Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes
-
摘要:研究目的
大兴安岭南段黄岗梁锡铁矿区及外围发育大面积花岗岩类,加强其成岩时代、岩石成因类型、成岩成矿物质来源等研究,有利于探究该区成岩与成矿关系和早白垩世碰撞造山机制。
研究方法采集大兴安岭南段黄岗梁锡铁矿区及外围样品,进行岩相学、锆石U−Pb测年、岩石地球化学及Rb−Sr、Sm−Nd、Pb同位素研究。
研究结果获得岩浆结晶年龄为141.9~139.1 Ma,较成矿年龄早约3 Ma,形成于早白垩世。岩石具有高硅、低铝、低镁、富钾少钠特征,为高钾钙碱性A型花岗岩。(87Sr/86Sr)i和143Nd/144Nd值分别介于0.70031~0.70543和0.512572~0.512636之间,εNd(t)值为0.07~ 1.18,Nd同位素模式年龄TDM2为926 ~838 Ma。
结论黄岗梁矽卡岩型锡铁矿床成岩物质于新元古代从亏损地幔分离,在上升侵位过程中受到地壳物质混染。大兴安岭南段地区在早白垩世经历了蒙古–鄂霍次克洋碰撞闭合伸展作用和古太平洋高角度俯冲作用叠加。
Abstract:ObjectiveA large area of granitoids had been developed in the huanggangliang tin-iron mining and its surrounding area in the southern Great Hinggan Range. Thus, the study on its diagenetic age, petrogenetic type and source of diagenetic and ore-forming materials provides important insights to the mechanism of Early Cretaceous collision orogeny in this area and its relationship with mineralization.
MethodsSamples were collected from the Huanggangliang tin−iron mining area and its surrounding areas in the southern Great Hinggan Range for petrography, zircon U−Pb geochronology, rock geochemistry, and Rb−Sr, Sm−Nd, Pb isotope studies.
ResultsThe crystallization ages of these samples range from 141.9 Ma to 139.1 Ma, which was formed during the Early Cretaceous and was about 3 Ma earlier than the mineralization age. The rocks are belong to high potassium calcium alkaline A−type granites with characteristics of high silicon, low aluminum, low magnesium, high potassium and low sodium. The ratios of (87Sr/86Sr)i and 143Nd/144Nd are 0.70031~0.70543 and 0.512572~0.512636, respectively, the value of εNd (t) is 0.07~ 1.18, and the Nd isotope model age TDM2 ranges from 926 Ma to 838 Ma.
ConclusionsThe diagenetic materials of the Huanggangliang skarn tin−iron deposit were separated from the depleted mantle in Neoproterozoic, and experienced crustal contamination during ascending emplacement process. The southern Great Hinggan Range area experienced high−angle subduction of the Paleo−Pacific Ocean plate after post−collisional extension of the Mongol−Okhotsk Ocean closure.
创新点开展大兴安岭南段地区早白垩世典型多金属矿床成岩成矿对比研究和Pb同位素对比研究,提出黄岗梁矽卡岩型锡铁矿床的中酸性侵入岩较成矿年龄早3 Ma左右,代表了与碳酸盐岩的接触交代矿化期。
-
中国蕴含着丰富的地热资源,其类别可分为浅层、水热型、干热岩型地热资源等(蔺文静等,2013)。其中浅层地热资源主要分布于中国东北、华北、西北等区域(唐永香等,2024);水热型地热能主要分布于中国东部中、新生代平原盆地、藏南、川西、滇西等地区(周总瑛等,2015)。本文研究区主要位于安徽大别山地区,地热资源以浅层地热资源、水热型资源为主。安徽地区地热资源丰富,主要为低温地热(25~66℃)。其中,可供开发利用且流体温度大于28.5 ℃的温泉有13个,地热钻孔有28个。地热资源总储存量估算为1.12×1020 J(吴海权等,2016)。近年来,该地区地下热水的开发和利用发展迅速,因此,研究并掌握安徽大别山区地下热水水化学特征和演化机制,对于深入了解硅酸岩热储层的地热潜力具有重要意义。
早在1967年,Garrels和Macknzie针对花岗岩风化作用就进行了水岩作用模拟研究(王蒙蒙,2020)。此后,诸多国内外学者借水文地球化学模拟,深研地下水化学演化与运移,推动水文地球化学模拟研究取得显著进展。Gastmans et al.(2016)利用NETPATH软件对巴西圣保罗西北部基岩裂隙水的水化学演化进行了探究,模拟结果与玄武岩中矿物(长石和辉石)的溶解及土壤中粘土矿物的溶解一致。Hidalgo et al.(2001)利用质量平衡模型研究了西班牙南部Baza平原区地下水组分的水文地球化学演化过程和质量转移量,研究结果表明,该地区地下水系统存在显著的去白云石化过程。Rosenthal et al.(1998)在研究Kurnub Group古水体的化学演化过程中,利用NETPATH和PHREEQC模拟研究了水-岩相互作用和混合过程,模拟结果与观察到的岩性和矿物相变化一致。Uliana et al.(2001)利用PHREEQC软件追踪了雷克萨斯州泉的流动方向和矿物的饱和状态及反应机制。Bretzler et al.(2011)以埃塞俄比亚主裂谷为研究对象,利用NETPATH地球化学模拟进一步验证了放射性碳测年法计算的表观地下水年龄的准确性。郭永海等(2002)以河北保定、沧州为研究区,利用水化学模拟建立了深层碱性淡水质量平衡反应模型,认为该地区深层碱性淡水形成和演化主要受Ca−Na阳离子交换作用的影响。许多学者利用水化学模拟等方法还对地下热水在局部或区域尺度上的演化特征和水-岩相互作用进行了详细研究。Michard et al.(1983)最先使用地下水化学模拟计算碱性地下热水的热储温度,后来由Reed及其同事(Reed et al., 1984;Palandri et al., 2001)将这个方法应用到其他类型的地热系统。地下水化学模拟还可以用于识别和量化地下热水水化学特征演化过程中的水-岩相互作用(Auqué et al., 2009;Ta et al., 2020)。
此外,研究地下热水水化学特征常用的方法还包括离子比例系数法、图解法、同位素方法等。同位素方法在地热学中被学者广泛应用。主要包括氢氧同位素(2H,18O)(Craig,1953)、碳同位素(14C,13C)(Hershey et al., 2010;Sanliyuksel et al., 2011)、硫和锶同位素(34S,87Sr/86Sr)(Sakai et al., 2003)、226Ra同位素、222Rn同位素(Cherdyntsev,1971)等。
近年来众多学者主要关注安徽省地热资源评价、地热地质条件、成因模式等研究工作(程长根等,2005;刁天仁等,2019;朱训和等,2020),有力推动了安徽省地热资源开发。然而,以上工作对安徽省区内地下热水的水化学演化机制的研究略显薄弱,研究程度总体较低。本文在分析大别山区温泉基本水化学组分基本特征的基础上,综合利用水化学图件、离子比例系数等方法,对研究区地热水循环过程中的水岩相互作用进行深入研究;此外,还借助PHREEQC软件定量揭示水-岩相互作用过程中的物质转移量及各种矿物的溶解和沉淀状态。研究结果有利于加深对独特地质背景下(造山带硅酸盐岩)水-岩相互作用的认识,同时对安徽大别山区温泉的勘查开发利用具有重要的指导意义。
1. 区域地质背景
研究区位于大别山区的东部,采样点主要分布在安庆市太湖县、岳西县,六安市舒城县及合肥市庐江县等(图1)。该区域整体处于大别山区东部,地形以山地、丘陵为主。最高海拔为1755 m,最低海拔小于150 m。研究区地势起伏较大,山脉连绵,形成了众多海拔较高的山地地貌。同时,山间分布一些相对平缓的丘陵地带及局部的小型山间盆地。该区域属于亚热带季风气候区,四季分明。夏季高温多雨,降水集中,且多暴雨天气,充沛的降水为区域内地表水的补给提供了丰富的水源,同时也在一定程度上影响着地热水与地表水的水力联系与热量交换。
图 1 安徽大别山区地质略图(据徐树桐等,1992修改)Ⅰ—江淮台隆和后继盆地;Ⅱ—北淮阳地槽褶皱带;Ⅲ—大别山中深变质杂岩带;Ⅲ1—罗田-岳西变质杂岩带;Ⅲ2—英山-潜山超高压变质岩带;Ⅲ3—宿松变质岩带和张八岭构造滑脱带;Ⅳ—前陆褶皱冲断带和磨拉斯盆地;Z-T1—卷入前陆褶皱冲断带的震旦系−下三叠统;Cm—石炭系梅山群;J3—晚侏罗世安山岩;γ—花岗岩;1—榴辉岩类;2—冲断带;3—走滑断层;4—地质界线;5—雨水样点及编号;6—温泉采样点及编号Figure 1. Simplified geologic map of the Dabie Mountain area in Anhui研究区构造上整体位于中朝地台和扬子板块挤压形成的大别山造山带东部。区内3条区域性深大断裂和与之平行或斜交的次生断裂组成研究区主要的构造格架(图1)。磨子潭深断裂自豫皖交界的九峰尖北至庐江县长岗附近被池-太深断裂所截,长约195 km;金寨断裂西自金寨县皂鞭冲至舒城县西汤池,长约135 km(安徽省地质调查院,2006)。此外,深大断裂将研究区自北向南分为4个部分(Ⅰ、Ⅱ、Ⅲ、Ⅳ)。研究区分布的岩石主要为变质岩和岩浆岩(吴海权等,2019)。2002年,1∶25万片区修测工作将区内广泛分布的复式岩体按其岩浆活动的序次从早到晚划分为无愁、店前河、玄风寨、天柱山4个单元,其中斜长石含量为25%~40%,钾长石含量为15%~45%,石英含量为15%~30%,黑云母含量为1%~8%。研究区地热属于断裂-深循环型地下热水(周训等,2017),区域断裂构造控制该地区基岩裂隙分布,同时具有良好的导热、导水性。
2. 分析方法
2.1 样品采集与测试
2019年6—7月,对研究区进行野外调查和采样测试,共调查了5个温泉点(AH2、AH6、AH7、AH11、AH12)和1个雨水点(AHYS1)。5个温泉分别为太湖县汤泉乡汤湾温泉(AH2)、岳西县温泉镇温泉(AH6)、岳西县菖蒲镇溪沸温泉(AH7)、庐江县东汤池温泉(AH11)、舒城县西汤池温泉(AH12),采样点位置如图1所示。野外调查对各温泉的部分物理和化学特征进行了现场检测和记录。如采用手机自带GPS软件测定采样点经纬度,用MIK-CT6821型便携式Ph&ORP计测量pH和Eh,用探针式数显温度计测量温度,泉水的游离二氧化碳含量用NaOH滴定法测定。
北京市水文地质工程地质大队和核工业北京地质研究院分别承担了样品的水化学和同位素的分析测试工作。其中常量组分采用离子色谱法测定;Li、Zn、Ba、Sr等次要组分及稀土元素采用电感耦合等离子体质谱法测定;偏硅酸、溴化物等组分采用等离子体发射光谱仪测定;部分化学测试结果列于表1。最后利用阴阳离子平衡公式校核数据误差,验证了检测结果的准确性(中国地质调查局,2012)。
表 1 安徽大别山区温泉水化学组分Table 1. Chemical composition of hot spring water in Dabie Mountain, Anhui Province化学组分 单位 AH2 AH6 AH7 AH11 AH12 AHYS1 K+ mg/L 5 1.72 3.32 13.7 7.75 2.41 Na+ mg/L 113 55.2 100 321 294 0.96 Ca2+ mg/L 20.6 5.63 16.1 44.2 163 14.6 Mg2+ mg/L 1.31 0.03 0.03 0.03 0.03 0.37 Fe mg/L 0.19 0.06 0.03 0.05 0.06 0.05 HCO3− mg/L 94.8 50.2 19.5 58.7 9.48 43.4 CO32− mg/L 2.72 12.6 8.71 4.32 4.17 0 Cl− mg/L 4.61 6.24 4.03 48.9 49.3 0.76 SO42− mg/L 188 44.6 192 645 913 4.47 F− mg/L 5.56 3.38 6.5 8.02 3.86 0.1 NO3− mg/L 0.04 4.96 0.04 0.04 0.04 0.04 TDS mg/L 411 253 426 1172 1518 79 偏硅酸 mg/L 72.73 90.26 71.26 93.02 92.16 8.45 游离CO2 mg/L 0.66 0.09 总硬度 mg/L 56.83 14.06 40.2 110 407 37.96 Li μg/L 104 20.9 69.7 255 181 0.73 Sr μg/L 706 118 543 2238 5659 168 Zn μg/L 14.9 31.4 3.69 12.5 39.1 34.1 Ba μg/L 37.2 2.99 22.9 33.8 37.7 37.8 Cr μg/L 3.76 1.87 1.22 2.6 1.05 2.03 Mn μg/L 1.17 0.69 0.18 14.8 9.26 13.4 Ni μg/L 1.34 1.11 1.02 2.48 9.57 1.27 V μg/L 0.43 4.1 0.1 0.86 0.75 0.4 Eh mV −109 −80 −147 −152 −160 169 标高 m 80 408 120 40 100 408 T ℃ 46.3 51 40 61.3 64 30.6 pH 7.8 8.8 8.8 8 7.9 7.8 水化学类型 SO4·HCO3−Na SO4·HCO3−Na SO4−Na SO4−Na SO4−Na HCO3−Ca 2.2 技术方法
