106501.
Liu Y F Jiang S H, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag−Zn−Pb−Cu−(Sn−W) deposits in the shallow part of a porphyry Sn−W−Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75(2): 150−173.
Liu R L, Wu G, Li T G, et al. 2018. LA−ICP−MS cassiterite and zircon U−Pb ages of the weilasituo tin−polymetallic deposit in the southern Great Xing’an Range and their geological significance[J]. Earth Science Frontiers, 25(5): 183–201 (in Chinese with English abstract).
Liu W, Pan X F, Xie L W, et al. 2007. Sources of material for the Linxi granitoids, the southern segment of the Da Hinggan Mts.: When and how continental crust grew?[J]. Acta Petrologica Sinica, 26 (3): 667–679 (in Chinese with English abstract).
Liu Y, Jiang S H, Leon B, et al. 2017. Isotopic(C−O−S) geochemistry and Re−Os geochronology of the Haobugao Zn−Fe deposit in Inner Mongolia, NE China[J]. Ore Geology Reviews, 82: 130−147. doi: 10.1016/j.oregeorev.2016.11.024
Liu Z, Lǚ X B, Mei W. 2013. Sulfur−Lead−Oxygen isotope compositions of the Huanggang skarn Fe−Sn deposit, Inner Mongolia: Implications for the sources of ore−forming materials[J]. Journal of Mineralogy and Petrology, 33(3): 30−37 (in Chinese with English abstract).
Lofgren G E, Beard J S, 1991. Dehydration melting and water−saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kb[J]. Journal of Petrology, 32(2): 365−401.
Loiselle M C, Wones D S. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstracts with Programs, 11: 468.
Ludwig K R. 2003. Isoplot 3.0−A geochronological toolkit for Micro−soft Excel[M]. Bekeley Geochronology Center, Special Publication, 4: 1−70.
Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169−188 (in Chinese with English abstract).
Mao Q. 2001. Petrogenesis of granitoids associated with tin−mineralization in Huanggang tin−mineralization belt, Inner Mongolia, China[D]. Doctor Thesis of Institute of Geology and Geophysics, Chinese Academy of Sciences: 1–74 (in Chinese with English abstract).
Mei W, Lǚ X B, Cao X F, et al. 2015. Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing'an Range: Evidence from fluidminclusions and isotope analyses[J]. Ore Geology Reviews, 64: 239−252. doi: 10.1016/j.oregeorev.2014.07.015
Mei W, Lǚ X B, Wang X D, et al. 2020. Alteration, mineralization and genesis of Huanggang skarn iron−tin polymetallic deposit, Southern Great Xing’an Range[J]. Earth Science, 45(12): 4428−4445 (in Chinese with English abstract).
Mushkin A, Navon O, Halicz L, et al. 2003. The petrogenesis of A−type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 44(5): 815−832. doi: 10.1093/petrology/44.5.815
Nasdala L, Hofmeister W, Norberg N, et al. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U−Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 32(3): 247−265. doi: 10.1111/j.1751-908X.2008.00914.x
Niu X D, Shu Q H, Xing K, et al. 2022. Evaluating Sn mineralzation potential at the Haobugao skarn Zn−Pb deposit (NE China) using whole−rock and zircon geochemistry[J]. Journal of Geochemical Exploration, 234: 106938. doi: 10.1016/j.gexplo.2021.106938
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956
Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 50: 63−81.
Ruan B X, Lǚ X B, Liu S T, et al. 2013. Genesis of Bianjiadayuan Pb−Zn−Ag deposit in Inner Mongolia: Constraints from U−Pb dating of zircon and multi−isotope geochemistry[J]. Mineral Deposits, 32(3): 501−514 (in Chinese with English abstract).
Shao J A, Liu F T, Chen H, et al. 2001. Relation ship between Mesozoic magmatism and subduction in Da Hinggan−Yanshan area[J]. Acta Geologica Sinica, 75(1): 56−63 (in Chinese with English abstract).
Shi C Y, Yan M C, Chi Q H. 2007. Abundances of chemical elements of granitoids in different geotectonic units of China and their characteristics[J]. Acta Geologica Sinica, 81(1): 48−59 (in Chinese with English abstract).
Streckeisen A L, Le Maitre R W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks[J]. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136: 169–206.
Su R K, Xue H M, Cao G Y. 2022. Huanggangliang volcanic−extrusive uplift in the southern Da Hinggan Mountains: Discussion on genetic relation between different lithofacies[J]. Acta Petrologica et Mineralogica, 41(4): 727−745 (in Chinese with English abstract).
Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River–Changchun–Yanji plate suture zone—Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J(eds.)[J]. Magmatism in Oceanic Basins. Geological Society Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
Tomurtogoo O, Windley B F, Krnoer A, et al. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol−Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society 162: 125–34.
Wang C M, Zhang S T, Deng J, et al. 2007. The exhalative genesis of the stratabound skarn in the Huanggangliang Sn−Fe polymetallic deposit of Inner Mongolia[J]. Acta Petrologica et Mineralogica, 26(5): 409−417 (in Chinese with English abstract).
Wang C G, Sun F Y, Sun G S, et al. 2016. Geochronology, geochemical and isotopic constraints on petrogenesis of intrusive complex associated with Bianjiadayuan polymetallic deposit on the southern margin of the Greater Khingan, China[J]. Arabian Journal of Geosciences, 9: 334.
Wang D, Zhao G C, Su S G, et al. 2020. Spatial−temporal distribution of late Mesozoic intrusive rocks in south Daxing'anling mountains and the characteristic contrast of rocks in the mid ridge and the east slope[J]. Geoscience, 34(3): 466−482 (in Chinese with English abstract).
Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn−polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021
Wang L J, Wang J B, Wang Y W et al. 2002. REE geochemistry of the Huangguangliang skarn Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 18(4): 575-584 (in Chinese with English abstract).
Wang X, Ren X G, Wang Y, et al. 2018. Zircon U−Pb ages and geochemical characteristics of the quartz monzonite diorite rocks from Hanmiao area in the southern segment of the Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1662−1670 (in Chinese with English abstract).
Wang X L, Liu J J, Zhai D G, et al. 2014a. A study of isotope geochemistry and sources of ore−forming materials of the Bianjiadayuan silver polymetallic deposit in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288−1303 (in Chinese with English abstract).
Wang X L, Liu J J, Zhai D G, et al. 2014b. U−Pb Dating, geochemistry and tectonic implications of Bianjiadayuan quartz porphyry, Inner Mongolia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33 (5): 654–665 (in Chinese with English abstract).
Wang X D, Xu D M, Lǚ X B, et al. 2018. Orgin of the Haobugao skarn Fe−Zn polymetallic deposit, Southern Great Xing’an Range, NE China: Geochronological, geochemical, and Sr−Nd−Pb isotopic constraints[J]. Ore Geology Reviews, 94: 58−72. doi: 10.1016/j.oregeorev.2018.01.022
Wang Y N, Xu W L, Wang F, et al. 2018. New insights on the Early Mesozoic evolution of multiple tectonic regimes in the northeastern North China Craton from the detrital zircon provenance of sedimentary strata[J]. Solid Earth, 9(6): 1375−1397. doi: 10.5194/se-9-1375-2018
Wang Z J, Cao H H, Pei F P, et al. 2015. Geochronology and geochemistry of middle Permian−Middle Triassic intrusive rocks from central−eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo−Asian Ocean[J]. Lithos, 238: 13−25. doi: 10.1016/j.lithos.2015.09.019
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X
Wei W, Chen J P, Huang X K, et al. 2017. Magmatic migmatization of Haliheiba pluton: Petrographic study of dark inclusion, U−Pb chronology and Hf isotope of zircon mineral in central and southern section of the Da Hinggan Mountains area[J]. Mineral Exploration, 8(6): 948−956 (in Chinese with English abstract).
Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202
Wilson M. 1989. Igneous petrogenesis a global tectonic approach[M]. London: Chapman and Hall: 1−466.
Wu F Y, Li X H, Yang J H, et al. 2007. Discussion on the petrogenesis of granites[J]. Acta Petrologica, 23(6): 1217−1238 (in Chinese with English abstract).
Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1–30.
Wu F Y, Sun D Y, Jahn B, et al. 2004. A Jurassic garnet−bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23: 731–44.
Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2): 181−189 (in Chinese with English abstract).
Wu G B. 2014. Research of silver mineralization in central−southern segment of the Great Xing’an Range—A case study of the Shuangjianzishan silver deposit, Inner Mongolia[D]. Doctor Thesis of University of Chinese Academy of Sciences, 1–150 (in Chinese with English abstract).
Wyllie P J. 1977. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Gelogical Society, 134(2): 215−234.
