湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束

    吴俊, 隗含涛, 董国军, 范鹏, 吴圣刚, 陈孝刚, 孟亚群, 阴芳圆

    吴俊, 隗含涛, 董国军, 范鹏, 吴圣刚, 陈孝刚, 孟亚群, 阴芳圆. 2025: 湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束. 地质通报, 44(2~3): 298-314. DOI: 10.12097/gbc.2023.04.040
    引用本文: 吴俊, 隗含涛, 董国军, 范鹏, 吴圣刚, 陈孝刚, 孟亚群, 阴芳圆. 2025: 湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束. 地质通报, 44(2~3): 298-314. DOI: 10.12097/gbc.2023.04.040
    Wu J, Wei H T, Dong G J, Fan P, Wu S G, Chen X G, Meng Y Q, Yin F Y. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 2025, 44(2/3): 298−314. DOI: 10.12097/gbc.2023.04.040
    Citation: Wu J, Wei H T, Dong G J, Fan P, Wu S G, Chen X G, Meng Y Q, Yin F Y. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 2025, 44(2/3): 298−314. DOI: 10.12097/gbc.2023.04.040

    湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束

    基金项目: 国家自然科学基金项目《脉状金矿床金、钨共同富集机制研究:以江南造山带黄金洞大型矿床为例》(批准号:42272073)、《湘西沃溪大型Au−Sb−W矿床成因:原位微区年代学、同位素和元素分析约束》(批准号:42003039)、湖南省地质调查院项目《江南古陆金成矿带黄金洞矿区深部三维智能预测技术及勘查示范》(编号:HNGSTP202302)
    详细信息
      作者简介:

      吴俊(1987− ),男,高级工程师,矿产勘查专业。E−mail:371208571@qq.com

      通讯作者:

      董国军(1969− ),男,教授级高工,资源勘查专业。E−mail:dgj402@163.com

    • 中图分类号: P618.51

    Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite

    • 摘要:
      研究目的 

      湘东北矿集区黄金洞金矿是江南古陆典型的大型金矿床,探明金资源量约80 t,平均品位5 g/t,矿体主要赋存于新元古代冷家溪群板岩中。通过研究黄金洞金矿中载金硫化物的微量元素组成及其不可见金的赋存状态,揭示巨量金的富集过程。

      研究方法 

      本次研究对黄金洞矿区开展了详细的野外地质考察,对金成矿阶段的主要载金矿物毒砂和黄铁矿进行了系统的显微结构、激光剥蚀等离子质谱仪(LA−ICP−MS)微量元素分析。

      研究结果 

      电子探针显微结构研究结果表明,黄铁矿和毒砂在背散射图像中主要呈均一结构,环带结构不明显。LA−ICP−MS微量元素分析结果显示,黄铁矿中不可见Au含量为3.1×10−6~111.5×10−6,平均为31.9 ×10−6;毒砂中不可见Au含量为0.6×10−6~279.4×10−6,平均为67.2 ×10−6。黄铁矿中的不可见金含量均分布在饱和线下方,暗示这些不可见金主要为晶格金。系统的剥蚀信号图分析发现,少数分析点位中不可见金的信号出现“尖峰”,暗示存在微米尺度的纳米金颗粒。研究收集了江南古陆已发表的燕山期典型大型金矿床中黄铁矿和毒砂微量元素数据,发现Sb、Cu、Se、Te等元素含量在不同元素组合矿床中存在一定差异,表明载金硫化物的微量元素组成可在一定程度上揭示区域成矿差异。

      Abstract:
      Objective 

      The large−scale Huangjindong gold deposit is one representative gold deposit in the Northeastern Hunan ore cluster, Jiangnan terrain, and it has gold resources about 80 tons, and the average grade is about 5 g/t. The orebodies mainly occur in the slates of the Neoproterozoic Lengjiaxi Group.

      Methods 

      In order to reveal the processes of large−scale gold enrichment, the trace element composition of gold−bearing sulfides and the occurrence mechanisms of invisible gold in the Huangjindong gold deposit are researched in this study. Detailed field geological investigation, texture revealed by electron probe microstructure and trace elements determined by laser denudation plasma mass spectrometer (LA−ICP−MS) were carried out in this work. The results show that pyrite and arsenopyrite have homogeneous texture, and the zone texture is lacking. LA−ICP−MS trace element analyses result show that the invisible Au content in pyrite ranges from 3.1×10−6 to 111.5×10−6, with an average of 31.9×10−6. The invisible Au content in arsenopyrite ranges from 0.6×10−6 to 279.4×10−6, with an average of 67.2×10−6. The invisible gold content in pyrite lies below the saturation line, suggesting that the invisible gold is mainly lattice gold. There are a few gold nanoparticles revealed by the peak signals. By comparing the published trace element data of pyrite and arsenopyrite from the Yanshanian large gold deposits from the Jiangnan terrain, we discover that contents of Sb, Cu, Se and Te are of certain differences among these deposits with different elemental assemblage, indicating that, to some extent, trace element composition of gold−bearing sulfide could provide important information on the ore−forming processes differences.

      创新点

      以载金硫化物精细结构和微量元素组成为突破口,为巨量金的富集机制提供理论支撑,为区域成矿系统异同性对比和找矿勘查提供依据。

    • 江南古陆是华南重要的金成矿带,累计探明金资源储量为970 t(毛景文和李红艳,1997aXu et al., 2017a)。成矿带分布众多赋存于新元古界板溪群和冷家溪群板岩中的金矿床(Hu et al., 2017Xu et al., 2017aZhang et al., 2019aLi et al., 2023),其中以湖南段矿床数量最多、规模最大(黄建中等,2020),如湘东北地区的黄金洞和万古大型—超大型金矿床(董国军等,2008)。江南古陆这些金矿床总体呈现出从东向西矿床共生/伴生的金和钨规模不断变大的趋势,如由江西金山金矿床到湘东北金–锑±钨矿床到沃溪金–锑–钨矿床。最新成矿年代学研究表明,成矿带大型—超大型矿床主要形成于燕山期,如万古、黄金洞和沃溪矿床,成矿作用与岩浆作用密切相关(Xu et al., 2017aDeng et al., 2020Li et al., 2023)。开展这些大型—超大型金矿床的系统研究,对于揭示成矿带金成矿规律具有重要意义。

      湘东北矿集区是江南古陆金成矿潜力最大的地区之一(黄建中等,2020),包括黄金洞、万古等大型—超大型金矿床。黄金洞大型金矿床金资源量约80 t,平均品位5 g/t(Zhang et al., 2018a)。对矿床已有研究集中在成矿时代、成矿物质来源和成矿流体方面,结果表明金成矿形成于燕山期,与岩浆作用密切相关(毛景文等,1997bZhang et al., 2018b)。对于金的赋存状态研究,除发育自然金外,电子探针分析结果显示,不可见金(包括晶格金和纳米级)主要赋存于毒砂和黄铁矿中(刘英俊等,1989张文兰等,1997孙思辰等,2018)。黄铁矿、毒砂作为金矿床中的重要载金矿物,形成于不同的地质环境,其元素组成、晶体形态等会存在明显差异。开展系统的载金矿物结构和成分研究,可为揭示成矿流体演化过程,探讨巨量金属的富集沉淀机制提供重要线索(Cook and Chryssoulis, 1990Large et al., 2007Morey et al., 2008Li et al., 2019, 2021a)。不同类型金矿床中的毒砂和黄铁矿颗粒尺度普遍存在环带、多期多世代叠加等现象(Cook et al., 2013Fougerouse et al., 2016Li et al., 2021a),原位分析是精细解译成矿过程的关键(范宏瑞等,2018)。原位微区分析技术,如激光剥蚀等离子质谱仪(LA−ICP−MS)凭借微小的分析束斑直径、低检测限、高分辨率,以及可同时快速分析几十种元素等优势,在矿物学研究中得到广泛应用。黄金洞矿床中载金硫化物的精细结构及其不可见金的含量等,目前仍不清楚。