基于研究区温泉的水化学组分基本特征,本研究利用Gibbs图、岩石风化图、硅酸盐稳定场图、主要离子比例系数图等方法揭示研究温泉水化学演化特征;同时,利用PHREEQC进行反向水文地球化学模拟,定量计算温泉在循环过程中的主要矿物的溶解和沉淀(Parkhurst et al., 1999)。离子比例系数法通过分析地下水中组分含量比值相关性及差异性揭示水化学组分的来源和演化过程(Reddy et al., 2010)。水文地球化学模拟是根据水化学测试数据模拟围岩与含水层中的地下水和可参与水化学反应的气体三者之间可能发生的水岩相互作用,反推地下水在运移过程中发生的元素迁移和组分变化(钱会等,2012)。
3. 结果分析
研究区温泉及雨水的采样信息及水化学数据列于表1。由表1可知,此次所采5个温泉水样点中,pH范围为7.8~8.8,平均值为8.26,呈弱碱性。研究区温泉中低温温泉,温度范围为40~64℃。TDS介于253~1518 mg/L。Eh均小于0,介于−160~−80 mV之间,表明研究区温泉水为还原环境。
3.1 常量组分特征
大别山温泉的阳离子中Na+占主要优势,其次为Ca2+;其中Na+的浓度值为55.2~321 mg/L。大别山温泉阴离子中SO42−占主要优势,其次为HCO3−;SO42−的浓度值为44.6~913 mg/L(表1)。
利用Aquachem软件绘制了Piper图(图2),大别山区温泉的阳离子均偏向于Na+方向,阴离子偏向于SO42−。Na+的阳离子毫克当量百分比平均值为79.08%。SO42−的阴离子毫克当量百分比平均值为73.87%(图2)。根据舒卡列夫分类法(张人权等,2018),确定研究区温泉水质类型主要为SO4·HCO3−Na型(AH2、AH6)和SO4−Na型(AH7、AH11、AH12),雨水样为HCO3−Ca型。
3.2 微量元素特征
本次样品测试共检测了46项微量元素指标,含量较高的主要有Br、I、F、Ba、Li、Sr、W、Rb、Zn(表1)。除溪沸温泉(AH6)外,其他温泉水样中Sr元素含量均高于中国饮用天然矿泉水标准(0.20 mg/L)(中华人民共和国国家质量监督检验检疫总局等,2016),最高含量可达5.659 mg/L,为锶矿泉水;温泉水样的偏硅酸含量为71.26~93.02 mg/L,达到中国饮用天然矿泉水标准(25 mg/L)和理疗矿泉水标准(50 mg/L)(中华人民共和国卫生部等,2018)。F−含量变化范围为3.38~8.02 mg/L,含量超过中国生活饮用水卫生标准(1 mg/L)(中华人民共和国卫生部,2006),表明研究区温泉均不可直接饮用。
3.3 稀土元素特征
近年来,通过对稀土元素地球化学特征(含量、镧系元素的相对分布及其形成)在水-岩相互作用、地下水来源和补给过程的描述来研究水文地球化学过程和溶质运移,受到了学者们的广泛关注。
研究区温泉中总稀土元素(∑REE)含量变化范围为0.018~0.077 μg/L,其中轻稀土元素(∑La−Nd)的变化范围为0.018~0.81 μg/L,中稀土元素(∑Sm−Ho)为0.01~0.023 μg/L,重稀土元素(∑Er−Lu)为0.004 μg/L。如图3所示,研究区温泉的轻、中、重稀土元素含量分布于三角图中,可以明显看出大别山区温泉中轻稀土元素相对富集,中稀土元素其次,重稀土元素相对缺乏。
采用北美页岩(NASC)组分标准值(Haskin et al., 1968)对温泉中稀土元素进行数据处理并绘制温泉稀土元素配分模式图(图4)。图4反映了大别山区温泉稀土元素含量的变化趋势,显示Eu表现出明显的正异常。有学者认为长石类矿物(例如钠长石、钙长石)是围岩中极其常见的富Eu成分(刘海燕,2018)。故推测研究区广泛分布的岩浆岩和变质岩中长石类矿物的风化溶解造成温泉中稀土元素呈现显著的Eu正异常特征。
4. 讨 论
4.1 水化学演化分析
4.1.1 地下水化学组分的形成作用
Gibbs图可用于探究地热水在循环过程中的水-岩相互作用(Rajmohan et al., 2004;王晓翠等,2022)。如图5所示,Gibbs图的纵坐标为TDS浓度值的对数,横坐标为Cl−/(Cl−+HCO3−)或Na+/(Na++Ca2+)的离子浓度比值。
如图5–a所示,除AH12外,其他温泉点水样的Na+/(Na++Ca2+)值大于0.5,表明大别山地下热水在循环过程中可能存在阳离子交替吸附作用(Gibbs,1970)。图5–b显示,研究区所采温泉离子含量投点除AH11(东汤池温泉)和AH12(西汤池温泉)外,大都分布于Gibbs图的左侧,表征了大别山区地下热水的水化学组分主要受岩石风化作用影响。
Gaillardet et al.(1999)利用模型对地下水的水岩相互作用进行了细化,以Na标准化的Ca与HCO3的摩尔比例图评估主要风化作用(硅酸盐风化、碳酸盐风化及石盐溶解)对地下水化学成分的相对贡献量。如图6所示,研究区温泉水样点位于硅酸盐风化区和石盐溶解区右侧,揭示了地下热水在循环过程中发生的主要水-岩相互作用为硅酸盐矿物和石盐的溶滤作用。
为进一步揭示研究区地热系统内硅酸盐矿物的溶解−沉淀平衡状态,绘制了硅酸盐矿物稳定场图(Tardy,1971)。在SiO2−Na+/H+(Helgeson,1969)系统矿物平衡体系图(图7–a)中,水样点集中落在钠蒙脱石区域;在SiO2−Ca2+/H+(Nesbitt et al., 1984;Rogers,2010)系统矿物平衡体系图(图7–b)中,水样点集中落在高岭石区域。SiO2含量都超过了石英饱和线,而远未达到非晶质硅饱和线,表明研究区温泉水在循环过程中存在长石类矿物的非全等溶解并产生次生矿物和离子组分等(如Na+、HCO3−等),反应方程如表2所示。
表 2 矿物的溶解反应方程式Table 2. Dissolution reaction equation of minerals序号 矿物 反应式 1 钠长石 7NaAlSi3O8+6H++20H2O=3Na0.33Al2.33Si3.67O10(OH)2(钠蒙脱石)+6Na++10Si(OH)4 2 钙长石 CaAl2Si2O8+2H2CO3+H2O=Ca2++2HCO3−+Al2Si2O5(OH)4(高岭石) 3 钠蒙脱石 3Na0.33Al2.33Si3.67O10(OH)2+30H2O+6OH−=Na++7Al(OH)4−+11H4SiO4 4 石膏 CaSO4·2H2O=Ca2++2SO42− 5 方解石 CaCO3+H+=Ca2++HCO3− 6 白云石 CaMg(CO3)2+2H+=Ca2++Mg2++2HCO3− 7 萤石 CaF2=Ca2++2F− 8 黑云母 KMg3AlSi3O10(OH)2+6H++4H2O= K++3Mg2++Al(OH)4−+3H4SiO4 9 CO2 CO2(g)+H2O=H2CO3(aq);H2CO3=H++HCO3− 10 Na+/Ca2+ Ca2++2NaX=2Na++CaX2 2Na++CaX2=2NaX+Ca2+ 4.1.2 离子比例系数
在长期循环过程中,地下水与围岩不断地进行物质和能量的交换,所流经的地层岩性对其组分有重要的影响(周训等,2017)。因此,地下水中离子组分毫克当量比值的差异性及相关性可用于表征地下水循环过程的水化学演化。
(Ca2++Mg2+)与(HCO3−+SO42−)之间的毫克当量比值可以指示Ca2+和Mg2+的主要来源(王冰等,2023;吴君毅等,2023)。由图8–a可知,取样点位于1∶1平衡线下方,主要因为SO42−的毫克当量浓度过高,而Ca2+和Mg2+相对含量较低,说明研究区温泉水中Ca2+和Mg2+主要来源于硅酸盐和硫酸盐矿物的溶解。
Ca2+与HCO3−之间的毫克当量比值关系可以反映Ca2+的来源(Stallard et al., 1983)。由图8–b所示,AH2和AH6水样点位于1∶1平衡线下方。表明需要硅酸盐矿物的非全等溶解产生的Na+、K+碱性离子来维持平衡。AH7、AH11和AH12水样点位于1∶1线上方。说明Ca2+离子过剩,需要硫酸盐溶解产生的SO42−、Cl−等离子来平衡。
SO42−+Cl−与HCO3−的毫克当量浓度散点图可以判断地下水化学组分的主要来源(王亚平等,2010)。如图8–c所示,取样点均位于1∶1比值线上方,表明地下热水在深部循环过程中对硫酸盐的溶滤作用强度高于碳酸盐。
Na+与Cl−之间的毫克当量比值关系可以反映Na+和Cl−的来源(习龙等,2021)。由图8–d所示,两者毫克当量浓度含量相差很大,比值明显大于1,但是2个成分的毫克当量浓度之间又存在良好的正相关关系,R2达到0.95。表明Na+主要来源于硅酸盐矿物(如钠长石和钠蒙脱石)的溶解,少量Na+还来源于石盐溶解等。
(Na+−Cl−)/((Ca2++Mg2+)−(SO42−+HCO3−))的比值关系可以反映阳离子交替吸附(Fisher et al., 1997),由图9–a所示,(Na+−Cl−)/((Ca2++Mg2+)−(SO42−+HCO3−))表现出明显的负相关性,R2为0.995,斜率接近−1;在Na+含量逐步上升的情况下,Ca2+与Mg2+含量呈下降趋势,而Na+−Cl−能够体现出Na+含量的升降变化。
为进一步研究温泉中阳离子交替吸附作用发生的方向和强度,本文引入氯碱指数(CAI)(Schoeller,1965;Fisher et al., 1997)(公式(1)、(2))。如图9−b所示,大部分样品CAI−1和CAI−2均小于0,表明研究区地下水中的Ca2+、Mg2+与围岩中的Na+、K+发生了离子交换作用。此外,CAI可作为阳离子交替作用强度的有效指示指标,其值越小,表征阳离子交替吸附作用的程度越强,两者呈显著的负相关关系。该指标对于深入探究研究区地下水化学演化进程中离子交换动态具有关键意义。
CAI−1=Cl−−(Na++K+)Cl− (1) CAI−2=Cl−−(Na++K+)SO42−+HCO3+CO32−+NO−3 (2) 4.2 反向水文地球化学模拟
4.2.1 水溶组分平衡计算
利用PHREEQC进行研究区温泉的水溶组分平衡计算,可得到温泉中主要矿物的饱和程度,可以用饱和指数(SI)表示(Parkhurst et al., 1999)。若SI<0,表示矿物在地下水中还没有达到饱和;若SI=0,表示矿物刚好处于溶解和沉淀相互平衡的状态;若SI>0,说明矿物已经处于过饱和状态。SI的表达式如下(钱会等,2012):
SI=lgIAPK (3) 式中:SI为饱和指数;IAP为离子活度积;K为平衡常数。
利用PHREEQC软件模拟计算得出研究区石盐、石膏、硬石膏和方解石的SI值。温泉中石盐的SI值介于−8.07~−6.51之间;石膏的SI值介于−2.84~−0.6之间;硬石膏的SI值介于−2.9~−0.55之间;方解石的SI值介于−0.35~0.13之间。这表明采集的地下热水样品中的石盐和石膏均未饱和,但部分样品的方解石达到了饱和状态。根据饱和指数计算结果,绘制主要矿物的饱和指数与主要离子的比例关系图(图10)。如图10–a所示,SI(石盐)与(Na++Cl−)呈正相关关系,R2为0.986,表明Na+和Cl−的浓度受石盐溶解的显著影响;如图10–b所示,SI(石膏)与Ca2++SO42−具有很好的相关性,R2为0.877,表明在研究区地下热水中石膏的溶解是Ca2+和SO42−的主要来源;如图10−c所示,硬石膏饱和指数与Ca2++SO42−呈正相关关系,R2为0.909,表明硬石膏的溶解对Ca2+和SO42−有明显的控制作用。
4.2.2 模拟路径和可能矿物相的确定
模拟路径的选取要遵循起点和终点在同一水流路径上的原则,其次还要考虑地下水补给、径流、排泄条件等。李状等(2022)基于同位素特征分析对大别山区温泉的循环补给条件和成因模式进行了研究,认为大别山区温泉的补给来源为大气降水;大别山区温泉是由大气降水入渗地表后,经深循环获得加热并在水头差驱动下上升出露地表(图11)。因此,本次模拟共设置3条模拟路径,起点水样均为雨水样AHYS1,终点水样为3个温泉点(AH2、AH6、AH7)。
图 11 安徽大别山区温泉成因模式示意剖面图(据李状等,2022)1—花岗岩(表层风化);2—大气降水入渗补给;3—示意性地下水流向;4—温泉;5—大地热流;6—破碎带Figure 11. Schematic profile showing the formation of the hot springs in the Dabie Mountain area, Anhui Province可能矿物相的选取主要依据有水化学分析、岩石矿物鉴定、含水介质特征等(Yang et al., 2018)。由于研究区温泉水化学组分主要受岩石风化作用的影响,温泉水中Ca2+主要来源于碳酸盐矿物和石膏的溶滤,Na+主要来源于硅酸盐矿物(如钠长石、钠蒙脱石等)的溶滤,SO42−的含量主要受到石膏溶解的影响,HCO3−含量主要受硅酸盐矿物和碳酸盐矿物溶滤作用的影响;同时考虑到研究区岩性以中新生代岩浆岩和变质岩为主(徐树桐等,1992;吴海权等,2019),本研究可以确定的模拟矿物相为石盐、石膏、方解石、白云石、萤石、钠长石、钙长石、钠蒙脱石、高岭石、黑云母等。此外,CO2的溶解和逸出可对地下水的pH产生较大影响,应视为可能矿物相。还应考虑阳离子交替吸附作用在地下水循环过程中对水化学组分的影响。可能矿物相的溶解反应式见表2。
4.2.3 模拟结果及分析
本文进行反向地球化学模拟的目的在于揭示安徽大别山区温泉水化学的形成和演化机制。大别山区温泉(以SO4−Na型和SO4·HCO3−Na型为主)是由水质类型为HCO3-Ca型雨水从地表入渗后,向下运移经历深循环过程中经受各种水-岩作用而形成(刘春雷等,2023;王新娟等,2023)。如表3所示,由雨水至深循环地下热水,一共设置3条模拟路径。分别为路径Ⅰ(AHYS1-AH2)、路径Ⅱ(AHYS1-AH6)和路径Ⅲ(AHYS1-AH7)。由表1中温泉水化学测试数据,在这一循环过程中,地下热水的部分物理化学指标和主要组分的浓度均有较大变化。其中,温度由30℃增加到40~64℃;TDS由79 mg/L增加到253~1518 mg/L;pH值由7.8增加到7.8~9.1;Eh值由169降低至−160~−65,呈降低趋势。