Xu C H, Sun F Y, Fan X Z, et al. 2022. The Early Cretaceous tectonic evolution of the southern Great Xing’an Range, northeastern China: New constraints from A2−type granite and monzodiorite[J]. Canadian Journal of Earth Sciences, 59: 135−155. doi: 10.1139/cjes-2021-0041
Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian orogenic belt[J]. Earth Science, 44(5): 1620−1646 (in Chinese with English abstract).
Xu Z B, Shao Y J, Yang Z A, et al. 2017. LA−ICP−MS analysis of trace elements in sphalerite from the Huanggangliang Fe−Sn deposit, Inner Mongolia, and its implications[J]. Acta Petrologica et Mineralogica, 36(3): 360−370 (in Chinese with English abstract).
Yang Q D, Guo L, Wang T, et al. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two−stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961−1981 (in Chinese with English abstract).
Yang Y J, Yang X P, Jiang B, et al. 2022. Spatio−temporal distribution of Mesozoic volcanic strata in the Great Xing’an Range: Response to the subduction of the Mongol−Okhotsk Ocean and Paleo−Pacific Ocean[J]. Earth Science Frontiers, 29(2): 115−131 (in Chinese with English abstract).
Yao M J, Liu J J, Zhai D G, et al. 2012. Sufur and lead isotopic compositions of the polymetallic deposits in the southern Daxing’anling: implication for metal sources[J]. Journal of Jilin University(Earth Science Edition), 42(2): 362−373 (in Chinese with English abstract).
Yao M J, Cao Y, Liu J J, et al. 2016. Isotope age of Re−Os in molybdenite and genetic implication of Huanggangliang Fe−Sn deposit in Inner Mongolia[J]. Mineral Exploration, 7(3): 399−403 (in Chinese with English abstract).
You S X, Chen K, Zhang Y C, et al. 2022. Geochemical characteristics and geological significance of magnetite in Huanggangliang iron polymetallic deposit, Inner Mongolia[J]. Mineral Exploration, 13(4): 398−409 (in Chinese with English abstract).
Zartman R E, Doe B R. 1981. Plumbotectonics−the mode[J]. Tectonophysics, 75: 135−162. doi: 10.1016/0040-1951(81)90213-4
Zeng Q D, Sun Y, Duan X X, et al. 2013. U−Pb and Re−Os geochronology of the Haolibao porphyry Mo−Cu deposit, NE China: Implications for a Late Permian tectonic setting[J]. Geological Magazine, 150(6): 975−985. doi: 10.1017/S0016756813000186
Zhai D G, Liu J J, Cook N J, et al. 2019. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag−Pb−Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 54: 47−66. doi: 10.1007/s00126-018-0804-6
Zhai D G, Liu J J, Li J M, et al. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Monglolia and its geological significance[J]. Mineral Deposits, 35(5): 1011−1022 (in Chinese with English abstract).
Zhai D G, Liu J J, Yang Y Q, et al. 2012. Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 31(4): 513−523 (in Chinese with English abstract).
Zhai D G, Liu J J, Zhang A L, et al. 2017. U−Pb Re−Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag−Pb−Zn−Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for discrete mineralization events[J]. Economic Geology, 112(8): 2041−2059. doi: 10.5382/econgeo.2017.4540
Zhai D G, Liu J J, Zhang H Y, et al. 2014. S−Pb isotopic geochemistry, U−Pb and Re−Os geochronology of the Huanggangliang Fe−Sn deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 59: 109−122. doi: 10.1016/j.oregeorev.2013.12.005
Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The genesis of the giant Shuangjianzishan epithermal Ag−Pb−Zn deposit, Inner Mongolia, northeastern China[J]. Economic Geology, 115(1): 101−128. doi: 10.5382/econgeo.4695
Zhang J H, Gao S, Ge W C, et al. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction−induced delamination[J]. Chemical Geology, 276: 144–165.
Zhang P C, Peng B, Zhao J Z, et al. 2022. Petrogenesis of the syenogranite in the Xiaowulangou area of southern Great Xing’an Range: Constraints from zircon LA−ICP−MS U−Pb geochronology, geochemistry and Hf isotopes[J]. Earth Science, 47(8): 2889−2901 (in Chinese with English abstract).
Zhang T F, Guo S, Xin H T, et al. 2019. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn−(Li−Rb−Nb−Ta) mineralization in the Weilasituo deposit, Inner Mongolia, southern Great Xing’an Range, China[J]. Earth Science, 44(1): 248−267 (in Chinese with English abstract).
Zhang X B, Bao C J, Wu S S. 2021. Chronology of the Daolundaba Cu−W polymetallic deposit, southern Great Xing’an Range: Evidence from quartz fluid inclusion 40Ar/39Ar age[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 38(1): 83–90 (in Chinese with English abstract).