      因此,本次研究在黄金洞矿床详细的野外地质调查的基础上,对矿体中的载金毒砂和黄铁矿开展LA−ICP−MS和电子探针背散射显微结构分析,探讨载金硫化物中不可见金的赋存状态及其含量,并结合江南古陆其他不同元素组合金矿床中的硫化物微量元素数据,探讨载金硫化物对区域成矿规律的指示意义。

      江南古陆是华南重要的金成矿带,是新元古代扬子板块与华夏板块碰撞结合的产物(Greentree et al., 2006)。江南古陆显生宙以来经历了多期构造-岩浆事件影响,形成了区域广泛分布的多期岩浆岩和构造形迹(Xu et al., 2017b)。

      位于江南古陆中部的湘东北地区出露地层主要为新元古代冷家溪群、二叠系和白垩系(毛景文和李红艳,1997a)。新元古代冷家溪群岩性主要为浅灰色—浅灰绿色厚层块状绢云母板岩和绿泥石板岩,是最主要的赋矿围岩,自下而上分为雷神庙组、黄浒洞组、小木坪组和坪原组。

      湘东北地区构造具有多期活动特征(Zhou et al., 2021a),主要由近东西—北西(西)向韧性剪切带、褶皱和一系列次级断裂、北东向断裂、褶皱组成(文志林等,2016)。北北东向断裂是湘东北地区规模最大的构造,自西向东分别为新宁–灰汤、长沙–平江和醴陵–衡东断裂(图1),这些金矿床主要沿着北北东—北东走向的断裂分布(Xu et al., 2017a)。如北东向的长沙-平江断裂,作为湘东北地区的主体构造之一,控制了早白垩世岩体和万古、黄金洞金矿及多金属矿床的分布。根据断裂带两侧的运动学标志和应力分析,长沙-平江断裂带经历了新元古代、加里东期、印支期、侏罗纪、白垩纪的多期走滑和拉伸(Zhou et al., 2021a)。这些北北东向断裂与汩罗凹陷盆地、幕阜山隆起、长沙-平江断陷盆地、连云山断隆及醴陵凹陷盆地构成盆岭构造格局。

      图  1  湘东北地区主要金属矿床及岩体分布图(据许德如等,2009修改)
      1—第四系;2—白垩纪−古近纪砂岩、砾岩和杂砂岩;3—中泥盆世−中三叠世碳酸盐岩、砂岩和泥岩;4—震旦纪−志留纪砂岩、页岩和板岩;5—新元古代板溪群碎屑沉积岩;6—新元古代冷家溪群浅变质浊积岩;7—新元古代仓溪岩群片岩、片麻岩;8—新元古代连云山岩群和涧溪冲岩群角闪岩相−麻粒岩相变质岩;9—燕山期花岗岩;10—印支期花岗岩;11—加里东期花岗岩;12—断层;13—金矿床(点);14—韧性剪切带;15—铜−铅−锌矿床;16—钴矿床
      Figure  1.  Geological map of the Northeastern Hunan ore cluster, showing main types of mineral deposits and intrusions

      湘东北地区多期次的构造活动伴随着大规模的岩浆活动,成岩时代包括新元古代晋宁期、加里东期、印支期和燕山期(图1)。新元古代花岗岩主要包括葛藤岭、大围山和长三背岩体(Deng et al., 2018),早古生代花岗岩以张坊、板杉铺和宏夏桥岩体为代表(李建华等,2015隗含涛等,2020),中生代花岗岩主要包括三叠纪沩山岩体(丁兴等,2005)和燕山期幕阜山复式岩体(李鹏等,2021)。

      黄金洞金矿床位于湖南省平江县,由杨山庄、金塘、金福和金枚4个矿段组成,这些矿段均位于长平断裂带下盘(图1),其中杨山庄、金塘、金福矿段位于与长平断裂带大致平行的泥湾断裂下盘(图2)。矿区尚未发现岩浆岩,仅在南东方向分布有燕山期连云山岩体,锆石U−Pb年龄限定其成岩时代为140~150 Ma(许德如等,2017a)。矿区主要赋矿围岩为新元古代冷家溪群坪原组,由青灰色—黄绿色粉砂质板岩、绢云母板岩和变质细砂岩组成。

      图  2  黄金洞金矿床平面地质图(据Zhang et al., 2019a修改)
      1—第四系;2—新元古代冷家溪群坪原组;3—倒转向斜;4—倒转背斜;5—金矿脉;6—断层
      Figure  2.  Geological map of the Huangjindong gold deposit

      矿区褶皱和断裂发育。褶皱主要为倒转背向斜,褶皱枢纽走向北西(西)。矿区发育东西—北西西向和北东向2组断裂,倾角通常大于50°。其中近东西—北西西向层间压性断裂和切层断裂在空间内成群平行展布,多数倾向北,倾角40°~75°,少数倾向南,倾角60°~75°。这些近平行分布的东西—北西西向断裂是矿区最重要的赋矿构造,多有含矿石英脉充填。北东向断裂主要为泥湾断裂和许多近平行的次级断裂,与成矿作用的关系目前尚不清楚。

      黄金洞矿床矿区共发现19条金矿脉,沿主断裂构造方向或在主裂面左侧呈斜列展布,由含金石英脉、含金网状石英脉和含金蚀变板岩组成(图3)。这些矿体呈脉状、透镜状、扁豆状,具膨胀、收缩、尖灭等特点。规模最大的1号脉和3号脉的金资源量占整个矿区金资源量的50%以上(周岳强等,2021)。1号脉走向延伸长约3200 m, 矿体厚0.46~2.16 m,倾向北;3号脉走向延伸长约3300 m,矿体厚0.74~3.65 m,倾向南。矿石类型主要为石英脉型、蚀变岩型,少量为构造角砾岩型(图4)。金属矿物主要为自然金、毒砂和黄铁矿、白钨矿和辉锑矿,非金属矿物主要为石英和铁白云石、方解石,可见少量绿泥石、绢云母等。

      图  3  黄金洞金矿床不同类型金矿体地质特征
      a,b—石英脉型矿体,可见早期含白钨矿石英脉被晚期含金石英脉切穿,白钨矿在紫外灯照射下呈天蓝色;c—多条近平行分布的含毒砂-黄铁矿的石英细脉充填在早期石英脉中;d—灰黑色蚀变围岩中的不规则石英细脉,围岩中发育硫化物;e—发生明显褪色的蚀变围岩,围岩中可见石英细脉和浸染状硫化物;f—围岩呈角砾被含金石英网脉充填
      Figure  3.  Photographs showing characteristics of the typical orebodies of the Huangjindong gold deposit
      图  4  黄金洞金矿床不同类型矿石手标本照片
      a—石英脉型矿石,毒砂和黄铁矿主要分布在两侧围岩中;b—石英脉型矿石,毒砂和黄铁矿主要分布在石英脉中,以黄铁矿为主,石英脉中可见围岩残留体;c—石英脉型矿石,毒砂和黄铁矿主要分布在石英脉中,自然金与毒砂和黄铁矿共生;d—蚀变岩型矿石,可见自形黄铁矿分布在围岩中
      Figure  4.  Photographs showing characteristics of the typical ores of the Huangjindong gold deposit

      石英脉两侧围岩及其破碎板岩蚀变发育,是重要的找矿标志,以灰绿色变为浅黄灰色的围岩褪色为主要特征(图3−e)。TESCAN综合矿物分析仪(TIMA)和微区X射线荧光光谱分析(μ-XRF)分析显示,褪色化蚀变带中主要发生碳酸盐化、绢云母化和硅化,碳酸盐化以生成菱铁矿为特征(许可和许德如,2022)。褪色化蚀变带中伴随毒砂化和黄铁矿化蚀变,形成蚀变岩型矿石。