表 3 可能矿物相在各路径上的溶解-沉淀量Table 3. Dissolution-precipitation amount of possible mineral phases in each pathmmol/L 矿物相 分子式 路径Ⅰ 路径Ⅱ 路径Ⅲ AHYS1-AH2 AHYS1-AH6 AHYS1-AH7 钠长石 NaAlSi3O8 0.894 1.726 2.871 钙长石 CaAl2Si2O8 0.5924 1.371 3.007 钠蒙脱石 3Na0.33Al2.33Si3.67O10(OH)2 −0.9206 −1.91 −3.824 方解石 CaCO3 −0.3552 −1.729 −3.836 白云石 CaMg(CO3)2 −0.16 0.0389 −0.09606 萤石 CaF2 0.1438 0.0864 0.1686 石膏 CaSO4:2H2O 1.95 0.4875 1.974 黑云母 K(Mg,Fe)3AlSi3O10(F,OH)2 0.0663 −0.01764 0.027 CO2(g) CO2 1.595 1.937 3.514 Na+/Ca2+ 4.028 0.9418 2.347 注:正值表示溶解或Ca置换Na进入水中,负值表示沉淀或Na置换Ca进入水中;CO2(g)表示CO2以气体相参与水化学反应 反应路径Ⅰ(AHYS1-AH2)上,水化学类型由HCO3−Ca型演化为SO4·HCO3−Na型。地下水中发生的主要水-岩作用有钠长石、钙长石、萤石、石膏、黑云母和CO2发生了溶解反应。矿物的溶解量分别为0.894 mmol/L、0.5924 mmol/L、0.1438 mmol/L、1.95 mmol/L、0.0663 mmol/L和1.595 mmol/L;而钠蒙脱石、方解石和白云石发生沉淀。矿物的沉淀量分别为0.9206 mmol/L、0.3552 mmol/L和0.16 mmol/L;同时地下水中发生了Ca2+置换Na+的阳离子交替吸附作用。
反应路径Ⅱ(AHYS1-AH6)上,水化学类型由HCO3−Ca型演化为HCO3·SO4−Na型。地下水中发生的主要水-岩作用有钠长石、钙长石、白云石、萤石、石膏和CO2发生溶解。溶解量分别为1.726 mmol/L、1.371 mmol/L、0.0389 mmol/L、0.0864 mmol/L、0.4875 mmol/L和1.937 mmol/L;钠蒙脱石、方解石和黑云母发生沉淀。矿物的沉淀量分别为1.91 mmol/L、1.729 mmol/L和0.01764 mmol/L;还发生了Ca2+置换Na+的阳离子交替吸附作用。
反应路径Ⅲ(AHYS1-AH7)上,水化学类型由HCO3−Ca型演化为SO4−Na型。发生的主要水-岩作用为钠长石、钙长石、萤石、石膏、黑云母和CO2发生溶解。矿物的溶解量分别为2.871 mmol/L、3.007 mmol/L、0.1686 mmol/L、1.974 mmol/L、0.027 mmol/L和3.514 mmol/L;钠蒙脱石、方解石、白云石发生沉淀。矿物的沉淀量分别为3.824 mmol/L、3.836 mmol/L、0.09606 mmol/L;此外,还发生了Ca2+置换Na+的阳离子交替吸附作用。
大别山区温泉是由大气降水入渗地表后,经深循环加热并在水头差驱动下上升出露地表(李状等,2022)(图11),从以上3条路径模拟结果的分析可知,雨水至深循环地下热水路径上发生的水-岩相互作用较一致。地下水在该阶段循环时间长,循环深度大,深部地层岩性及结构相对复杂,容易阻碍地下水径流,使地下水流速放缓,促使钠长石非全等溶解反应更充分,生成的次生矿物主要为钠蒙脱石,钠蒙脱石最后也逐渐饱和沉淀,而地下水中Na+含量显著上升成。地热水还溶解了较多石膏,且在循环过程中无法对SO4进行消耗和沉淀,进而导致出露的地热水中富集大量的SO4,使其成为地热水中主要的阴离子。温泉中方解石和白云石因为循环过程中始终未达到饱和而发生沉淀,导致温泉水中Ca2+和Mg2+含量没有明显增加,甚至出现减少。其次,地热水在循环过程中溶解大量CO2产生H+。但是因为钠长石和钙长石的非全等溶解的平衡阶段消耗较多的H+,所以雨水-地热水中pH值没有发生显著变化。最终完成了由HCO3−Ca型弱碱性雨水向SO4·HCO3−Na型和SO4−Na型弱碱性温泉的转化。
5. 结 论
(1)大别山区5个温泉出露点温度范围为46.0~64.0℃,pH范围为7.6~9.1,均为中低温弱碱性温泉;TDS范围为253~1518 mg/L,其中TDS较高的主要为东汤池温泉(AH11)和西汤池温泉(AH12),分别为1172 mg/L和1518 mg/L。温泉水化学类型以SO4−Na 型和SO4·HCO3−Na型为主。
(2)研究区温泉中轻稀土元素相对富集,中稀土元素其次,重稀土元素相对缺乏。此外,稀土元素配分模式图表明,大别山区温泉中稀土元素的Eu数值明显正异常,认为主要与研究区广泛分布的岩浆岩和变质岩中的长石类矿物的风化溶解有关。
(3)研究区泉水水化学组分主要受岩石风化作用的影响。泉水中Ca2+主要来源于碳酸盐矿物和石膏的溶滤,少量来源于硅酸盐矿物的溶滤;地下水中Na+主要来源于研究区广泛分布的硅酸盐矿物(如钠长石、钠蒙脱石等)的溶滤;SO42−的含量主要受到石膏溶解的影响,HCO3−含量主要受硅酸盐矿物和碳酸盐矿物溶滤作用的影响。
(4)雨水至地下热水模拟路径上(AHYS1-AH2、AHYS1-AH6、AHYS1-AH7)发生的水-岩相互作用为钠长石、钙长石、萤石、石膏、黑云母和CO2的溶解及钠蒙脱石、方解石和白云石的沉淀,还发生了Ca2+置换Na+的阳离子交替吸附作用。其中,雨水-温泉中钠长石的非全等溶解生成次生矿物为钠蒙脱石。
致谢:课题组同仁在论文撰写过程中给予了指导和帮助,北京市水文地质工程地质大队和核工业北京地质研究院分析测试研究中心对样品分析提供了帮助,审稿专家为本文提出了宝贵的意见和建议,在此一并表示衷心感谢。
-
图 2 黄岗梁锡铁矿区地质图(a)及深部剖面图(b, c)(据Mei et al.,2015修改)
Figure 2. Geological map (a) and cross sections (b, c) of the Huanggangliang Fe-Sn deposit
图 6 黄岗梁地区正长花岗岩Q−A−P图解(a, 底图据Streckeisen et al., 1979)和SiO2−K2O图解(b, 底图据Peccerillo et al., 1976)
1—富石英花岗岩; 2—碱性长石花岗岩; 3a—正长花岗岩; 3b—二长花岗岩;4—花岗闪长岩; 5—云英闪长岩; 6*—石英碱性长石正长岩; 7*—石英正长岩; 8*—石英二长岩; 9*—石英二长闪长岩/石英二长辉长岩; 10*—石英闪长岩/石英辉长岩; 6—碱性长石正长岩; 7—正长岩; 8—二长岩; 9—二长闪长岩/二长辉长岩; 10—闪长岩/辉长岩/斜长岩
Figure 6. Q−A−P diagram(a) and SiO2−K2O diagram(b) of the syenogranites in Huanggangliang area
图 7 黄岗梁地区正长花岗岩微量元素原始地幔标准化图解(a)和稀土元素球粒陨石标准化图解(b)(标准值据Sun et al., 1989; 天山-兴安平均值据史长义等, 2007)
Figure 7. Primitive mantle-normalized trace elements patterns (a) and chondrite-normalized REE patterns (b) of the syenogranites in Huanggangliang area
图 9 黄岗梁地区正长花岗岩成因类型判别图(a, b, c图底图据Whalen et al., 1987; d, e图底图据Eby, 1992; f图底图据Dall’ Agnol et al., 2007)
Figure 9. A-type granite of discrimination diagrams of the syenogranites in Huanggangliang area
图 10 Pb同位素构造模式图(a, 底图据Zartman et al., 1981)和(87Sr/86Sr)i-(143Nd/144Nd)i图解(b, 底图据Zindler et al., 1986)(a图黄岗梁花岗岩5件样品据蔡剑辉等, 2004; Zhou et al., 2012; 黄岗梁矿石14件样品据要梅娟等, 2012; 刘智等, 2013; 白音诺尔11件样品据Jiang et al., 2017; Zhao et al., 2020;浩布高5件样品据 Wang et al., 2018; 道伦达坝14件样品据周振华等, 2014; 维拉斯托8件样品据刘瑞麟等, 2018. b. 黄岗梁花岗岩6件样品据Zhou et al., 2012; 苏荣昆等, 2022; 白音诺尔24件样品据Jiang et al., 2017; Zhao et al., 2020; 浩布高5件样品据Wang et al., 2018; 双尖子山12件样品据Dai et al., 2022)
Figure 10. Pb isotopic compositions diagram(a) and (87Sr/86Sr)i-(143Nd/144Nd)i diagram(b)
图 11 黄岗梁地区正长花岗岩R1−R2图解 (a, 底图据Batchelor et al., 1985)和(Y+Nb)−Rb图解(b, 底图据Pearce et al., 1984)(R1=[4Si-11(Na + K)-2(Fe + Ti)]; R2=(Al + 2Mg + 6Ca))
1—地幔分异(斜长花岗岩); 2—破坏性活动板块边缘(板块碰撞前)花岗岩; 3—板块碰撞后隆起期花岗岩; 4—晚造山期花岗岩; 5—非造山期A型花岗岩; 6—同碰撞S型花岗岩; 7—造山期后A型花岗岩;ORG—洋中脊花岗岩; Syn-COLG—同碰撞花岗岩; VAG—火山弧花岗岩; WPG—板内花岗岩
Figure 11. R1−R2 diagram (a) and (Y+Nb)−Rb diagram (b) of the syenogranites in Huanggangliang area
表 1 黄岗梁地区正长花岗岩锆石U−Th−Pb同位素数据
Table 1 U−Th−Pb data of zircons obtained from the syenogranites in Huanggangliang area
测点 普通Pb/% U/10−6 Th/10−6 232Th/
238U放射性Pb/
10−6206Pb*/
238U1σ/% 207Pb*/
235U1σ/% 207Pb*/
206Pb*1σ/% 误差相
关系数206Pb/238U
年龄/Ma207Pb/206Pb
年龄/Ma不谐和度/% DS223-1 1.1 0.61 223 90 0.42 4.29 0.02221 1.9 0.1538 6.0 0.0502 5.7 0.312 141.6±2.6 205±130 31 2.1 1.45 268 98 0.38 5.16 0.02208 2.0 0.149 13 0.0490 13 0.150 140.8±2.7 147±300 5 3.1 1.12 286 131 0.47 5.46 0.02199 1.9 0.156 12 0.0514 12 0.162 140.2±2.7 259±270 46 4.1 2.28 130 55 0.44 2.49 0.02185 2.4 0.157 20 0.052 20 0.121 139.3±3.4 295±450 53 5.1 1.70 306 121 0.41 5.81 0.02176 1.9 0.144 12 0.0481 12 0.156 138.8±2.6 103±280 −34 6.1 2.65 213 83 0.40 4.09 0.02180 2.0 0.146 14 0.0485 14 0.138 139.0±2.7 125±330 −11 7.1 0.42 1206 401 0.34 23.1 0.02222 1.6 0.1476 3.5 0.0482 3.1 0.463 141.6±2.3 108±73 −31 8.1 0.61 667 192 0.30 12.4 0.02143 1.7 0.1436 5.7 0.0486 5.4 0.299 136.7±2.3 128±130 −6 9.1 1.91 258 112 0.45 4.97 0.02199 2.0 0.150 18 0.0495 18 0.111 140.2±2.7 171±410 18 10.1 5.40 79 27 0.35 1.40 0.01964 3.4 0.146 36 0.054 36 0.095 125.3±4.2 366±810 66 11.1 2.85 180 69 0.40 2.94 0.0185 5.5 0.126 21 0.049 21 0.256 117.9±6.4 169±480 30 12.1 0.77 243 138 0.59 4.50 0.02134 2.1 0.151 10 0.0513 9.9 0.209 136.1±2.8 256±230 47 13.1 3.36 158 75 0.49 3.07 0.02183 2.3 0.154 21 0.051 21 0.110 139.2±3.2 247±480 44 14.1 1.47 256 123 0.49 5.00 0.02241 1.9 0.153 13 0.0496 13 0.151 142.9±2.7 179±300 20 15.1 1.76 237 95 0.41 4.49 0.02171 2.0 0.148 14 0.0495 14 0.138 138.5±2.7 171±340 19 DS229-1 1.1 1.09 463 161 0.36 9.17 0.02278 1.9 0.142 11 0.0451 11 0.167 145.2±2.7 −52±270 381 2.1 1.59 447 172 0.40 8.66 0.02220 2.0 0.141 17 0.0461 17 0.118 141.5±2.8 1±410 −26820 3.1 0.86 569 192 0.35 11.2 0.02268 1.8 0.151 9.6 0.0484 9.4 0.193 144.6±2.6 117±220 −24 4.1 1.40 424 130 0.32 8.17 0.02213 1.8 0.153 7.3 0.0501 7.1 0.243 141.1±2.5 198±160 29 5.1 4.74 115 16 0.14 2.38 0.02295 2.8 0.161 31 0.051 31 0.090 146.2±4.1 231±720 37 6.1 2.12 245 88 0.37 4.65 0.02161 2.0 0.170 14 0.0571 13 0.149 137.8±2.8 496±300 72 