Zhao H, Li S, Wang T, et al. 2015. Age, petrogenesis and tectonic implications of the Early Cretaceous magmatism in the Huanggangliang area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 34(12): 2203−2218 (in Chinese with English abstract).
Zhao J Q, Zhou Z H, Ouyang H G, et al. 2022. Zircon U−Pb age and geochemistry of quartz syenite porphyry in Shuangjianzishan Ag−Pb−Zn (Sn) deposit, Inner Mongolia, and their geological implications[J]. Mineral Deposits, 41(2): 324−344 (in Chinese with English abstract).
Zhao Q, Xiao R G, Zhang D H, et al. 2020. Petrogenesis and tectonic setting of ore−associated intrusive rocks in the Baiyinnuoer Zn–Pb deposit, southern Great Xing’an Range (NE China): Constraints from zircon U–Pb dating, geochemistry, and Sr−Nd−Pb isotopes[J]. Minerals. 10(1): 1−18.
Zhou T, Sun Z J, Yu H N, et al. 2022. Zircon U−Pb geochronology, Hf isotope and whole−rock geochemical characteristics of Xiaohanshan pluton in Haobugao Pb−Zn deposit, Inner Mongolia[J]. Geoscience, 36(1): 282−294 (in Chinese with English abstract).
Zhou Z H, Gao X, Ouyang H G, et al. 2019. Formation mechanism and intrinsic genetic relationship between tin-tungstenlithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 38(5): 1004−1022 (in Chinese with English abstract).
Zhou Z H, Liu H W, Chang G X, et al. 2011. Mineralogical characteristics of skarns in the Huanggang Sn−Fe deposit of Inner Mongolia and their metallogenic indicating significance[J]. Acta Petrologica et Mineralogica, 30(1): 97−112 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Feng J R, et al. 2010a. Molybdenite Re−Os ages of Huanggang skarn Sn−Fe deposit and their geological significance, Inner Mongolia[J]. Acta Petrologica Sinica, 26(3): 667−679 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Yang Y J, et al. 2010b. Petrogenesis of the Early Cretaceous A−type granite in the Huanggang Sn−Fe deposit, Inner Mongolia: Constraints from zircon U−Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12): 3521−3537 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Yang Y J, et al. 2010c. LA−ICP−MS zircon U−Pb chronology and Hf isotope composition of the Huanggang granite in the southern Great Hinggan Range and their geological significance[J]. Mineral Deposits, 29(Supplement): 559−560 (in Chinese).
Zhou Z H, Mao J W, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A−type granites from the Huanggang Sn−Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272−286. doi: 10.1016/j.jseaes.2012.01.015
Zhou Z H, Ouyang H G, Wu X L, et al. 2014. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu−W polymetallic deposit in the Inner Mogolia and its geological significance[J]. Acta Petrologica Sinica, 30(1): 79−94 (in Chinese with English abstract).
Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasito Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).
Zindler A, Hart S. 1986. Chemical Geodynamics[J]. Annual Review of Earth Planet Science, 14: 493–571.
Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt, Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306: 33−56. doi: 10.1016/S0040-1951(99)00042-6
蔡剑辉, 阎国翰, 肖成东, 等. 2004. 太行山−大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨[J]. 岩石学报, 20(5): 1225−1242. doi: 10.3969/j.issn.1000-0569.2004.05.018 车亚文, 刘建峰, 赵硕, 等. 2021. 大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据[J]. 地质通报, 40(1): 152−163. 陈公正, 武广, 李铁刚, 等. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U−Pb和绢云母40Ar−39Ar年龄的约束[J]. 岩石学报, 37(3): 865−885. 陈公正, 武广, 李铁刚, 等. 2018. 内蒙古道伦达坝铜钨锡矿床LA−ICP−MS锆石和锡石U−Pb年龄及其地质意义[J]. 矿床地质, 37(2): 225−245. 邓晋福, 赵国春, 苏尚国, 等. 2005. 燕山造山带燕山期构造叠加及其大地构造背景[J]. 大地构造与成矿学, 29(2): 157−165. doi: 10.3969/j.issn.1001-1552.2005.02.001 冯亚洲, 杨进辉, 孙金凤, 等. 2020. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录[J]. 中国科学: 地球科学, 50: 651−662. 顾玉超, 陈仁义, 贾斌, 等. 2017a. 内蒙古双尖子山银多金属矿床花岗斑岩年代学、地球化学特征及构造意义[J]. 地质与勘探, 53(3): 495−507. 顾玉超, 陈仁义, 贾斌, 等. 2017b. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101−117. 郭志军, 周振华, 李贵涛, 等. 2012. 内蒙古敖尔盖铜矿中—酸性侵入岩体SHRIMP锆石U−Pb定年与岩石地球化学特征研究[J]. 中国地质, 39(6): 1487−1500. doi: 10.3969/j.issn.1000-3657.2012.06.003 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30−58. 蒋昊原, 赵志丹, 祝新友, 等. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213 李剑锋, 王可勇, 权鸿雁, 等. 2016. 大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨[J]. 岩石学报, 32(5): 1529−1542. 李猛兴. 2020. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 39(2/3): 224−233. 林强, 葛文春, 吴福元, 等. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403−412. doi: 10.3321/j.issn:1000-0569.2004.03.004 刘芳, 王晰, 海连富, 等. 2021. 大兴安岭南段罕苏木地区二长花岗岩锆石U−Pb年龄、Hf 同位素特征及其伸展构造作用[J]. 中国地质, 48(5): 1609−1622. doi: 10.12029/gc20210521 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘(中国地质大学, 北京), 11 (1): 269–277. 刘俊来, 季雷, 倪金龙, 等. 2022. 早白垩世华北克拉通岩石圈减薄与破坏动力学: 兼论古太平洋型活动大陆边缘[J]. 地质学报, 96(10): 3360−3380. doi: 10.3969/j.issn.0001-5717.2022.10.007 刘瑞麟, 武广, 李铁刚, 等. 2018. 大兴安岭南段维拉斯托锡金属矿床LA−ICP−MS锡石和锆石U−Pb年龄及其地质意义[J]. 地学前缘(中国地质大学, 北京), 25 (5): 183–201. 刘伟, 潘小菲, 谢烈文, 等. 2007. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 23(2): 441−460. doi: 10.3969/j.issn.1000-0569.2007.02.022 刘智, 吕新彪, 梅微. 2013. 内蒙古黄岗矽卡岩型铁锡矿床S−Pb−O同位素组成及对成矿物质来源的指示[J]. 矿物岩石, 33(3): 30−37. doi: 10.3969/j.issn.1001-6872.2013.03.006 毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017 毛骞. 2001. 内蒙古黄岗矿集区与锡矿化有关的花岗岩成因研究[D]. 中国科学院地质与地球物理研究所博士学位论文: 1–74. 梅微, 吕新彪, 王祥东, 等. 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因[J]. 地球科学, 45(12): 4428−4445. 阮班晓, 吕新彪, 刘申态, 等. 2013. 内蒙古边家大院铅锌银矿床成因-来自锆石U-Pb年龄和多元同位素的制约[J]. 矿床地质, 32(3): 501−514. doi: 10.3969/j.issn.0258-7106.2013.03.004 邵济安, 刘福田, 陈辉, 等. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 75(1): 56−63. doi: 10.3321/j.issn:0001-5717.2001.01.006 史长义, 鄢明才, 迟清华. 2007. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 81(1): 48−59. doi: 10.3321/j.issn:0001-5717.2007.01.007 苏荣昆, 薛怀民, 曹光跃. 2022. 大兴安岭南段黄岗梁火山−侵出隆起: 不同岩相之间的成因联系[J]. 岩石矿物学杂志, 41(4): 727−745. doi: 10.3969/j.issn.1000-6524.2022.04.004 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河–长春–延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181. 王长明, 张寿庭, 邓军, 等. 2007. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, 26(5): 409−417. doi: 10.3969/j.issn.1000-6524.2007.05.003 王迪, 赵国春, 苏尚国, 等. 2020. 