      黄金洞矿床成矿阶段的划分,不同学者提出了不同的划分方案。结合本次研究,黄金洞矿床至少包括早期石英-白钨矿阶段和晚期石英-自然金-硫化物阶段(图3−a,b;Zhang et al., 2020)。早期石英-白钨矿阶段的石英脉厚度变化大,多介于20 cm~2.0 m之间,尤以金塘矿段石英脉体厚度最大。石英脉中发育条带状和零星浸染状分布的大颗粒白钨矿(图3−a),白钨矿或分布在石英脉与围岩接触部位,或分布在石英脉体中间,无明显的规律性。石英-自然金-硫化物阶段主要以发育自然金和载金硫化物(毒砂和黄铁矿)为特征。毒砂和黄铁矿分布在石英脉及其两侧围岩中(图4−a,b,d)。自然金主要分布在华家湾3号脉体中,呈细粒状、树枝状、线状分布,粒径3~5 mm(图4−c);在−60~−310 m中段石英脉走向和倾向转折变化部位最常见(高磊等,2017)。

      黄金洞矿床中主要发育2种类型矿石:石英脉型矿石和蚀变岩型矿石,前者在金塘、金福和金枚3个矿段最常见,后者主要分布在杨山庄矿段。在同一个矿段也往往出现2种类型矿石空间共存现象,其蚀变岩型矿石主要分布在构造破碎带,以褪色化蚀变破碎带中最常见(许可和许德如,2022)。石英脉型矿石以石英脉中发育自然金、毒砂和黄铁矿3种主要金属矿物和少量绿泥石、绢云母、方解石、铁白云石等脉石矿物为特征,矿石构造主要为块状构造。蚀变岩型矿石主要以分布在碳酸盐化、绢云母化和硅化蚀变围岩中的浸染状载金硫化物为特征,矿石构造主要为浸染状构造。系统的野外、手标本和显微观察结果表明,不同类型矿石中的矿物组合及结构等特征存在一定差异。石英脉型矿石中的自然金分布在石英脉中或分布在毒砂和黄铁矿的颗粒间隙(图5−a,b)。石英脉中与自然金共生的毒砂和黄铁矿多呈细脉状或不规则团块状分布在石英脉及其两侧,呈细粒集合体的形式产出,可见少量黄铜矿、方铅矿、硫盐矿物等(图5−c~g)。蚀变岩型矿石中的毒砂和黄铁矿颗粒粒度变化较大,或呈他形细粒集合体形式(图5−h),或呈自形粗粒分布在蚀变围岩中(图5−i)。

      图  5  黄金洞金矿床不同类型金矿石中自然金、毒砂和黄铁矿显微结构特征(图h为单偏光,其他为反射光)
      a—石英脉型矿石,石英脉中分布颗粒相对较大的自然金,自然金与毒砂和黄铁矿共生;b—石英脉型矿石,小颗粒自然金分布在黄铁矿颗粒间隙;c—石英脉型矿石,可见少量的黄铜矿和方铅矿;d, e—石英脉型矿石,半自形—他形毒砂和黄铁矿共生;f—石英脉型矿石,石英脉两侧的蚀变围岩中的呈脉状分布的半自形−他形的毒砂和黄铁矿共生;g—石英脉型矿石,石英脉中分布的细粒毒砂集合体;h—蚀变岩型矿石,可见半自形-他形毒砂和黄铁矿分布在围岩中;i—蚀变岩型矿石,自形毒砂和黄铁矿分布在蚀变围岩中
      Figure  5.  Photographs showing the texture of native gold, arsenopyrite, and pyrite from different types of ores of the Huangjindong gold deposit

      本次对黄金洞矿床华家湾、金塘和杨山庄矿段不同标高(−430~+280 m)矿体进行了系统的样品采集和测试分析,代表性的脉状和浸染状矿石特征如表1所示。

      表  1  黄金洞金矿床测试样品特征
      Table  1.  Characteristics of the analyzed samples from the Huangjindong golddeposit
      样品编号采样位置矿段样品特征
      HJD-4−160 m华家湾宽10~30 cm的石英脉,脉体中可见多条宽1~2 mm的硫化物细脉分布在石英中,围岩未发生明显蚀变
      HJD-5−160 m华家湾宽5~15 cm的石英脉,可见一定量的毒砂、黄铁矿和铁白云石,围岩发育毒砂-黄铁矿化蚀变
      HJD-12−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
      HJD-13−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
      HJD-43+280 m杨山庄宽约1 m的石英脉,脉体中可见围岩角砾被石英-黄铁矿胶结
      HJD-46−165 m金塘宽约4 m的破碎带,含硫化物石英网脉充填在围岩中
      HJD-56−40 m金塘宽3~5 cm的石英脉,脉体中发育围岩角砾,取围岩中的毒砂-黄铁矿
      HJD-58−165 m金塘宽1~5 cm的石英脉,围岩中发育毒砂-黄铁矿
      HJD-64−20 m华家湾宽5~15 cm的石英-硫化物脉,围岩未发生蚀变
      HJD-69−30 m华家湾宽15 cm的石英脉,脉体中含硫化物细脉
      下载: 导出CSV 
      | 显示表格

      电子探针测试分析在中国地质科学院矿产资源研究所电子探针实验室完成。实验仪器型号为JXA-8230,实验条件为加速电压15 kV,电流20 nA。

      黄铁矿LA−ICP−MS微区原位微量元素含量测试分析在广州市拓岩检测技术有限公司完成。实验室采用New Wave Research 193nm ArF 准分子激光剥蚀系统,与Thermo Scientific iCap-RQ 四极杆型电感耦合等离子体质谱仪(ICP−MS)联用。激光束斑直径为30 µm,频率为6 Hz,能量密度为3.5 J/cm2。微区原位微量元素含量测试和处理过程中采用玻璃标准物质NIST SRM610和MASS-1进行多外标无内标校正(Liu et al., 2008),采用比例标准物质SRM612和BCR-2Ga作为监控样品。每个时间分辨分析数据包括约40 s空白信号和45 s样品信号,数据的离线处理采用Iolite软件完成。

      毒砂LA−ICP−MS微区原位微量元素测试分析在南京聚谱检测科技有限公司完成。分析仪器为New Wave Research 193nm ArF 准分子激光剥蚀系统,同时连接Agilent HP-Agilent 7700x ICP−MS接收系统。分析束斑直径40 μm,激光能量6.0 J/cm2,频率5 Hz;分析时间85 s,其中剥蚀前空白时间15 s。测试分析过程中采用标样-样品-标样分析模式,每分析10个样品点,测试1个美国硫化物标样MASS-1和1个玄武质熔融玻璃GSE-1G。原始测试数据经ICPMS-Data Cal软件离线处理,采用“无内标-基体归一法”对元素含量进行定量计算(Liu et al., 2008)。

      电子探针背散射显微结构分析显示,石英脉中的黄铁矿颗粒多集中在50~200 μm之间,集合体由他形—半自形细颗粒组成,环带结构不明显(图6−a)。蚀变围岩中的黄铁矿呈自形,颗粒较大,多集中在300~1000 μm之间,环带结构明显(图6−b)。石英脉和蚀变围岩中的毒砂总体均呈均一结构,单颗粒多为自形—半自形,粒径主要介于100~500 μm之间(图6−c~e),细粒集合体中毒砂单颗粒多小于50 μm(图6−f)。

      图  6  黄金洞金矿床黄铁矿和毒砂电子探针背散射显微结构照片(图中数字为不可见金含量)
      a—半自形-他形黄铁矿集合体;b—自形黄铁矿颗粒,发育环带结构;c, d—自形毒砂颗粒;e—半自形毒砂颗粒集合体;f—他形细粒毒砂集合体
      Figure  6.  Photographs showing the electron probe backscatter microscopic texture of pyrite and arsenopyrite of the Huangjindong gold deposit