7.1 0.54 1633 397 0.25 31.9 0.02261 1.7 0.1534 3.6 0.0492 3.2 0.463 144.1±2.4 157±75 8 8.1 4.81 131 50 0.39 2.64 0.02228 2.8 0.154 31 0.050 30 0.091 142.0±3.9 203±710 30 9.1 1.26 262 106 0.42 5.20 0.02279 2.0 0.171 14 0.0543 14 0.143 145.3±2.9 383±320 62 10.1 7.20 67 24 0.38 1.35 0.02175 3.4 0.160 41 0.053 41 0.082 138.7±4.7 344±930 60 11.1 2.02 286 100 0.36 5.50 0.02191 1.9 0.152 13 0.0503 13 0.146 139.7±2.7 207±310 32 12.1 0.88 576 174 0.31 10.9 0.02176 1.8 0.1565 6.0 0.0522 5.7 0.293 138.8±2.4 292±130 52 13.1 2.63 245 96 0.41 4.85 0.02245 2.0 0.165 15 0.0533 15 0.135 143.1±2.9 342±340 58 14.1 1.59 192 74 0.40 3.70 0.02205 2.1 0.162 15 0.0534 15 0.135 140.6±2.9 346±340 59 15.1 1.07 370 103 0.29 7.11 0.02210 1.8 0.146 8.4 0.0478 8.2 0.216 140.9±2.5 90±190 −56 DS231-5 1.1 1.27 206 97 0.49 3.82 0.02131 2.0 0.156 13 0.0532 13 0.155 135.9±2.7 336±280 60 2.1 2.41 437 193 0.46 8.33 0.02162 1.8 0.150 13 0.0503 13 0.142 137.9±2.5 210±290 34 3.1 1.37 431 148 0.36 8.27 0.02202 1.8 0.148 9.5 0.0488 9.3 0.187 140.4±2.5 139±220 −1 4.1 1.21 360 165 0.47 6.58 0.02104 1.8 0.140 7.8 0.0484 7.6 0.228 134.2±2.4 118±180 −14 5.1 0.60 350 172 0.51 6.66 0.02205 1.7 0.1506 4.8 0.0495 4.5 0.360 140.6±2.4 174±110 19 6.1 0.57 495 156 0.33 8.71 0.02036 1.7 0.1453 4.7 0.0518 4.4 0.362 130.0±2.2 275±100 53 7.1 0.21 1890 632 0.35 36.3 0.02230 1.6 0.1509 2.4 0.0491 1.9 0.647 142.2±2.2 151±44 6 8.1 0.38 1541 722 0.48 30.3 0.02278 1.6 0.1581 2.6 0.0503 2.1 0.605 145.2±2.3 210± 49 31 9.1 0.40 854 281 0.34 16.5 0.02236 1.6 0.1545 4.1 0.0501 3.7 0.403 142.6±2.3 199±87 28 10.1 0.40 513 205 0.41 9.41 0.02126 1.7 0.1479 5.5 0.0505 5.2 0.314 135.6±2.3 217±120 38 11.1 1.46 227 82 0.37 4.23 0.02133 2.1 0.147 17 0.0498 17 0.122 136.0±2.8 187±400 27 12.1 0.47 1107 354 0.33 21.0 0.02201 1.6 0.1469 4.2 0.0484 3.9 0.390 140.3±2.3 120±91 −17 13.1 0.31 1642 486 0.31 31.6 0.02231 1.6 0.1505 3.5 0.0489 3.1 0.465 142.3±2.3 143±72 1 14.1 1.18 256 82 0.33 4.82 0.02166 1.9 0.153 12 0.0513 12 0.159 138.1±2.6 254±270 46 15.1 1.03 516 211 0.42 9.80 0.02187 1.9 0.151 7.9 0.0499 7.7 0.244 139.5±2.7 190±180 27 DS231−6 1.1 0.92 354 116 0.34 6.73 0.02195 1.9 0.152 6.9 0.0503 6.7 0.279 139.9±2.7 207±150 32 2.1 5.92 778 361 0.48 15.2 0.02144 1.8 0.160 10 0.0543 10 0.168 136.8±2.4 382±230 64 3.1 0.41 937 337 0.37 18.2 0.02251 1.6 0.1489 4.2 0.0480 3.9 0.384 143.5±2.3 99± 92 −45 4.1 0.17 1795 648 0.37 35.0 0.02263 1.6 0.1506 2.7 0.0483 2.1 0.596 144.3±2.3 113± 50 −28 5.1 0.35 524 202 0.40 9.75 0.02159 1.7 0.1486 5.3 0.0499 5.0 0.321 137.7±2.3 192±120 28 6.1 0.84 381 171 0.46 7.24 0.02196 1.7 0.145 8.2 0.0480 8.1 0.210 140.0±2.4 101±190 −39 7.1 2.31 1693 908 0.55 31.7 0.02130 1.7 0.152 14 0.0516 13 0.123 135.9±2.2 268±310 49 8.1 − 837 251 0.31 15.8 0.02194 1.6 0.1531 2.6 0.0506 2.0 0.637 139.9±2.3 224± 46 37 9.1 0.36 573 186 0.34 10.7 0.02158 1.7 0.1441 5.6 0.0484 5.4 0.302 137.7±2.3 119±130 −15 10.1 0.19 811 438 0.56 15.2 0.02184 1.7 0.1521 3.3 0.0505 2.9 0.496 139.3±2.3 218± 67 36 11.1 1.54 740 274 0.38 14.2 0.02192 1.7 0.1447 6.3 0.0479 6.1 0.267 139.8±2.3 93±140 −50 12.1 1.25 621 137 0.23 11.0 0.02035 1.7 0.1417 5.9 0.0505 5.6 0.291 129.8±2.2 219±130 41 13.1 0.00 617 291 0.49 11.3 0.02127 1.7 0.1502 3.1 0.0512 2.7 0.538 135.7±2.3 251±61 46 14.1 0.67 574 218 0.39 10.8 0.02166 1.8 0.145 7.8 0.0484 7.6 0.224 138.2±2.4 119±180 −16 15.1 1.52 317 178 0.58 6.08 0.02198 1.9 0.161 11 0.0532 11 0.176 140.1±2.6 337±240 58 DS234-1 1.1 0.82 272 125 0.47 5.26 0.02234 1.9 0.163 9.8 0.0530 9.6 0.197 142.4±2.7 328±220 57 2.1 0.13 1129 309 0.28 21.3 0.02189 1.7 0.1594 2.5 0.0528 1.9 0.672 139.6±2.3 321± 42 57 3.1 − 656 442 0.70 12.3 0.02184 1.8 0.1643 2.9 0.0545 2.3 0.621 139.3±2.5 394± 50 65 4.1 0.17 346 118 0.35 6.50 0.02181 2.0 0.165 6.4 0.0550 6.1 0.310 139.1±2.7 411±140 66 5.1 0.24 8903 12035 1.40 193 0.02514 1.8 0.1688 2.1 0.0487 1.1 0.858 160.0±2.8 134± 25 −19 6.1 0.02 726 359 0.51 13.3 0.02123 1.9 0.1603 4.0 0.0547 3.5 0.481 135.4±2.6 402±78 66 7.1 0.15 3585 2252 0.65 72.8 0.02359 1.7 0.1651 2.2 0.0508 1.4 0.777 150.3±2.5 230±31 35 8.1 0.01 2278 562 0.25 43.0 0.02194 1.7 0.1512 2.2 0.05 1.4 0.776 139.9±2.4 194±32 28 9.1 0.19 2625 715 0.28 50.3 0.02226 1.7 0.1494 2.4 0.0487 1.7 0.706 141.9±2.4 133±40 −7 10.1 0.32 2294 578 0.26 44.0 0.02225 1.7 0.1475 2.8 0.0481 2.3 0.606 141.8±2.4 104±53 −36 11.1 0.49 266 140 0.54 5.03 0.02190 2.0 0.173 6.6 0.0574 6.3 0.302 139.6±2.7 508±140 73 12.1 0.23 2546 646 0.26 49.7 0.02267 1.7 0.1527 2.4 0.0488 1.6 0.724 144.5±2.5 140±38 −3 13.1 0.23 1527 640 0.43 29.8 0.02263 1.8 0.1516 3.3 0.0486 2.8 0.530 144.3±2.5 128±66 −13 14.1 0.18 2249 487 0.22 43.4 0.02243 1.7 0.1537 2.2 0.0497 1.4 0.765 143.0±2.4 181± 34 21 15.1 0.18 2865 708 0.26 55.9 0.02267 1.7 0.1540 2.6 0.0493 1.9 0.671 144.5±2.4 160±44 10 表 2 黄岗梁地区正长花岗岩主量、微量和稀土元素含量
Table 2 Major, trace elements and rare earth elements compositions of the syenogranites in Huanggangliang area
元素 DS223-1 DS231-5 DS231-6 DS229-1 DS234-1 天山-兴安 SiO2 73.41 74.34 75.11 73.35 75.16 72.73 TiO2 0.20 0.17 0.08 0.22 0.09 0.26 Al2O3 13.89 13.15 13.13 13.93 14.14 14.04 Fe2O3 2.17 1.88 0.93 2.38 1.22 0.90 FeO 1.03 1.53 0.72 0.65 0.76 0.89 MnO 0.05 0.04 0.04 0.05 0.04 0.04 MgO 0.19 0.18 0.09 0.19 0.08 0.46 CaO 0.70 1.11 1.56 0.61 0.88 1.32 Na2O 3.25 3.73 2.82 3.04 3.08 3.86 K2O 5.08 4.82 5.62 5.22 4.93 4.09 P2O5 0.05 0.04 0.02 0.05 0.03 0.07 烧失量 0.90 0.45 0.52 0.89 0.25 - 总量 100.9 101.4 100.6 100.5 100.67 - TFeO 2.98 3.22 1.56 2.79 1.86 1.70 Na2O+K2O 8.33 8.55 8.44 8.26 8.01 7.95 K2O/Na2O 1.56 1.29 1.99 1.72 1.60 1.06 A/CNK 1.14 0.98 0.97 1.18 1.18 - A/NK 1.28 1.16 1.22 1.31 1.36 - DI 90.1 90.1 90.5 90.5 90.72 - σ43 2.28 2.34 2.22 2.24 2.00 - AR 2.61 3.19 2.25 2.44 2.39 - M 1.55 1.79 1.89 1.50 1.49 - t 792 760 756 815 741 - Hf 10.30 7.04 7.28 7.16 3.92 4.70 Ta 2.25 3.72 2.23 2.20 1.50 0.92 Th 15.90 45.11 49.93 13.82 17.32 12.80 U 2.51 19.73 16.54 3.52 7.11 2.13 Ba 343.44 151.91 108.45 386.59 260.82 461 Cr 2.91 6.47 5.35 5.60 2.07 4 Ga 23.23 24.17 22.84 24.25 19.11 18 Pb 90.48 14.34 8.36 30.23 18.79 19 Nb 17.93 20.85 3.94 18.91 8.44 11 Rb 347.92 527.66 537.74 237.14 282.65 125 Sr 59.49 54.09 53.72 78.71 117.81 179 Zr 193.83 163.62 168.21 241.19 99.75 141 Y 64.37 56.28 45.79 27.70 27.90 19 10000*Ga/Al 3.16 3.47 3.29 3.29 2.55 2.42 Nb/Ta 7.97 5.61 1.77 8.59 5.64 11.95 Zr/Hf 18.83 23.24 23.11 33.69 25.44 30.0 La 45.66 56.64 49.87 19.91 21.31 26 Ce 93.67 113.10 103.80 92.61 42.23 52 Pr 11.78 12.38 11.97 5.35 5.10 5.76 Nd 43.22 42.31 41.44 20.34 18.31 21.2 Sm 8.64 8.62 8.78 5.38 4.25 3.9 Eu 0.83 0.90 0.82 0.99 0.74 0.72 Gd 7.41 7.68 7.66 4.85 3.60 4.50 Tb 1.24 1.30 1.29 0.86 0.62 0.55 Dy 6.89 7.37 6.92 4.87 3.32 3.70 Ho 1.12 1.24 1.16 0.85 0.57 0.74 Er 3.00 3.61 3.12 2.36 1.65 2.18 Tm 0.32 0.44 0.37 0.30 0.22 0.38 Yb 2.25 3.16 2.42 2.05 1.53 2.20 Lu 0.24 0.36 0.28 0.25 0.18 0.33 ΣREE 226.27 259.10 239.91 160.97 103.61 124.16 LREE/HREE 9.07 9.30 9.33 8.82 7.87 7.52 Eu /Eu* 0.32 0.34 0.31 0.59 0.58 0.17 注:A/CNK=(Al2O3)/[(CaO)+(Na2O)+(K2O)],DI(标准矿物组分:石英+正长石+钠长石+霞石+白榴石+六方钾霞石)。M=(Na+K+2Ca)/(Al×Si)(阳离子比率);t(°C)=12900/{ln[ 496000 /ω(Zr)]+0.85M+2.95}−273.5,据Watson et al.(1983)。主量元素含量单位为%,微量和稀土元素含量单位为10−6表 3 黄岗梁地区正长花岗岩Rb−Sr、Sm−Nd、Pb同位素数据