大兴安岭南段晚中生代侵入岩时空分布及主脊与东坡岩体特征对比[J]. 现代地质, 34(3): 466−482. 王莉娟, 王京彬, 王玉往, 等. 2002. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 18(4): 575−584. doi: 10.3969/j.issn.1000-0569.2002.04.017 王晰, 任锡钢, 汪岩, 等. 2018. 大兴安岭南段罕庙地区石英二长闪长岩锆石U−Pb年龄及地球化学特征[J]. 地质通报, 37(9): 1662−1670. 王喜龙, 刘家军, 翟德高, 等. 2014a. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41(4): 1288−1303. 王喜龙, 刘家军, 翟德高, 等. 2014b. 内蒙古边家大院矿区石英斑岩U−Pb年代学、岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 33(5): 654−665. 魏巍, 陈建平, 黄行凯, 等. 2017. 大兴安岭中南段哈力黑坝岩体岩浆混合作用: 暗色包体岩相学、年代学和锆石Hf同位素启示[J]. 矿产勘查, 8(6): 948−956. doi: 10.3969/j.issn.1674-7801.2017.06.005 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15(2): 181−189. doi: 10.3321/j.issn:1000-0569.1999.02.003 吴冠斌. 2014. 大兴安岭中南段银成矿作用研究——以双尖子山银多金属矿床为例[D]. 中国科学院大学博士学位论文: 1–150. 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646. 徐卓彬, 邵拥军, 杨自安, 等. 2017. 内蒙古黄岗梁铁锡矿床闪锌矿LA−ICP−MS微量元素组成及其指示意义[J]. 岩石矿物学杂志, 36(3): 360−370. doi: 10.3969/j.issn.1000-6524.2017.03.006 杨奇荻, 郭磊, 王涛, 等. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961−1981. 杨雅军, 杨晓平, 江斌, 等. 2022. 大兴安岭中生代火山岩地层时空分布与蒙古–鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 29(2): 115−131. 要梅娟, 刘家军, 翟德高, 等. 2012. 大兴安岭南段多金属成矿带硫-铅同位素组成及其地质意义[J]. 吉林大学学报: 地球科学版, 42(2): 362−373. 要梅娟, 曹烨, 刘家军, 等. 2016. 内蒙古黄岗梁铁锡矿床辉钼矿Re−Os年龄及其成因意义[J]. 矿产勘查, 7(3): 399−403. doi: 10.3969/j.issn.1674-7801.2016.03.003 尤诗祥, 陈可, 张毓策, 等. 2022. 内蒙古黄岗梁铁多金属矿床磁铁矿地球化学特征及其地质意义[J]. 矿产勘查, 13(4): 398−409. 翟德高, 刘家军, 李俊明, 等. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J]. 矿床地质, 35(5): 1011−1022. 翟德高, 刘家军, 杨永强, 等. 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 31(4): 513−523. doi: 10.3969/j.issn.1000-6524.2012.04.004 章培春, 彭勃, 赵金忠, 等. 2022. 大兴安岭南段小乌兰沟正长花岗岩成因: 锆石LA−ICP−MS U−Pb年代学、地球化学及Hf同位素的制约[J]. 地球科学, 47(8): 2889−2901. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208017 张天福, 郭硕, 辛后田, 等. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn−(Li−Rb−Nb−Ta)多金属成矿作用的制约[J]. 地球科学, 44(1): 248−267. 张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar−39Ar年龄的证据[J]. 新疆大学学报(自然科学版) (中英文), 38(1): 83−90. 赵辉, 李舢, 王涛, 等. 2015. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义[J]. 地质通报, 34(12): 2203−2218. doi: 10.3969/j.issn.1671-2552.2015.12.007 赵家齐, 周振华, 欧阳荷根, 等. 2022. 内蒙古双尖子山银铅锌(锡)矿床石英正长斑岩U−Pb年龄、地球化学及其地质意义[J]. 矿床地质, 41(2): 324−344. 周桐, 孙珍军, 于赫楠, 等. 2022. 内蒙古浩布高铅锌矿床小罕山岩体年代学、Hf同位素及地球化学特征[J]. 现代地质, 36(1): 282−294. 周振华, 高旭, 欧阳荷根, 等. 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制——以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 38(5): 1004−1022. 周振华, 刘宏伟, 常帼雄, 等. 2011. 内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义[J]. 岩石矿物学杂志, 30(1): 97−112. doi: 10.3969/j.issn.1000-6524.2011.01.009 周振华, 吕林素, 冯佳睿, 等. 2010a. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报, 26(3): 667−679. 周振华, 吕林素, 杨永军, 等. 2010b. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U−Pb年代学和岩石地球化学制约[J]. 岩石学报, 26(12): 3521−3537. 周振华, 吕林素, 杨永军, 等. 2010c. 大兴安岭南段黄岗花岗岩体LA−ICP−MS锆石U−Pb年代学和Hf同位素组成及其地质意义[J]. 矿床地质, 29(增刊): 559−560. 周振华, 欧阳荷根, 武新丽, 等. 2014. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报, 30(1): 79−94. 祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.3969/j.issn.1000-3657.2016.01.014 -
期刊类型引用(0)
其他类型引用(1)