      黄铁矿和毒砂LA−ICP−MS微量元素分析结果见表2表3。结果显示,不同矿段、不同类型矿石中的毒砂和黄铁矿微量元素组成无明显差异(图7图8)。黄铁矿中不可见Au含量为3.1×10−6~111.5×10−6,平均为31.9×10−6;As含量为26608×10−6~83897×10−6,平均为47531×10−6。除Au和As外,还含有一定量的Sb,介于0.8×10−6~557.6×10−6之间,平均为46.2×10−6。W含量差异较大,多数低于5.0×10−6,仅少量颗粒高达237.6×10−6。Co、Ni和Pb平均含量分别为81.9×10−6、244.5×10−6和190.8×10−6

      表  2  黄金洞矿床黄铁矿LA−ICP−MS微量元素组成
      Table  2.  LA−ICP−MS trace element composition of pyrite from the Huangjindong gold deposit 10−6
      样品编号AuAsSbWCoNiCuTiVPbBiSeTe
      HJD-4-1@121.7427142.40.393.5521.38.228.10.26.70.2bdlbdl
      HJD-4-1@23.1310734.632.944.6202.65.79345.825.612.60.2bdlbdl
      HJD-4-1@33.8266084.50.562.5221.811.024.52.467.20.2bdlbdl
      HJD-4-1@415.2701125.30.433.7204.144.750.91.614.00.5bdlbdl
      HJD-4-1@511.1611310.81.03.719.710.174.20.32.20.1bdlbdl
      HJD-12@141.85458613.91.043.095.913.977.10.536.30.6bdlbdl
      HJD-12@237.24830325.72.098.8332.516.3163.80.865.71.1bdlbdl
      HJD-12@320.1483276.00.34.820.012.224.30.217.20.2bdlbdl
      HJD-12@428.94473947.20.4110.8366.133.213.80.2127.61.8bdlbdl
      HJD-12@529.84897015.01.6102.8225.614.0117.30.955.30.5bdlbdl
      HJD-13@136.58389725.86.6101.5271.319.64.4bdl160.80.2bdlbdl
      HJD-13@279.3461817.90.121.259.636.318.7bdl24.50.2bdlbdl
      HJD-13@335.4452641.8bdl43.7108.716.36.3bdl3.60.0bdlbdl
      HJD-13@489.3642043.0bdl21.9106.458.12.6bdl6.30.1bdlbdl
      HJD-13@543.04725243.5bdl9.729.827.15.0bdl84.80.9bdlbdl
      HJD-46@113.63153754.573.69.911.663.92799.616.1404.410.4bdlbdl
      HJD-46@225.129978110.10.6103.4313.3234.214.30.21132.413.4bdlbdl
      HJD-46@323.42808899.310.5182.1377.0214.6460.22.1672.910.4bdlbdl
      HJD-46@47.2353378.50.2bdlbdl11.26.0bdl59.81.3bdlbdl
      HJD-46@56.53124821.15.70.52.813.2207.20.9155.02.8bdlbdl
      HJD-56@187.45754912.63.83.524.852.4603.05.999.70.9bdlbdl
      HJD-56@2111.5561139.01.43.713.583.463.60.727.90.6bdlbdl
      HJD-56@37.3443834.60.911.849.13.775.10.316.10.5bdlbdl
      HJD-56@410.95902411.64.0663.22395.49.5516.82.5286.03.2bdlbdl
      HJD-56@510.14403314.58.0146.8320.715.2608.32.5181.82.722.1bdl
      HJD-56@626.47094213.90.416.689.118.299.20.3381.91.0bdlbdl
      HJD-56@710.1573534.51.697.984.26.3169.30.729.90.5bdlbdl
      HJD-56@828.3482577.40.6224.1245.59.474.6bdl27.20.6bdlbdl
      HJD-69-2@118.13686437.858.616.944.632.01806.57.7337.01.6bdlbdl
      HJD-69-2@356.746211557.6237.6107.6311.9205.94423.5107.7821.83.7bdlbdl
      HJD-69-2@450.733198257.3159.473.5267.2149.93895.838.4594.83.6bdlbdl
        注:bdl表示黄铁矿中的微量元素低于检出限
      下载: 导出CSV 
      | 显示表格
      表  3  黄金洞矿床毒砂LA−ICP−MS微量元素组成
      Table  3.  LA−ICP−MS trace element composition of arsenpyrite from the Huangjindong deposit 10−6
      样品编号AuSbWCoNiCuZnSeTePbTiBi
      HJD-5-1-12.4574.32.816.548.84.75741.83.00.09.4876.65.2
      HJD-5-1-21.4383.10.00.60.80.30.10.40.20.85.21.8
      HJD-5-1-34.3490.50.853.0130.60.50.10.20.02.6193.23.0
      HJD-5-1-40.6278.90.21.24.31.41.00.00.13.325.51.2
      HJD-5-1-5128.857.30.02.97.84.40.60.00.01.51.60.3
      HJD-5-1-683.157.90.010.437.45.712.60.00.25.8308.51.1
      HJD-64-3-11.4493.50.33.411.71.61.12.00.67.87.72.2
      HJD-64-3-23.0767.60.837.0129.54.90.36.10.518.263.33.1
      HJD-64-3-341.9105.10.750.4249.511.90.17.70.033.3260.31.6
      HJD-64-3-441.7121.50.30.74.23.91.30.00.04.88.90.6
      HJD-64-3-546.6110.20.055.859.34.30.20.00.57.15.91.2
      HJD-64-3-699.278.20.43.49.25.00.30.50.06.060.31.4
      HJD-69-118.8514.80.00.30.20.90.24.511.04.20.33.0
      HJD-69-2127.4243.90.1141.7552.64.90.27.734.34.80.00.9
      HJD-69-3140.5217.20.1110.6544.56.40.52.516.22.41.21.1
      HJD-69-418.61024.50.07.36.71.21.32.310.10.90.09.7
      HJD-69-5233.6208.50.273.6302.913.22.64.019.41155.10.012.6
      HJD-69-6279.4197.30.0835.82758.612.712.86.727.518.80.02.2
      HJD-43-1145.2117.80.037.5208.610.70.215.410.618.10.03.1
      HJD-43-2148.1188.70.035.1228.310.40.512.319.127.20.65.2
      HJD-43-3135.9144.50.052.1260.45.00.09.61.60.60.70.9
      HJD-43-41.7732.00.142.9128.91.20.67.81.05.40.03.0
      HJD-43-5234.965.50.327.6171.16.90.24.11.07.70.50.3
      HJD-43-628.5302.90.310.241.12.30.43.60.498.50.03.3
      HJD-46-160.188.80.70.12.02.00.61.61.931.56.23.3
      HJD-46-219.9333.22.43.521.63.22.01.51.08.2143.46.8
      HJD-46-332.192.80.00.00.01.10.63.42.72.67.10.8
      HJD-46-45.2236.41.40.20.20.90.63.91.313.651.84.5
      HJD-46-537.7102.613.80.20.72.710.25.42.816.6597.95.1
      HJD-46-629.4141.81.10.40.75.51.25.52.428.140.310.8
      HJD-58-119.2783.10.72.97.33.65.24.018.31272.4109.226.1
      HJD-58-262.270.10.00.91.63.035.61.60.07.111.43.1
      HJD-58-310.3932.10.00.12.43.38.63.50.89.511.818.6
      HJD-58-47.41032.60.70.72.91.70.62.34.34.422.312.6
      HJD-58-5124.8102.20.43.810.27.00.210.41.13.830.11.8
      HJD-58-642.791.10.40.61.74.40.02.20.211.065.43.8
      下载: 导出CSV 
      | 显示表格
      图  7  黄金洞金矿床黄铁矿微量元素特征图解
      Figure  7.  Diagrams showing the trace elements of pyrite in the Huangjindong gold deposit
      图  8  黄金洞金矿床毒砂微量元素特征图解
      Figure  8.  Diagrams showing the trace elements of arsenopyrite in the Huangjindong gold deposit