Table 3 Rb−Sr, Sm−Nd and Pb isotopic compositions of the syenogranites in Huanggangliang area
样号 DS223-1 DS229-1 DS231-5 DS231-6 DS234-1 Rb/10−6 382 232 593 561 286 Sr/10−6 56.4 89.5 51.8 47.1 102 87Rb/86Sr 19.6 7.4917 33.0899 34.4911 8.0822 87Sr/86Sr 0.742105 0.719977 0.765734 0.773669 0.719964 误差 0.000014 0.000013 0.000013 0.000014 0.000014 (87Sr/86Sr)i 0.70321 0.70487 0.70031 0.70543 0.70369 εSr(t) −16 7.6 −57.2 15.5 −9.1 Sm/10−6 10.3 4.54 8.57 9.35 4.52 Nd/10−6 51.8 20.6 46.3 46 21.2 147Sm/144Nd 0.1202 0.1331 0.112 0.1228 0.129 143Nd/144Nd 0.512572 0.51261 0.512591 0.512629 0.512636 误差 0.000007 0.000008 0.000008 0.000007 0.000007 (143Nd/144Nd)i 0.512462 0.512486 0.512489 0.512517 0.512516 εNd(0) −1.29 −0.55 −0.92 −0.18 −0.04 εNd(t) 0.07 0.6 0.59 1.13 1.18 fSm/Nd −0.39 −0.32 −0.43 −0.38 −0.34 TDM/Ma 945 1024 841 877 928 TDM2/Ma 926 885 885 840 838 208Pb/204Pb 38.426 38.381 38.984 39.942 38.905 误差 0.003 0.005 0.005 0.005 0.009 207Pb/204Pb 15.543 15.541 15.608 15.609 15.609 误差 0.001 0.002 0.002 0.002 0.003 206Pb/204Pb 18.683 18.565 19.91 19.979 19.789 误差 0.002 0.002 0.002 0.003 0.003 表 4 大兴安岭南段典型矿床年龄及与成矿有关岩体年龄
Table 4 Age data of typical ore deposits and the granitic intrusions associated with the mineralization of southern Great Hinggan Range
矿床名称 矿床类型 测试对象 样号 测试方法 年龄 资料来源 黄岗梁
锡−铁−锌矿床矽卡岩型 矿石 HG-4-1;HG-2-28 ~ HG-2-31 辉钼矿Re−Os 135.3 ± 0.85 Ma 周振华等,2010a 矿石 07HGL-04 辉钼矿Re−Os 141.2 ± 4.3 Ma 要梅娟等,2016 矿石 07HGL-05 辉钼矿Re−Os 134.9 ± 5.2 Ma 翟德高等,2012 锡矿脉 —— 钾长石K−Ar 137 ± 3 Ma Ishiyama et al., 2001 钻孔1337.5 m矽卡岩 HGL-93 石榴石U−Pb LA−ICP−MS 136.03 ± 1.22 Ma Li et al., 2022 钻孔1250 m锡矿石 HGL-220 锡石U−Pb 137.10 ± 3.65 Ma Li et al., 2022 钻孔1200 m花岗岩 HGL-243 锆石U−Pb LA−ICP−MS 138.45 ± 0.45 Ma Li et al., 2022 矿区细粒花岗岩 —— 白云母K−Ar 142 ± 3 Ma Ishiyama et al., 2001 矿区花岗岩 WL1 锆石U−Pb LA−ICP−MS 139.96 ± 0.87 Ma 翟德高等,2012 矿区钾长花岗岩 HG-1-7 锆石U−Pb LA−ICP−MS 136.7 ± 1.1 Ma 周振华等,2010b 矿区花岗斑岩 HG-3-5 锆石U−Pb LA−ICP−MS 136.8 ± 0.57 Ma 周振华等,2010b 当中营子钾长花岗岩 14RS-7 锆石U−Pb LA−ICP−MS 137.7 ± 1.2 Ma 赵辉等,2015 浩布高
铅−锌−铜−锡
矿床矽卡岩型 矿石 HL13 辉钼矿Re−Os 142 ± 1 Ma Liu et al.,2017 矿石 HBG01 ~ HBG05 辉钼矿Re−Os 138 ± 3 Ma Wang et al.,2018 矿石 17HBG-1 辉钼矿Re−Os 138.27 ± 0.81 Ma Hong et al.,2021 矿石 17HBG-2 辉钼矿Re−Os 138.82 ± 0.80 Ma Hong et al.,2021 矿石 Grt A 石榴石U−Pb LA−ICP−MS 139.10 ± 5.40 Ma Hong et al.,2021 矿石 Grt B 石榴石U−Pb LA−ICP−MS 140.70 ± 1.89 Ma Hong et al.,2021 矿区花岗岩 HBG-9 锆石U−Pb LA−ICP−MS 143.49 ± 0.76 Ma Hong et al.,2021 矿区黑云母花岗岩 HBG-10 锆石U−Pb LA−ICP−MS 141.10 ± 1.40 Ma Hong et al.,2021 矿区蚀变花岗斑岩 HBG-1 锆石U−Pb LA−ICP−MS 140.97 ± 0.73 Ma Hong et al.,2021 矿区花岗斑岩 HBG-13 锆石U−Pb LA−ICP−MS 140.85 ± 0.75 Ma Hong et al.,2021 矿区黑云母花岗岩 ZK2507-17-2 锆石U−Pb LA−ICP−MS 140.9 ± 0.8 Ma Niu et al.,2022 钻孔920 m花岗岩 ZK0605 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Wang et al.,2018 小罕山二长花岗岩 XHS-02 锆石U−Pb LA−ICP−MS 143.9 ± 1.1 Ma 周桐等,2022 小罕山石英二长斑岩 XHS 锆石U−Pb LA−ICP−MS 140 ± 2 Ma Liu et al.,2021 乌兰坝黑云母花岗岩 WLB 锆石U−Pb LA−ICP−MS 142 ± 2 Ma Liu et al.,2021 乌兰楚鲁特花岗岩 WLCLT 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Liu et al.,2021 双尖子山
铅−锌−银矿床岩浆热液型 矿石 17SJ-34; 17SJ-35;
17SJ-41辉钼矿Re−Os 134.9 ± 3.4 Ma Zhai et al.,2020 矿石 15SJ-10; 15SJ-16;
17SJ-26; 15SJ-114黄铁矿Re−Os 135.0 ± 0.6 Ma Zhai et al.,2020 矿石 SJ-30-1 ~ 4; SJ-55-
1 ~ 3; SJ-68-1 ~ 3闪锌矿Rb−Sr 132.7 ± 3.9 Ma 吴冠斌等,2014 石英正长斑岩 NS-17 锆石U−Pb LA−ICP−MS 131.4 ± 0.5 Ma 赵家齐等,2022 矿区正长花岗岩 SJ-52 锆石U−Pb LA−ICP−MS 133.71 ± 0.64 Ma 吴冠斌等,2014 钻孔1021 m花岗斑岩 DS233-8 锆石U−Pb SHRIMP 133.4 ± 1.2 Ma 顾玉超等,2017a 斑状花岗闪长岩 14SJ55 锆石U−Pb LA−ICP−MS 130 ± 6 Ma Liu et al.,2016 矿区花岗岩 17SJ-87 锆石U−Pb LA−ICP−MS 135.2 ± 1.4 Ma Zhai et al.,2020 矿区粗粒花岗岩 17SJ-53 锆石U−Pb LA−ICP−MS 134.4 ± 1.0 Ma Zhai et al.,2020 矿区细粒花岗岩 17SJ-59 锆石U−Pb LA−ICP−MS 134.4 ± 1.0 Ma Zhai et al.,2020 钻孔细粒正长花岗岩 ZK1237-4 锆石U−Pb LA−ICP−MS 140.72 ± 0.44 Ma Dai et al.,2022 钻孔二长花岗岩 ZK101-1 锆石U−Pb LA−ICP−MS 142.7 ± 0.82 Ma Dai et al.,2022 道伦达坝
锡−铜−钨矿床岩浆热液型 矿石 DL 石英包裹体Ar−Ar 140.6 ± 2.2 Ma 张雪冰等,2021 矿石 DX3 锡石U−Pb 136.8 ± 7.4 Ma 陈公正等,2018 矿石 DX1 锡石U−Pb 134.7 ± 6.6 Ma 陈公正等,2018 矿石 DL2 独居石U−Pb LA−ICP−MS 136 ± 2.3 Ma 陈公正等,2021 矿石 D8-2 独居石U−Pb LA−ICP−MS 135.1 ± 2.2 Ma 陈公正等,2021 矿石 DX8 独居石U−Pb LA−ICP−MS 134.7 ± 2.8 Ma 陈公正等,2021 矿石 D13 绢云母Ar−Ar 140.0 ± 1.1 Ma 陈公正等,2021 张家营子似斑状花岗岩 DW1-2 锆石U−Pb LA−ICP−MS 135 ± 1 Ma 陈公正等,2018 张家营子细粒花岗岩 DW3-9 锆石U−Pb LA−ICP−MS 136 ± 1 Ma Chen et al.,2021b 张家营子细粒花岗岩 DW3-3 锆石U−Pb LA−ICP−MS 134 ± 1 Ma Chen et al.,2021b 张家营子细粒花岗岩 ZYZ 全岩Rb−Sr 139.3 ± 2.9 Ma 毛骞等,2001 维拉斯托−拜仁达坝
锡−铜−钨−铅−锌−银
矿床岩浆热液型 矿石 WLST09-7 辉钼矿Re−Os 135 ± 11 Ma Liu et al.,2016 矿化石英斑岩 AY1 锡石U−Pb 138 ± 6 Ma Wang et al.,2017 矿化云英岩 AY2 锡石U−Pb 135 ± 6 Ma Wang et al.,2017 石英脉矿石 W22 锡石U−Pb 136.0 ± 6.1 Ma 刘瑞麟等,2018 北大山花岗岩 BD1-1 锆石U−Pb LA−ICP−MS 140 ± 2 Ma 刘瑞麟等,2018 北大山二长花岗岩 WH-01 锆石U−Pb LA−ICP−MS 140 ± 3 Ma Liu et al.,2016 北大山岩体外围花岗岩 BR2011-10 锆石U−Pb LA−ICP−MS 139 ± 2 Ma Liu et al.,2016 钻孔1550 m石英斑岩 ZK809-1 锆石U−Pb LA−ICP−MS 138 ± 2 Ma Liu et al.,2016 钻孔500 m石英斑岩 WL1 锆石U−Pb LA−ICP−MS 135.7 ± 0.9 Ma 翟德高等,2016 矿区碱长花岗岩 WLST01 锆石U−Pb LA−ICP−MS 139.5 ± 1.2 Ma 祝新友等,2016 边家大院
铅−锌−银矿床岩浆热液型 矿石 BJ-07 ~ BJ-11 辉钼矿Re−Os 140.7 ± 1.7 Ma Zhai et al.,2017 矿石 —— 绢云母Ar−Ar 137.9 ± 4.1 Ma Zhai et al.,2017 矿区黑云母二长花岗岩 BJN2 锆石U−Pb LA−ICP−MS 143.2 ± 1.2 Ma Wang et al.,2016 矿区正长花岗岩 DS211-1 锆石U−Pb LA−ICP−MS 140.31 ± 0.34 Ma 顾玉超等,2017b 钻孔884 m石英斑岩 BJ-58 锆石U−Pb LA−ICP−MS 140.2 ± 1.2 Ma 王喜龙等,2014b 矿区花岗闪长岩 BJY-YT 锆石U−Pb LA−ICP−MS 143.2 ± 1.5 Ma 阮班晓等,2013 花岗斑岩 BJP1-C22 锆石U−Pb LA−ICP−MS 138.2 ± 0.8 Ma 蒋昊原等,2020 辉石闪长岩 BJP1-C31 锆石U−Pb LA−ICP−MS 137.4 ± 0.7 Ma 蒋昊原等,2020 乌兰坝粗粒花岗岩 HL02 锆石U−Pb LA−ICP−MS 138.0 ± 1.4 Ma Xu et al.,2022 乌兰坝粗粒花岗岩 HL04 锆石U−Pb LA−ICP−MS 137.1 ± 0.6 Ma Xu et al.,2022 -
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 48(1): 43−55.