      毒砂中不可见Au含量为0.6×10−6~279.4×10−6,平均为67.2×10−6;Sb含量为57.3×10−6~1032.6 ×10−6,平均为319.0×10−6。Co、Ni和Pb平均含量分别为41.5×10−6、165.2×10−6和79.3×10−6。除Au和Sb外,还含有一定量的Cu,介于0.3×10−6~13.2×10−6之间,平均为4.5×10−6。Se和Te含量差异较大,平均含量分别为4.1×10−6和5.3×10−6

      硫化物中不可见金主要以晶格金、纳米金的形式存在(Cook and Chryssoulis, 1990Reich et al., 2005Wu et al., 2019),如最新纳米尺度研究发现,卡林型金矿床黄铁矿中的部分不可见金为纳米金(Liang et al., 2021)。Reich et al.(2005)基于全球不同类型热液金矿床中的黄铁矿Au和As含量,绘制了不可见金的饱和曲线。黄金洞矿床中的毒砂和黄铁矿中的不可见金含量均分布在饱和线下方(图7−a),暗示这些不可见金主要为晶格金(Reich et al., 2005)。通过系统的剥蚀信号图分析,发现黄金洞矿床黄铁矿中少数分析点位存在微米尺度的纳米金颗粒(图9)。除Au外,黄铁矿和毒砂中部分测试点Pb、Cu等元素也具有异常高峰,表明内部存在其他矿物的包体,如方铅矿、黄铜矿等。

      图  9  黄金洞金矿床黄铁矿和毒砂LA−ICP−MS测试元素信号随时间变化图解
      Figure  9.  Representative time-resolved LA−ICP−MS depth profiles for the pyrite and arsenopyrite in the HuangJindong gold deposit

      大量研究显示,As进入黄铁矿置换S可降低黄铁矿晶格的对称性,使黄铁矿形成晶格缺陷,利于Au进入黄铁矿晶格(Fleet and Mumin, 1997Deditius et al., 2014)。黄铁矿中的Au和As表现出很好的正相关变化(图7−a),表明As对Au的富集在矿床尺度具有重要作用。需要指出的是,黄铁矿颗粒尺度的Au和As既可以表现出正相关变化,也可以表现出负相关变化。如在江南古陆湘中矿集区的古台山和玉横塘金矿床中,LA−ICP−MS元素映射分析均发现很多黄铁矿中的Au和As解耦现象,可能与黄铁矿中的不可见金以纳米级Au颗粒(Au0)、结晶过程中不平衡吸收Au和As、其他元素(Bi和Sb)促进Au进入黄铁矿,以及多期流体叠加作用有关(Li et al., 20192021a)。此外,黄金洞矿床中不可见金在毒砂中的含量高于黄铁矿1~2个数量级,同一个样品中,毒砂中的不可见金含量总体高于共生黄铁矿,如HJD-69样品中毒砂中不可见金含量高达279.4×10−6,而黄铁矿仅56.7×10−6。这与全球多数金矿中毒砂比共生黄铁矿优先富集不可见金的规律一致(Cook and Chryssoulis, 1990Li et al., 20192021a)。因此,黄铁矿结晶过程中局部存在纳米级金颗粒、毒砂沉淀导致黄铁矿中Au的不平衡吸收,是导致同一样品不同颗粒中Au含量变化很大的原因。

      此外,湘东北地区经历了多期次的构造岩浆活动,这些复杂地质过程也会导致黄铁矿和毒砂中的不可见金进一步活化迁移。Fougerouse et al.(2021)通过对黄金洞矿床中的黄铁矿开展电子背散射衍射(EBSD)和原子探针分析,发现不可见金主要呈纳米集合体的形式分布在晶体位错位置,表明成矿过程晚期或者成矿后构造作用导致不可见金的活化迁移,是矿床中明金形成的重要原因之一。

      金在热液流体中主要以络合物的形式运移,在中低温热液中,Au主要以Au(HS)2、Au(HS)0、HAu(HS)20、Au2(HS)2S2−的形式运移(Seward, 1973Pokrovski et al., 2013)。流体不混溶作用、围岩硫化、碳酸盐化作用等是金沉淀的主要机制(李伟等,2016李亚东等,2024)。研究表明,石英脉型和蚀变岩型矿化具有不同的成矿沉淀机制,前者呈流体沿断裂充填,后者以成矿流体沿岩石空隙交代为主,二者的矿物组成可能具有明显差异(Li et al., 2021b),但黄金洞矿床载金矿物的微量元素组成差异不明显,这与野外观察到的地质现象吻合,即石英脉或石英网脉多充填在围岩中,可见很多围岩呈角砾被石英脉体胶结,暗示成矿过程中的水-岩比例相对较高,成矿流体中的元素组成受围岩成分的影响相对较小,进而从流体中沉淀的硫化物在结构和微量元素组成方面无明显差异。毒砂和绿泥石成分限定了黄金洞矿床中石英脉型和蚀变岩型成矿流体温度、氧逸度差异不大(孙思辰等,2018)。流体包裹体数据均表明,成矿流体温度主要集中在320~240℃之间,金成矿阶段以水溶液两相包裹体为主,流体不混溶现象不明显,暗示流体沸腾不是导致金沉淀的主要因素(刘育等,2017Deng et al., 2020)。以褪色化蚀变围岩中普遍发育的毒砂和黄铁矿代表的围岩硫化作用,以及菱铁矿代表的碳酸盐化作用是金沉淀的主要控制因素(孙思辰等,2018许可和许德如,2022孟亚群等,2024)。

      图7−b可知,Au和Sb呈现出一定的正相关变化,暗示Sb利于Au的吸收。在黄金洞矿床北侧的曲溪矿段发育辉锑矿,野外和载金硫化物微量元素组成均表明黄金洞矿床形成过程中Sb促进了Au的迁移富集,如成矿流体中Sb的络合物(如Sb(OH)3)的失稳沉淀会改变流体的pH,诱发Au的络合物(如Au(HS)2)的沉淀,但黄金洞矿床成矿流体中的Sb含量较低可能是辉锑矿未大量富集的原因之一。上述现象与成矿过程和万古矿床及江南古陆湘中矿集区大量发育的Au−Sb−W元素组合矿床相似,均表明Sb的富集有利于Au的沉淀富集。

      江南古陆发育众多分布在新元古代板岩中的脉状金矿床,是华南最重要的金成矿带。江南古陆湖南段提供了湖南90%以上的金矿资源量,被誉为湖南的“金腰带”(黄建中等,2020),包括湘中矿集区和湘东北2个主要矿集区。湘中矿集区分布有170余个Au−Sb−W元素组合矿床,以燕山期沃溪金-锑-钨矿床和印支期古台山、龙山金-锑矿床为代表(李伟等,2016Li et al., 2018, 2021a, 2023张志远等,2018bZhang et al., 2019b, 2022胡阿香等,2023)。湘东北矿集区以燕山期黄金洞和万古大型—超大型金矿床、印支期梨树坡等金矿床为代表(许德如等,2017a周岳强等,2021)。这些矿床的成矿温度相差不大,流体包裹体均一温度均主要集中于200~300℃之间。然而,这些金矿床中伴生或共生的锑和钨的规模存在明显差异,如在黄金洞矿床中的辉锑矿明显小于万古矿床,沃溪矿床中锑和钨分别达到大型和中型规模(Li et al., 2023),表明成矿流体性质存在明显差异。因此,探讨不同矿集区不同元素组合矿床的成矿差异及其成矿规律,对于指导区域找矿勘查具有指示意义。