Black L P, Kamo S L, Allen C M, et al. 2003. TEMORA 1: A new zircon standard for Phanerozoic U−Pb geochronology[J]. Chemical Geology, 200(1/2): 155−170. doi: 10.1016/S0009-2541(03)00165-7
Cai J H, Yan G H, Xiao C D, et al. 2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in Taihang−Da Hinggan Mountains tectonomagmatic belt and their source region[J]. Acta Petrologica Sinica, 20(5): 1225−1242 (in Chinese with English abstract).
Cao H H, Xu W L, Pei F P, et al. 2013. Zircon U−Pb geochronology and petrogenesis of the Late Paleozoic−Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 170/171: 191–207.
Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173−174.
Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1−26.
Che Y W, Liu J F, Zhao S, et al. 2021. Early Early−Cretaceous post−collisional tectonic setting of the southern segment of the Great Xing’an Range: Evidence from the Lanjiayingzi gabbro−diorite in Linxi area[J]. Geological Bulletin of China, 40(1): 152–163 (in Chinese with English abstract).
Chen G Z, Wu G, Li T G, et al. 2018. LA−ICP−MS zircon and cassiterite U−Pb ages of Daolundaba copper−tungstentin deposit in Inner Mongolia and their geological significance[J]. Mineral Deposits, 37(2): 225−245 (in Chinese with English abstract).
Chen G Z, Wu G, Li T G, et al. 2021a. Mineralization of the Daolundaba Cu−W−Sn deposit in the southern Great Xing’an Range: Constraints from zircon and monazite U−Pb and sericite 40Ar−39Ar ages[J]. Acta Petrologica Sinica, 37(3): 865−885 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.14
Chen G Z, Wu G, Li T G, et al. 2021b. Mineralization of the Daolundaba Cu−Sn−W−Ag deposit in the southern Great Xing’an Range, China: Constraints from geochronology, geochemistry, and Hf isotope[J]. Ore Geology Reviews, 133: 104117.
Clemens J D, Holloway J R, White A J R. 1986. Origin of an A−type granite: Experimental constraints[J]. American Mineralogist, 71(3/4): 317−324.
Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895
Dai M, Yan G S, Li Y S, et al. 2022. The origin of microgranular enclaves in the Early Cretaceous Shuangjianzishan granites in southern Great Hinggan Range, NE China[J]. Geological Journal, 57(7): 2631–2655.
Dall’Agnol R, Carvalho de Oliveira D. 2007. Oxidized, magnetite−series, rapakivi−type granites of Carajas, Brazil: Implications for classification and petrogenesis of A−type granites[J]. Lithos, 93: 215−233. doi: 10.1016/j.lithos.2006.03.065
Deng J F, Zhao G C, Su S G, et al. 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era[J]. Geotectonica et Metallogenia 29(2): 157–165 (in Chinese with English abstract).
Dickin A P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure[J]. Geological Magazine, 131(3): 329−333. doi: 10.1017/S0016756800011092
Duan X X, Zeng Q D, Yang Y H, et al. 2015. Triassic magmatism and Mo mineralization in northeast China: geochronological and isotopic constraints from the Laojiagou porphyry Mo deposit[J]. International Geology Review, 57(1): 55−75. doi: 10.1080/00206814.2014.989546
Eby G N. 1992. Chemical subdivision of the A−type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin[J]. Special Paper of the Geological Society of America, 206(9): 1−60.
Fan W M, Guo F, Wang Y J, et al. 2003. Late Mesozoic calc−alkaline volcanism of post−orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 121: 115−135. doi: 10.1016/S0377-0273(02)00415-8
Feng Y Z, Yang J H, Sun J F, et al. 2020. Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo−Pacific slab[J]. Science China Earth Sciences, 63: 690−700 (in Chinese with English abstract). doi: 10.1007/s11430-019-9564-4
Frost C D, Frost B R. 1997. Reduced rapakivi−type granites: the tholeiite connection[J]. Geology, 25(7): 647−650. doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
Gu Y C, Chen R Y, Jia B, et al. 2017a. Zircon U−Pb dating and geochemistry of the granite porphyry from the Shuangjianzishan silver polymetallic deposit in Inner Mongolia and tectonic implications[J]. Geology and Exploration, 53(3): 495−507 (in Chinese with English abstract).
Gu Y C, Chen R Y, Jia B, et al. 2017b. Zircon U−Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb−Zn−Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101−117 (in Chinese with English abstract).
Guo Z J, Zhou Z H, Li G T, et al. 2012. SHRIMP U−Pb zircon dating and petrogeochemistral characteristics of the intermediate−acid intrusive rocks in the Aoergai copper deposit of Inner Mongolia[J]. Geology in China, 39(6): 1487−1500 (in Chinese with English abstract).
Han B F, Wang S G, Jahn B, et al. 1997. Depleted−mantle source for the Ulungur River A−type granites from North Xinjiang, China: Geochemistry and Nd−Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 138(3/4): 135−159. doi: 10.1016/S0009-2541(97)00003-X
Harris C, Marsh J S, Milner S C. 1999. Petrology of the alkaline core of the Messum igneous complex, Nambibia: Evidence for the progressively decreasing effect of crustal contamination[J]. Journal of Petrology, 40(9): 1377−1397. doi: 10.1093/petroj/40.9.1377
Hong J X, Zhang H Y, Zhai D G, et al. 2021. The geochronology of the Haobugao skarn Zn−Pb deposit (NE China) using garnet LA−ICP−MS U−Pb dating[J]. Ore Geology Reviews, 139: 1−23.
Hou Z Q. 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30−58 (in Chinese with English abstract).
Ishiyama D, Mizuta T, Ishikawa Y, et al. 2001. Geochemical characteristics of igneous rocks and tin−copper mineralization[R]. Project Final Report of Chinese Research Center for Mineral Resources Exploration, 4: 115–138.
Jiang H Y, Zhao Z D, Zhu X Y, et al. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).
Jiang S H, Chen C L, Bagas L, et al. 2017. Two mineralization events in the Baiyinnuoer Zn−Pb deposit in Inner Mongolia, China: Evidence from field observations, S−Pb isotopic compositions and U−Pb zircon ages[J]. Journal of Asian Earth Sciences, 144: 339−367. doi: 10.1016/j.jseaes.2016.12.042
King P L, White A J R, Chappell B W, et al. 1997. Characterization and origin of aluminous A−type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrelogy, 38: 371−391. doi: 10.1093/petroj/38.3.371
Kravchinsky V A, Cogne J P, Harbert W P, et al. 2002. Evolution of the Mongol−Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148: 34−57. doi: 10.1046/j.1365-246x.2002.01557.x
Li J F, Wang K Y, Quan H Y, et al. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb−Zn deposit in the southern Da Xing’an Mountains[J]. Acta Petrologica Sinica, 32(5): 1529−1542 (in Chinese with English abstract).
Li M X. 2020. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in the Mandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 39(2/3): 224−233 (in Chinese with English abstract).
Li Y S, Liu Z F, Shao Y J, et al. 2022. Genesis of the Huanggangliang Fe−Sn polymetallic deposit in the southern Da Hinggan Range, NE China: Constraints from geochronology and cassiterite trace element geochemistry[J]. Ore Geology Reviews, 151: 105226. doi: 10.1016/j.oregeorev.2022.105226
Li Y, Xu W L, Wang F, et al. 2017. Triassic volcanism along the eastern margin of the Xing'an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol–Okhotsk tectonic regime[J]. Gondwana Research, 48: 205−223. doi: 10.1016/j.gr.2017.05.002
Lin Q, Ge W C, Wu F Y, et al. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403−412 (in Chinese with English abstract).
Liu C H, Bagas L, Wang F X. 2016. Isotopic analysis of the super−large Shuangjianzishan Pb−Zn−Ag deposit in Inner Mongolia, China: Constraints on magmatism, metallogenesis, and tectonic setting[J]. Ore Geology Reviews, 75: 252−267. doi: 10.1016/j.oregeorev.2015.12.019
Liu F, Wang X, Hai L F, et al. 2021. Zircon U−Pb ages, Hf isotope and extensional tectonics of monzogranite in the Hansumu area of southern Great Khingan[J]. Geology in China, 48(5): 1609−1622 (in Chinese with English abstract).
Liu J M, Zhang R, Zhang Q Z. 2004. The regional metallogency of Da Hinggan Ling, China[J]. Earth Science Frontiers, 11(1): 269–277 (in Chinese with English abstract).
Liu J L, Ji L, Ni J L, et al. 2022. Dynamics of the Early Cretaceous lithospheric thinning and destruction of the North China craton as the consequence of Paleo−Pacific type active continental margin[J]. Acta Geologica Sinica, 96(10): 3360−3380 (in Chinese with English abstract).
Liu L J, Zhou T F, Fu B, et al. 2021. Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: Geochronology, geochemistry and Sr−Nd−Hf−O isotope constraints[J]. Lithos, 406/407: 106501.
Liu Y F Jiang S H, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag−Zn−Pb−Cu−(Sn−W) deposits in the shallow part of a porphyry Sn−W−Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75(2): 150−173.
Liu R L, Wu G, Li T G, et al. 2018. LA−ICP−MS cassiterite and zircon U−Pb ages of the weilasituo tin−polymetallic deposit in the southern Great Xing’an Range and their geological significance[J]. Earth Science Frontiers, 25(5): 183–201 (in Chinese with English abstract).