      本次收集了燕山期大型沃溪金-锑-钨、黄金洞金±锑±钨、万古金-锑±钨矿床中黄铁矿和毒砂的LA−ICP−MS数据(图10),发现沃溪矿床相比黄金洞和万古矿床,其黄铁矿具有高的Sb和Cu含量(图10−a,b,e),如Sb平均含量分别为412.6×10−6、46.2×10−6、43.5×10−6万泰安等, 2022Dai et al., 2023)。3个矿床中的黄铁矿具有相似的Co、Ni含量,暗示均为热液成因(图10−c)。黄金洞和万古矿床中的黄铁矿Au含量高于沃溪矿床(图10−d),这可能与黄铁矿普遍发育环带和溶解-再沉淀结构,导致不可见金的活化迁移、黄铁矿的颗粒间隙普遍发育细颗粒明金的过程密切相关。万古和黄金洞矿床中的毒砂Se和Te含量存在明显差异(图10−f),而硫化物中Se和Te是指示成矿系统温度和氧逸度的重要指标,表明万古和黄金洞矿床的成矿物理化学条件存在一定差异。上述硫化物微量元素数据也得到了野外和矿物组合差异的支持,即万古矿床中辉锑矿的规模及其围岩蚀变的强度和范围,均明显大于黄金洞矿床。因此,载金硫化物的微量元素组成在一定程度上可以揭示成矿差异性。

      图  10  江南古陆黄金洞、万古、沃溪矿床黄铁矿和毒砂微量元素组成对比(万古和沃溪矿床数据分别据万泰安等,2022和Dai et al., 2023
      Figure  10.  Comparation of trace elements of pyrite and arsenopyrite in the Huangjindong, Wangu and Woxi deposits, Jiangnan terrain

      (1)湘东北矿集区黄金洞矿床不可见金主要赋存在黄铁矿和毒砂中,二者不可见金含量分别高达111.5×10−6和279.4×10−6,毒砂相对于黄铁矿优先富集不可见金。石英脉型和蚀变岩型矿石中的毒砂和黄铁矿的结构和元素组成无明显差异。

      (2)江南古陆燕山期大型—超大型金矿床中,伴生或共生的锑和钨规模差异所代表的成矿流体性质差异,可在一定程度上被载金毒砂和黄铁矿记录。开展矿石矿物系统对比分析研究,对于揭示区域成矿规律具有启示意义。

      致谢:野外工作期间得到河北工程大学李长平博士的支持与帮助;文章定稿过程中,湖南省地质灾害调查监测所周岳强博士给予宝贵建议,在此一并致谢。

    • 图  1   湘东北地区主要金属矿床及岩体分布图(据许德如等,2009修改)

      1—第四系;2—白垩纪−古近纪砂岩、砾岩和杂砂岩;3—中泥盆世−中三叠世碳酸盐岩、砂岩和泥岩;4—震旦纪−志留纪砂岩、页岩和板岩;5—新元古代板溪群碎屑沉积岩;6—新元古代冷家溪群浅变质浊积岩;7—新元古代仓溪岩群片岩、片麻岩;8—新元古代连云山岩群和涧溪冲岩群角闪岩相−麻粒岩相变质岩;9—燕山期花岗岩;10—印支期花岗岩;11—加里东期花岗岩;12—断层;13—金矿床(点);14—韧性剪切带;15—铜−铅−锌矿床;16—钴矿床

      Figure  1.   Geological map of the Northeastern Hunan ore cluster, showing main types of mineral deposits and intrusions

      图  2   黄金洞金矿床平面地质图(据Zhang et al., 2019a修改)

      1—第四系;2—新元古代冷家溪群坪原组;3—倒转向斜;4—倒转背斜;5—金矿脉;6—断层

      Figure  2.   Geological map of the Huangjindong gold deposit

      图  3   黄金洞金矿床不同类型金矿体地质特征

      a,b—石英脉型矿体,可见早期含白钨矿石英脉被晚期含金石英脉切穿,白钨矿在紫外灯照射下呈天蓝色;c—多条近平行分布的含毒砂-黄铁矿的石英细脉充填在早期石英脉中;d—灰黑色蚀变围岩中的不规则石英细脉,围岩中发育硫化物;e—发生明显褪色的蚀变围岩,围岩中可见石英细脉和浸染状硫化物;f—围岩呈角砾被含金石英网脉充填

      Figure  3.   Photographs showing characteristics of the typical orebodies of the Huangjindong gold deposit

      图  4   黄金洞金矿床不同类型矿石手标本照片

      a—石英脉型矿石,毒砂和黄铁矿主要分布在两侧围岩中;b—石英脉型矿石,毒砂和黄铁矿主要分布在石英脉中,以黄铁矿为主,石英脉中可见围岩残留体;c—石英脉型矿石,毒砂和黄铁矿主要分布在石英脉中,自然金与毒砂和黄铁矿共生;d—蚀变岩型矿石,可见自形黄铁矿分布在围岩中

      Figure  4.   Photographs showing characteristics of the typical ores of the Huangjindong gold deposit

      图  5   黄金洞金矿床不同类型金矿石中自然金、毒砂和黄铁矿显微结构特征(图h为单偏光,其他为反射光)

      a—石英脉型矿石,石英脉中分布颗粒相对较大的自然金,自然金与毒砂和黄铁矿共生;b—石英脉型矿石,小颗粒自然金分布在黄铁矿颗粒间隙;c—石英脉型矿石,可见少量的黄铜矿和方铅矿;d, e—石英脉型矿石,半自形—他形毒砂和黄铁矿共生;f—石英脉型矿石,石英脉两侧的蚀变围岩中的呈脉状分布的半自形−他形的毒砂和黄铁矿共生;g—石英脉型矿石,石英脉中分布的细粒毒砂集合体;h—蚀变岩型矿石,可见半自形-他形毒砂和黄铁矿分布在围岩中;i—蚀变岩型矿石,自形毒砂和黄铁矿分布在蚀变围岩中

      Figure  5.   Photographs showing the texture of native gold, arsenopyrite, and pyrite from different types of ores of the Huangjindong gold deposit

      图  6   黄金洞金矿床黄铁矿和毒砂电子探针背散射显微结构照片(图中数字为不可见金含量)

      a—半自形-他形黄铁矿集合体;b—自形黄铁矿颗粒,发育环带结构;c, d—自形毒砂颗粒;e—半自形毒砂颗粒集合体;f—他形细粒毒砂集合体

      Figure  6.   Photographs showing the electron probe backscatter microscopic texture of pyrite and arsenopyrite of the Huangjindong gold deposit

      图  7   黄金洞金矿床黄铁矿微量元素特征图解

      Figure  7.   Diagrams showing the trace elements of pyrite in the Huangjindong gold deposit

      图  8   黄金洞金矿床毒砂微量元素特征图解

      Figure  8.   Diagrams showing the trace elements of arsenopyrite in the Huangjindong gold deposit

      图  9   黄金洞金矿床黄铁矿和毒砂LA−ICP−MS测试元素信号随时间变化图解

      Figure  9.   Representative time-resolved LA−ICP−MS depth profiles for the pyrite and arsenopyrite in the HuangJindong gold deposit

      图  10   江南古陆黄金洞、万古、沃溪矿床黄铁矿和毒砂微量元素组成对比(万古和沃溪矿床数据分别据万泰安等,2022和Dai et al., 2023

      Figure  10.   Comparation of trace elements of pyrite and arsenopyrite in the Huangjindong, Wangu and Woxi deposits, Jiangnan terrain

      表  1   黄金洞金矿床测试样品特征

      Table  1   Characteristics of the analyzed samples from the Huangjindong golddeposit

      样品编号采样位置矿段样品特征
      HJD-4−160 m华家湾宽10~30 cm的石英脉,脉体中可见多条宽1~2 mm的硫化物细脉分布在石英中,围岩未发生明显蚀变
      HJD-5−160 m华家湾宽5~15 cm的石英脉,可见一定量的毒砂、黄铁矿和铁白云石,围岩发育毒砂-黄铁矿化蚀变
      HJD-12−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
      HJD-13−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
      HJD-43+280 m杨山庄宽约1 m的石英脉,脉体中可见围岩角砾被石英-黄铁矿胶结
      HJD-46−165 m金塘宽约4 m的破碎带,含硫化物石英网脉充填在围岩中
      HJD-56−40 m金塘宽3~5 cm的石英脉,脉体中发育围岩角砾,取围岩中的毒砂-黄铁矿
      HJD-58−165 m金塘宽1~5 cm的石英脉,围岩中发育毒砂-黄铁矿
      HJD-64−20 m华家湾宽5~15 cm的石英-硫化物脉,围岩未发生蚀变
      HJD-69−30 m华家湾宽15 cm的石英脉,脉体中含硫化物细脉
      下载: 导出CSV

      表  2   黄金洞矿床黄铁矿LA−ICP−MS微量元素组成

      Table  2   LA−ICP−MS trace element composition of pyrite from the Huangjindong gold deposit 10−6

      样品编号AuAsSbWCoNiCuTiVPbBiSeTe
      HJD-4-1@121.7427142.40.393.5521.38.228.10.26.70.2bdlbdl
      HJD-4-1@23.1310734.632.944.6202.65.79345.825.612.60.2bdlbdl
      HJD-4-1@33.8266084.50.562.5221.811.024.52.467.20.2bdlbdl
      HJD-4-1@415.2701125.30.433.7204.144.750.91.614.00.5bdlbdl
      HJD-4-1@511.1611310.81.03.719.710.174.20.32.20.1bdlbdl
      HJD-12@141.85458613.91.043.095.913.977.10.536.30.6bdlbdl
      HJD-12@237.24830325.72.098.8332.516.3163.80.865.71.1bdlbdl
      HJD-12@320.1483276.00.34.820.012.224.30.217.20.2bdlbdl
      HJD-12@428.94473947.20.4110.8366.133.213.80.2127.61.8bdlbdl
      HJD-12@529.84897015.01.6102.8225.614.0117.30.955.30.5bdlbdl
      HJD-13@136.58389725.86.6101.5271.319.64.4bdl160.80.2bdlbdl
      HJD-13@279.3461817.90.121.259.636.318.7bdl24.50.2bdlbdl
      HJD-13@335.4452641.8bdl43.7108.716.36.3bdl3.60.0bdlbdl
      HJD-13@489.3642043.0bdl21.9106.458.12.6bdl6.30.1bdlbdl
      HJD-13@543.04725243.5bdl9.729.827.15.0bdl84.80.9bdlbdl
      HJD-46@113.63153754.573.69.911.663.92799.616.1404.410.4bdlbdl
      HJD-46@225.129978110.10.6103.4313.3234.214.30.21132.413.4bdlbdl
      HJD-46@323.42808899.310.5182.1377.0214.6460.22.1672.910.4bdlbdl
      HJD-46@47.2353378.50.2bdlbdl11.26.0bdl59.81.3bdlbdl
      HJD-46@56.53124821.15.70.52.813.2207.20.9155.02.8bdlbdl
      HJD-56@187.45754912.63.83.524.852.4603.05.999.70.9bdlbdl
      HJD-56@2111.5561139.01.43.713.583.463.60.727.90.6bdlbdl
      HJD-56@37.3443834.60.911.849.13.775.10.316.10.5bdlbdl
      HJD-56@410.95902411.64.0663.22395.49.5516.82.5286.03.2bdlbdl
      HJD-56@510.14403314.58.0146.8320.715.2608.32.5181.82.722.1bdl
      HJD-56@626.47094213.90.416.689.118.299.20.3381.91.0bdlbdl
      HJD-56@710.1573534.51.697.984.26.3169.30.729.90.5bdlbdl
      HJD-56@828.3482577.40.6224.1245.59.474.6bdl27.20.6bdlbdl
      HJD-69-2@118.13686437.858.616.944.632.01806.57.7337.01.6bdlbdl
      HJD-69-2@356.746211557.6237.6107.6311.9205.94423.5107.7821.83.7bdlbdl
      HJD-69-2@450.733198257.3159.473.5267.2149.93895.838.4594.83.6bdlbdl
        注:bdl表示黄铁矿中的微量元素低于检出限
      下载: 导出CSV

      表  3   黄金洞矿床毒砂LA−ICP−MS微量元素组成

      Table  3   LA−ICP−MS trace element composition of arsenpyrite from the Huangjindong deposit 10−6

      样品编号AuSbWCoNiCuZnSeTePbTiBi
      HJD-5-1-12.4574.32.816.548.84.75741.83.00.09.4876.65.2
      HJD-5-1-21.4383.10.00.60.80.30.10.40.20.85.21.8
      HJD-5-1-34.3490.50.853.0130.60.50.10.20.02.6193.23.0
      HJD-5-1-40.6278.90.21.24.31.41.00.00.13.325.51.2
      HJD-5-1-5128.857.30.02.97.84.40.60.00.01.51.60.3
      HJD-5-1-683.157.90.010.437.45.712.60.00.25.8308.51.1
      HJD-64-3-11.4493.50.33.411.71.61.12.00.67.87.72.2
      HJD-64-3-23.0767.60.837.0129.54.90.36.10.518.263.33.1
      HJD-64-3-341.9105.10.750.4249.511.90.17.70.033.3260.31.6
      HJD-64-3-441.7121.50.30.74.23.91.30.00.04.88.90.6
      HJD-64-3-546.6110.20.055.859.34.30.20.00.57.15.91.2
      HJD-64-3-699.278.20.43.49.25.00.30.50.06.060.31.4
      HJD-69-118.8514.80.00.30.20.90.24.511.04.20.33.0
      HJD-69-2127.4243.90.1141.7552.64.90.27.734.34.80.00.9
      HJD-69-3140.5217.20.1110.6544.56.40.52.516.22.41.21.1
      HJD-69-418.61024.50.07.36.71.21.32.310.10.90.09.7
      HJD-69-5233.6208.50.273.6302.913.22.64.019.41155.10.012.6
      HJD-69-6279.4197.30.0835.82758.612.712.86.727.518.80.02.2
      HJD-43-1145.2117.80.037.5208.610.70.215.410.618.10.03.1
      HJD-43-2148.1188.70.035.1228.310.40.512.319.127.20.65.2
      HJD-43-3135.9144.50.052.1260.45.00.09.61.60.60.70.9
      HJD-43-41.7732.00.142.9128.91.20.67.81.05.40.03.0
      HJD-43-5234.965.50.327.6171.16.90.24.11.07.70.50.3
      HJD-43-628.5302.90.310.241.12.30.43.60.498.50.03.3
      HJD-46-160.188.80.70.12.02.00.61.61.931.56.23.3
      HJD-46-219.9333.22.43.521.63.22.01.51.08.2143.46.8
      HJD-46-332.192.80.00.00.01.10.63.42.72.67.10.8
      HJD-46-45.2236.41.40.20.20.90.63.91.313.651.84.5
      HJD-46-537.7102.613.80.20.72.710.25.42.816.6597.95.1
      HJD-46-629.4141.81.10.40.75.51.25.52.428.140.310.8
      HJD-58-119.2783.10.72.97.33.65.24.018.31272.4109.226.1
      HJD-58-262.270.10.00.91.63.035.61.60.07.111.43.1
      HJD-58-310.3932.10.00.12.43.38.63.50.89.511.818.6
      HJD-58-47.41032.60.70.72.91.70.62.34.34.422.312.6
      HJD-58-5124.8102.20.43.810.27.00.210.41.13.830.11.8
      HJD-58-642.791.10.40.61.74.40.02.20.211.065.43.8
      下载: 导出CSV
    • Cook N J, Chryssoulis S L. 1990. Concentrations of "invisible gold" in the common sulfides[J]. Canadian Mineralogist, 28: 1−16.