Liu W, Pan X F, Xie L W, et al. 2007. Sources of material for the Linxi granitoids, the southern segment of the Da Hinggan Mts.: When and how continental crust grew?[J]. Acta Petrologica Sinica, 26 (3): 667–679 (in Chinese with English abstract).
Liu Y, Jiang S H, Leon B, et al. 2017. Isotopic(C−O−S) geochemistry and Re−Os geochronology of the Haobugao Zn−Fe deposit in Inner Mongolia, NE China[J]. Ore Geology Reviews, 82: 130−147. doi: 10.1016/j.oregeorev.2016.11.024
Liu Z, Lǚ X B, Mei W. 2013. Sulfur−Lead−Oxygen isotope compositions of the Huanggang skarn Fe−Sn deposit, Inner Mongolia: Implications for the sources of ore−forming materials[J]. Journal of Mineralogy and Petrology, 33(3): 30−37 (in Chinese with English abstract).
Lofgren G E, Beard J S, 1991. Dehydration melting and water−saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kb[J]. Journal of Petrology, 32(2): 365−401.
Loiselle M C, Wones D S. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstracts with Programs, 11: 468.
Ludwig K R. 2003. Isoplot 3.0−A geochronological toolkit for Micro−soft Excel[M]. Bekeley Geochronology Center, Special Publication, 4: 1−70.
Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169−188 (in Chinese with English abstract).
Mao Q. 2001. Petrogenesis of granitoids associated with tin−mineralization in Huanggang tin−mineralization belt, Inner Mongolia, China[D]. Doctor Thesis of Institute of Geology and Geophysics, Chinese Academy of Sciences: 1–74 (in Chinese with English abstract).
Mei W, Lǚ X B, Cao X F, et al. 2015. Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing'an Range: Evidence from fluidminclusions and isotope analyses[J]. Ore Geology Reviews, 64: 239−252. doi: 10.1016/j.oregeorev.2014.07.015
Mei W, Lǚ X B, Wang X D, et al. 2020. Alteration, mineralization and genesis of Huanggang skarn iron−tin polymetallic deposit, Southern Great Xing’an Range[J]. Earth Science, 45(12): 4428−4445 (in Chinese with English abstract).
Mushkin A, Navon O, Halicz L, et al. 2003. The petrogenesis of A−type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 44(5): 815−832. doi: 10.1093/petrology/44.5.815
Nasdala L, Hofmeister W, Norberg N, et al. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U−Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 32(3): 247−265. doi: 10.1111/j.1751-908X.2008.00914.x
Niu X D, Shu Q H, Xing K, et al. 2022. Evaluating Sn mineralzation potential at the Haobugao skarn Zn−Pb deposit (NE China) using whole−rock and zircon geochemistry[J]. Journal of Geochemical Exploration, 234: 106938. doi: 10.1016/j.gexplo.2021.106938
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956
Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 50: 63−81.
Ruan B X, Lǚ X B, Liu S T, et al. 2013. Genesis of Bianjiadayuan Pb−Zn−Ag deposit in Inner Mongolia: Constraints from U−Pb dating of zircon and multi−isotope geochemistry[J]. Mineral Deposits, 32(3): 501−514 (in Chinese with English abstract).
Shao J A, Liu F T, Chen H, et al. 2001. Relation ship between Mesozoic magmatism and subduction in Da Hinggan−Yanshan area[J]. Acta Geologica Sinica, 75(1): 56−63 (in Chinese with English abstract).
Shi C Y, Yan M C, Chi Q H. 2007. Abundances of chemical elements of granitoids in different geotectonic units of China and their characteristics[J]. Acta Geologica Sinica, 81(1): 48−59 (in Chinese with English abstract).
Streckeisen A L, Le Maitre R W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks[J]. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136: 169–206.
Su R K, Xue H M, Cao G Y. 2022. Huanggangliang volcanic−extrusive uplift in the southern Da Hinggan Mountains: Discussion on genetic relation between different lithofacies[J]. Acta Petrologica et Mineralogica, 41(4): 727−745 (in Chinese with English abstract).
Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River–Changchun–Yanji plate suture zone—Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J(eds.)[J]. Magmatism in Oceanic Basins. Geological Society Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
Tomurtogoo O, Windley B F, Krnoer A, et al. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol−Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society 162: 125–34.
Wang C M, Zhang S T, Deng J, et al. 2007. The exhalative genesis of the stratabound skarn in the Huanggangliang Sn−Fe polymetallic deposit of Inner Mongolia[J]. Acta Petrologica et Mineralogica, 26(5): 409−417 (in Chinese with English abstract).
Wang C G, Sun F Y, Sun G S, et al. 2016. Geochronology, geochemical and isotopic constraints on petrogenesis of intrusive complex associated with Bianjiadayuan polymetallic deposit on the southern margin of the Greater Khingan, China[J]. Arabian Journal of Geosciences, 9: 334.
Wang D, Zhao G C, Su S G, et al. 2020. Spatial−temporal distribution of late Mesozoic intrusive rocks in south Daxing'anling mountains and the characteristic contrast of rocks in the mid ridge and the east slope[J]. Geoscience, 34(3): 466−482 (in Chinese with English abstract).
Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn−polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021
Wang L J, Wang J B, Wang Y W et al. 2002. REE geochemistry of the Huangguangliang skarn Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 18(4): 575-584 (in Chinese with English abstract).
Wang X, Ren X G, Wang Y, et al. 2018. Zircon U−Pb ages and geochemical characteristics of the quartz monzonite diorite rocks from Hanmiao area in the southern segment of the Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1662−1670 (in Chinese with English abstract).
Wang X L, Liu J J, Zhai D G, et al. 2014a. A study of isotope geochemistry and sources of ore−forming materials of the Bianjiadayuan silver polymetallic deposit in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288−1303 (in Chinese with English abstract).
Wang X L, Liu J J, Zhai D G, et al. 2014b. U−Pb Dating, geochemistry and tectonic implications of Bianjiadayuan quartz porphyry, Inner Mongolia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33 (5): 654–665 (in Chinese with English abstract).
Wang X D, Xu D M, Lǚ X B, et al. 2018. Orgin of the Haobugao skarn Fe−Zn polymetallic deposit, Southern Great Xing’an Range, NE China: Geochronological, geochemical, and Sr−Nd−Pb isotopic constraints[J]. Ore Geology Reviews, 94: 58−72. doi: 10.1016/j.oregeorev.2018.01.022
Wang Y N, Xu W L, Wang F, et al. 2018. New insights on the Early Mesozoic evolution of multiple tectonic regimes in the northeastern North China Craton from the detrital zircon provenance of sedimentary strata[J]. Solid Earth, 9(6): 1375−1397. doi: 10.5194/se-9-1375-2018
Wang Z J, Cao H H, Pei F P, et al. 2015. Geochronology and geochemistry of middle Permian−Middle Triassic intrusive rocks from central−eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo−Asian Ocean[J]. Lithos, 238: 13−25. doi: 10.1016/j.lithos.2015.09.019
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X
Wei W, Chen J P, Huang X K, et al. 2017. Magmatic migmatization of Haliheiba pluton: Petrographic study of dark inclusion, U−Pb chronology and Hf isotope of zircon mineral in central and southern section of the Da Hinggan Mountains area[J]. Mineral Exploration, 8(6): 948−956 (in Chinese with English abstract).
Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202
Wilson M. 1989. Igneous petrogenesis a global tectonic approach[M]. London: Chapman and Hall: 1−466.
Wu F Y, Li X H, Yang J H, et al. 2007. Discussion on the petrogenesis of granites[J]. Acta Petrologica, 23(6): 1217−1238 (in Chinese with English abstract).
Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1–30.
Wu F Y, Sun D Y, Jahn B, et al. 2004. A Jurassic garnet−bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23: 731–44.
Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2): 181−189 (in Chinese with English abstract).
Wu G B. 2014. Research of silver mineralization in central−southern segment of the Great Xing’an Range—A case study of the Shuangjianzishan silver deposit, Inner Mongolia[D]. Doctor Thesis of University of Chinese Academy of Sciences, 1–150 (in Chinese with English abstract).
Wyllie P J. 1977. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Gelogical Society, 134(2): 215−234.
Xu C H, Sun F Y, Fan X Z, et al. 2022. The Early Cretaceous tectonic evolution of the southern Great Xing’an Range, northeastern China: New constraints from A2−type granite and monzodiorite[J]. Canadian Journal of Earth Sciences, 59: 135−155. doi: 10.1139/cjes-2021-0041
Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian orogenic belt[J]. Earth Science, 44(5): 1620−1646 (in Chinese with English abstract).
Xu Z B, Shao Y J, Yang Z A, et al. 2017. LA−ICP−MS analysis of trace elements in sphalerite from the Huanggangliang Fe−Sn deposit, Inner Mongolia, and its implications[J]. Acta Petrologica et Mineralogica, 36(3): 360−370 (in Chinese with English abstract).
Yang Q D, Guo L, Wang T, et al. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two−stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961−1981 (in Chinese with English abstract).
Yang Y J, Yang X P, Jiang B, et al. 2022. Spatio−temporal distribution of Mesozoic volcanic strata in the Great Xing’an Range: Response to the subduction of the Mongol−Okhotsk Ocean and Paleo−Pacific Ocean[J]. Earth Science Frontiers, 29(2): 115−131 (in Chinese with English abstract).
Yao M J, Liu J J, Zhai D G, et al. 2012. Sufur and lead isotopic compositions of the polymetallic deposits in the southern Daxing’anling: implication for metal sources[J]. Journal of Jilin University(Earth Science Edition), 42(2): 362−373 (in Chinese with English abstract).
Yao M J, Cao Y, Liu J J, et al. 2016. Isotope age of Re−Os in molybdenite and genetic implication of Huanggangliang Fe−Sn deposit in Inner Mongolia[J]. Mineral Exploration, 7(3): 399−403 (in Chinese with English abstract).
You S X, Chen K, Zhang Y C, et al. 2022. Geochemical characteristics and geological significance of magnetite in Huanggangliang iron polymetallic deposit, Inner Mongolia[J]. Mineral Exploration, 13(4): 398−409 (in Chinese with English abstract).
Zartman R E, Doe B R. 1981. Plumbotectonics−the mode[J]. Tectonophysics, 75: 135−162. doi: 10.1016/0040-1951(81)90213-4
Zeng Q D, Sun Y, Duan X X, et al. 2013. U−Pb and Re−Os geochronology of the Haolibao porphyry Mo−Cu deposit, NE China: Implications for a Late Permian tectonic setting[J]. Geological Magazine, 150(6): 975−985. doi: 10.1017/S0016756813000186
Zhai D G, Liu J J, Cook N J, et al. 2019. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag−Pb−Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 54: 47−66. doi: 10.1007/s00126-018-0804-6
Zhai D G, Liu J J, Li J M, et al. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Monglolia and its geological significance[J]. Mineral Deposits, 35(5): 1011−1022 (in Chinese with English abstract).
Zhai D G, Liu J J, Yang Y Q, et al. 2012. Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 31(4): 513−523 (in Chinese with English abstract).
Zhai D G, Liu J J, Zhang A L, et al. 2017. U−Pb Re−Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag−Pb−Zn−Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for discrete mineralization events[J]. Economic Geology, 112(8): 2041−2059. doi: 10.5382/econgeo.2017.4540
Zhai D G, Liu J J, Zhang H Y, et al. 2014. S−Pb isotopic geochemistry, U−Pb and Re−Os geochronology of the Huanggangliang Fe−Sn deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 59: 109−122. doi: 10.1016/j.oregeorev.2013.12.005
Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The genesis of the giant Shuangjianzishan epithermal Ag−Pb−Zn deposit, Inner Mongolia, northeastern China[J]. Economic Geology, 115(1): 101−128. doi: 10.5382/econgeo.4695
Zhang J H, Gao S, Ge W C, et al. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction−induced delamination[J]. Chemical Geology, 276: 144–165.
Zhang P C, Peng B, Zhao J Z, et al. 2022. Petrogenesis of the syenogranite in the Xiaowulangou area of southern Great Xing’an Range: Constraints from zircon LA−ICP−MS U−Pb geochronology, geochemistry and Hf isotopes[J]. Earth Science, 47(8): 2889−2901 (in Chinese with English abstract).
Zhang T F, Guo S, Xin H T, et al. 2019. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn−(Li−Rb−Nb−Ta) mineralization in the Weilasituo deposit, Inner Mongolia, southern Great Xing’an Range, China[J]. Earth Science, 44(1): 248−267 (in Chinese with English abstract).
Zhang X B, Bao C J, Wu S S. 2021. Chronology of the Daolundaba Cu−W polymetallic deposit, southern Great Xing’an Range: Evidence from quartz fluid inclusion 40Ar/39Ar age[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 38(1): 83–90 (in Chinese with English abstract).
Zhao H, Li S, Wang T, et al. 2015. Age, petrogenesis and tectonic implications of the Early Cretaceous magmatism in the Huanggangliang area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 34(12): 2203−2218 (in Chinese with English abstract).
Zhao J Q, Zhou Z H, Ouyang H G, et al. 2022. Zircon U−Pb age and geochemistry of quartz syenite porphyry in Shuangjianzishan Ag−Pb−Zn (Sn) deposit, Inner Mongolia, and their geological implications[J]. Mineral Deposits, 41(2): 324−344 (in Chinese with English abstract).
Zhao Q, Xiao R G, Zhang D H, et al. 2020. Petrogenesis and tectonic setting of ore−associated intrusive rocks in the Baiyinnuoer Zn–Pb deposit, southern Great Xing’an Range (NE China): Constraints from zircon U–Pb dating, geochemistry, and Sr−Nd−Pb isotopes[J]. Minerals. 10(1): 1−18.
Zhou T, Sun Z J, Yu H N, et al. 2022. Zircon U−Pb geochronology, Hf isotope and whole−rock geochemical characteristics of Xiaohanshan pluton in Haobugao Pb−Zn deposit, Inner Mongolia[J]. Geoscience, 36(1): 282−294 (in Chinese with English abstract).
Zhou Z H, Gao X, Ouyang H G, et al. 2019. Formation mechanism and intrinsic genetic relationship between tin-tungstenlithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 38(5): 1004−1022 (in Chinese with English abstract).
Zhou Z H, Liu H W, Chang G X, et al. 2011. Mineralogical characteristics of skarns in the Huanggang Sn−Fe deposit of Inner Mongolia and their metallogenic indicating significance[J]. Acta Petrologica et Mineralogica, 30(1): 97−112 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Feng J R, et al. 2010a. Molybdenite Re−Os ages of Huanggang skarn Sn−Fe deposit and their geological significance, Inner Mongolia[J]. Acta Petrologica Sinica, 26(3): 667−679 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Yang Y J, et al. 2010b. Petrogenesis of the Early Cretaceous A−type granite in the Huanggang Sn−Fe deposit, Inner Mongolia: Constraints from zircon U−Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12): 3521−3537 (in Chinese with English abstract).
Zhou Z H, Lǚ L S, Yang Y J, et al. 2010c. LA−ICP−MS zircon U−Pb chronology and Hf isotope composition of the Huanggang granite in the southern Great Hinggan Range and their geological significance[J]. Mineral Deposits, 29(Supplement): 559−560 (in Chinese).
Zhou Z H, Mao J W, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A−type granites from the Huanggang Sn−Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272−286. doi: 10.1016/j.jseaes.2012.01.015
Zhou Z H, Ouyang H G, Wu X L, et al. 2014. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu−W polymetallic deposit in the Inner Mogolia and its geological significance[J]. Acta Petrologica Sinica, 30(1): 79−94 (in Chinese with English abstract).
Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasito Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).
Zindler A, Hart S. 1986. Chemical Geodynamics[J]. Annual Review of Earth Planet Science, 14: 493–571.
Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt, Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306: 33−56. doi: 10.1016/S0040-1951(99)00042-6
蔡剑辉, 阎国翰, 肖成东, 等. 2004. 太行山−大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨[J]. 岩石学报, 20(5): 1225−1242. doi: 10.3969/j.issn.1000-0569.2004.05.018 车亚文, 刘建峰, 赵硕, 等. 2021. 大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据[J]. 地质通报, 40(1): 152−163. 陈公正, 武广, 李铁刚, 等. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U−Pb和绢云母40Ar−39Ar年龄的约束[J]. 岩石学报, 37(3): 865−885. 陈公正, 武广, 李铁刚, 等. 2018. 内蒙古道伦达坝铜钨锡矿床LA−ICP−MS锆石和锡石U−Pb年龄及其地质意义[J]. 矿床地质, 37(2): 225−245. 邓晋福, 赵国春, 苏尚国, 等. 2005. 燕山造山带燕山期构造叠加及其大地构造背景[J]. 大地构造与成矿学, 29(2): 157−165. doi: 10.3969/j.issn.1001-1552.2005.02.001 冯亚洲, 杨进辉, 孙金凤, 等. 2020. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录[J]. 中国科学: 地球科学, 50: 651−662. 顾玉超, 陈仁义, 贾斌, 等. 2017a. 内蒙古双尖子山银多金属矿床花岗斑岩年代学、地球化学特征及构造意义[J]. 地质与勘探, 53(3): 495−507. 顾玉超, 陈仁义, 贾斌, 等. 2017b. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101−117. 郭志军, 周振华, 李贵涛, 等. 2012. 内蒙古敖尔盖铜矿中—酸性侵入岩体SHRIMP锆石U−Pb定年与岩石地球化学特征研究[J]. 中国地质, 39(6): 1487−1500. doi: 10.3969/j.issn.1000-3657.2012.06.003 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30−58. 蒋昊原, 赵志丹, 祝新友, 等. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213 李剑锋, 王可勇, 权鸿雁, 等. 2016. 大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨[J]. 岩石学报, 32(5): 1529−1542. 李猛兴. 2020. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 39(2/3): 224−233. 林强, 葛文春, 吴福元, 等. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403−412. doi: 10.3321/j.issn:1000-0569.2004.03.004 刘芳, 王晰, 海连富, 等. 2021. 大兴安岭南段罕苏木地区二长花岗岩锆石U−Pb年龄、Hf 同位素特征及其伸展构造作用[J]. 中国地质, 48(5): 1609−1622. doi: 10.12029/gc20210521 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘(中国地质大学, 北京), 11 (1): 269–277. 刘俊来, 季雷, 倪金龙, 等. 2022. 早白垩世华北克拉通岩石圈减薄与破坏动力学: 兼论古太平洋型活动大陆边缘[J]. 地质学报, 96(10): 3360−3380. doi: 10.3969/j.issn.0001-5717.2022.10.007 刘瑞麟, 武广, 李铁刚, 等. 2018. 大兴安岭南段维拉斯托锡金属矿床LA−ICP−MS锡石和锆石U−Pb年龄及其地质意义[J]. 地学前缘(中国地质大学, 北京), 25 (5): 183–201. 刘伟, 潘小菲, 谢烈文, 等. 2007. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 23(2): 441−460. doi: 10.3969/j.issn.1000-0569.2007.02.022 刘智, 吕新彪, 梅微. 2013. 内蒙古黄岗矽卡岩型铁锡矿床S−Pb−O同位素组成及对成矿物质来源的指示[J]. 矿物岩石, 33(3): 30−37. doi: 10.3969/j.issn.1001-6872.2013.03.006 毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017 毛骞. 2001. 内蒙古黄岗矿集区与锡矿化有关的花岗岩成因研究[D]. 中国科学院地质与地球物理研究所博士学位论文: 1–74. 梅微, 吕新彪, 王祥东, 等. 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因[J]. 地球科学, 45(12): 4428−4445. 阮班晓, 吕新彪, 刘申态, 等. 2013. 内蒙古边家大院铅锌银矿床成因-来自锆石U-Pb年龄和多元同位素的制约[J]. 矿床地质, 32(3): 501−514. doi: 10.3969/j.issn.0258-7106.2013.03.004 邵济安, 刘福田, 陈辉, 等. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 75(1): 56−63. doi: 10.3321/j.issn:0001-5717.2001.01.006 史长义, 鄢明才, 迟清华. 2007. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 81(1): 48−59. doi: 10.3321/j.issn:0001-5717.2007.01.007 苏荣昆, 薛怀民, 曹光跃. 2022. 大兴安岭南段黄岗梁火山−侵出隆起: 不同岩相之间的成因联系[J]. 岩石矿物学杂志, 41(4): 727−745. doi: 10.3969/j.issn.1000-6524.2022.04.004 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河–长春–延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181. 王长明, 张寿庭, 邓军, 等. 2007. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, 26(5): 409−417. doi: 10.3969/j.issn.1000-6524.2007.05.003 王迪, 赵国春, 苏尚国, 等. 2020. 大兴安岭南段晚中生代侵入岩时空分布及主脊与东坡岩体特征对比[J]. 现代地质, 34(3): 466−482. 王莉娟, 王京彬, 王玉往, 等. 2002. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 18(4): 575−584. doi: 10.3969/j.issn.1000-0569.2002.04.017 王晰, 任锡钢, 汪岩, 等. 2018. 大兴安岭南段罕庙地区石英二长闪长岩锆石U−Pb年龄及地球化学特征[J]. 地质通报, 37(9): 1662−1670. 王喜龙, 刘家军, 翟德高, 等. 2014a. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41(4): 1288−1303. 王喜龙, 刘家军, 翟德高, 等. 2014b. 内蒙古边家大院矿区石英斑岩U−Pb年代学、岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 33(5): 654−665. 魏巍, 陈建平, 黄行凯, 等. 2017. 大兴安岭中南段哈力黑坝岩体岩浆混合作用: 暗色包体岩相学、年代学和锆石Hf同位素启示[J]. 矿产勘查, 8(6): 948−956. doi: 10.3969/j.issn.1674-7801.2017.06.005 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15(2): 181−189. doi: 10.3321/j.issn:1000-0569.1999.02.003 吴冠斌. 2014. 大兴安岭中南段银成矿作用研究——以双尖子山银多金属矿床为例[D]. 中国科学院大学博士学位论文: 1–150. 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646. 徐卓彬, 邵拥军, 杨自安, 等. 2017. 内蒙古黄岗梁铁锡矿床闪锌矿LA−ICP−MS微量元素组成及其指示意义[J]. 岩石矿物学杂志, 36(3): 360−370. doi: 10.3969/j.issn.1000-6524.2017.03.006 杨奇荻, 郭磊, 王涛, 等. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961−1981. 杨雅军, 杨晓平, 江斌, 等. 2022. 大兴安岭中生代火山岩地层时空分布与蒙古–鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 29(2): 115−131. 要梅娟, 刘家军, 翟德高, 等. 2012. 大兴安岭南段多金属成矿带硫-铅同位素组成及其地质意义[J]. 吉林大学学报: 地球科学版, 42(2): 362−373. 要梅娟, 曹烨, 刘家军, 等. 2016. 内蒙古黄岗梁铁锡矿床辉钼矿Re−Os年龄及其成因意义[J]. 矿产勘查, 7(3): 399−403. doi: 10.3969/j.issn.1674-7801.2016.03.003 尤诗祥, 陈可, 张毓策, 等. 2022. 内蒙古黄岗梁铁多金属矿床磁铁矿地球化学特征及其地质意义[J]. 矿产勘查, 13(4): 398−409. 翟德高, 刘家军, 李俊明, 等. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J]. 矿床地质, 35(5): 1011−1022. 翟德高, 刘家军, 杨永强, 等. 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 31(4): 513−523. doi: 10.3969/j.issn.1000-6524.2012.04.004 章培春, 彭勃, 赵金忠, 等. 2022. 大兴安岭南段小乌兰沟正长花岗岩成因: 锆石LA−ICP−MS U−Pb年代学、地球化学及Hf同位素的制约[J]. 地球科学, 47(8): 2889−2901. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208017 张天福, 郭硕, 辛后田, 等. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn−(Li−Rb−Nb−Ta)多金属成矿作用的制约[J]. 地球科学, 44(1): 248−267. 张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar−39Ar年龄的证据[J]. 新疆大学学报(自然科学版) (中英文), 38(1): 83−90. 赵辉, 李舢, 王涛, 等. 2015. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义[J]. 地质通报, 34(12): 2203−2218. doi: 10.3969/j.issn.1671-2552.2015.12.007 赵家齐, 周振华, 欧阳荷根, 等. 2022. 内蒙古双尖子山银铅锌(锡)矿床石英正长斑岩U−Pb年龄、地球化学及其地质意义[J]. 矿床地质, 41(2): 324−344. 周桐, 孙珍军, 于赫楠, 等. 2022. 内蒙古浩布高铅锌矿床小罕山岩体年代学、Hf同位素及地球化学特征[J]. 现代地质, 36(1): 282−294. 周振华, 高旭, 欧阳荷根, 等. 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制——以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 38(5): 1004−1022. 周振华, 刘宏伟, 常帼雄, 等. 2011. 内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义[J]. 岩石矿物学杂志, 30(1): 97−112. doi: 10.3969/j.issn.1000-6524.2011.01.009 周振华, 吕林素, 冯佳睿, 等. 2010a. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报, 26(3): 667−679. 周振华, 吕林素, 杨永军, 等. 2010b. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U−Pb年代学和岩石地球化学制约[J]. 岩石学报, 26(12): 3521−3537. 周振华, 吕林素, 杨永军, 等. 2010c. 大兴安岭南段黄岗花岗岩体LA−ICP−MS锆石U−Pb年代学和Hf同位素组成及其地质意义[J]. 矿床地质, 29(增刊): 559−560. 周振华, 欧阳荷根, 武新丽, 等. 2014. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报, 30(1): 79−94. 祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.3969/j.issn.1000-3657.2016.01.014