      Cook N J, Ciobanu C L, Meria D, et al. 2013. Arsenopyrite–pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273

      Dai J F, Xu D R, Zhang J, et al. 2023. Textural and LA−ICP−MS trace element analyses reveal co−enriched Au−Sb−W metallogeny in the Woxi deposit, west Jiangnan Orogen, South China[J]. Ore Geology Reviews, 154: 105333. doi: 10.1016/j.oregeorev.2023.105333

      Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica Cosmochimica Acta, 140: 644−670. doi: 10.1016/j.gca.2014.05.045

      Deng T, Xu D R, Chi G X, et al. 2018. Revisiting the ca. 845~820 Ma S type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono magmatic evolution of South China[J]. International Geology Review, 61(4): 383−403.

      Deng T, Xu D R, Chi G X, et al. 2020. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 124: 103586. doi: 10.1016/j.oregeorev.2020.103586

      Ding X, Chen P R, Chen W F, et al. 2005. Zircon LA−ICPMS U−Pb dating in granite from Weishan, Hunan Province: Diagenetic insights and significance. Scienec China[J]. Earth Science, 35(7): 606−616 (in Chinese with English abstract).

      Dong G J, Xu D R, Wang L, et al. 2008. Determination of mineralizing ages on gold ore deposits in the eastern Hunan Province south China and isotopic tracking on ore−forming fluids—Re−discussing gold ore deposit type[J]. Geotectonica et Metallogenia, 32(4): 482−491 (in Chinese with English abstract).

      Fan H R, Li X H, Zuo Y B, et al. 2018. In−situ LA−( MC)−ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. ActaPetrologica Sinica, 34(12): 3479−3496 (in Chinese with English abstract).

      Fleet M E, Mumin A H. 1997. Gold−bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis[J]. American Mineralogist, 82(1/2): 182−193.

      Fougerouse D, Micklethwaite S, Tomkins A G, et al. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution−reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 178: 143−159. doi: 10.1016/j.gca.2016.01.040

      Fougerouse D, Reddy S, Aylmore M, et al. 2021. A new kind of invisible gold in pyrite hosted in deformation−related dislocations[J]. Geology, 49(10): 1225−1229. doi: 10.1130/G49028.1

      Gao L, Peng J S. 2017. The characteristics and rules of native gold orebody in Jintang oreblock Vein No. 3[J]. Land & Resources Herald, 14(2): 69−73 (in Chinese with English abstract).

      Greentree M R, Li Z X, Li X H, et al. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in west south China and relationship to the assembly of Rodinia[J]. Precambrian Research, 151: 79−100. doi: 10.1016/j.precamres.2006.08.002

      Hu R Z, Fu S L, Huang Y. 2017. The giant south China Mesozoic low−temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 137: 9−34.

      Hu A X, Wen J, Peng J T. 2023. The accumulation mechanism of giant ores in the Xikuangshan antimony deposit, central Hunan: Constraints from fluid inclusions hosted in calcite[J]. Geological Bulletin of China, 42(7): 1166−1178 (in Chinese with English abstract).

      Huang J Z, Shun J, Zhou C. 2020. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan Orogenic Belt, South China[J]. Acta Scientica Sinica, (2): 230−252.

      Large R R, Maslennikov V V, Robert F, et al. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province. Russia[J]. Economic Geology, 102(7): 1233−1267.

      Li J A, Zhang Y Q, Dong S W, et al. 2015. LA−MC−ICPMS zircon U−Pb geochronology of the Hongxiaqiao and Banshanpu granitoids in eastern Hunan Province and its geological implications[J]. Acta Geoscientica Sinica, 36(2): 187−196 (in Chinese with English abstract).

      Li P, Zhang L P, Li J K, et al. 2021b. Metallogenic regularity of rare metal deposits in Mufushan area of CentralChina, and its application in ore prospecting[J]. Mineral Deposits, 40(4): 819−841 (in Chinese with English abstract).

      Li W, X G Q, Zhang Z Y, et al. 2016. Constraint on the genesis of Gutaishan gold deposit in central HunanProvince: Evidence from fluid inclusion and C−H−O isotopes[J]. Acta Petrologica Sinica, 32(11): 3489−3506 (in Chinese with English abstract).

      Li W, Cook N J, Xie G Q, et al. 2021. Complementary textural, trace element and isotope analysis of sulfides constrain ore−forming processes for the slate−hosted Yuhengtang Au deposit, South China[J]. Economic Geology, 116: 1825−1848. doi: 10.5382/econgeo.4847

      Li W, Cook N J, Xie G Q, et al. 2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, south China[J]. Mineralium Deposita, 54: 591−610. doi: 10.1007/s00126-018-0826-0

      Li W, Xie G Q, Mao J W, et al. 2023. Precise age constraints for the Woxi Au–Sb–W deposit, South China[J]. Economic Geology, 118: 509−518. doi: 10.5382/econgeo.4971

      Li W, Xie G Q, Mao J W, et al. 2018. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate−hosted Gutaishan Au–Sb deposit, south China: Implications for possible Late Triassic magmatic−hydrothermal mineralization[J]. Ore Geology Reviews, 101: 839−853. doi: 10.1016/j.oregeorev.2018.08.006

      Li Y D, Ma M, Cai W Y, et al. 2024. Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall−rock[J]. Geological Bulletin of China, 43(6): 896−913 (in Chinese with English abstract).

      Liang Q L, Xie Z J, Song X Y, et al. 2021. Evolution of invisible Au in arsenian pyrite in Carlin−type Au deposits[J]. Economic Geology, 116(2): 515−526. doi: 10.5382/econgeo.4781

      Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

      Liu Y, Zhang L, Sun S C, et al. 2017. Mineralization mechanism of Yangshanzhuang gold deposit, northeastern Hunan Province[J]. Acta Petrologica Sinica, 33(7): 2273−2284 (in Chinese with English abstract).

      Lu Y J , Cui W D, Sun C Y, et al. 1989. Study on the occurrence of gold in arsenopyrite of Huang−jindong gold deposit in Hunan Province[J]. Contributions to Geology and Mineral Resources Research, 4(1): 42−49 (in Chinese with English abstract).

      Mao J W, Li Y G. 1997a. Researcg on genesis of the gold deposets in the Jiangnan terrain[J]. Geochimica, 26(5): 71−81 (in Chinese with English abstract).

      Mao J W, Li Y G, Xu Y, et al. 1997b. Geology and Achievements of Gold Deposits in the Wangu Region of Hunan Province[M]. Beijing: Atomic Energy Publishing House (in Chinese).

      Meng Y Q, Li W, Mao J W, et al. 2024. Trace elements and sulfur isotopic composition of sedimentary pyrite on constraining ore genesis of Huangjindong gold deposit[J]. Mineral Deposits, 43 (4): 935–950 (in Chinese with English abstract).

      Morey A A, Tomkins A G, Bierlein F P. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Economic Geology, 103(3): 599−614. doi: 10.2113/gsecongeo.103.3.599

      Pokrovski G S, Borisova A Y, Bychkov A Y, et al. 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors[J]. Reviews in Mineralogy Geochemistry, 76(1): 165−218. doi: 10.2138/rmg.2013.76.6

      Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011

      Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 37(3): 379−399. doi: 10.1016/0016-7037(73)90207-X

      Sun S C, Zhang L, Wu S G, et al. 2018. Metallogenic mechanism of the Huangjindong gold deposit, Jiangnan Orogenic Belt: Constraints from mineral formation environment and physicochemical conditions ofmetallogenesis[J]. Acta Petrologica Sinica, 34(5): 1469−1483 (in Chinese with English abstract).

      Wan T A, Xu D R, Ma W, et al. 2022. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold De−posit, Northeast Hunan and Its Implication to Gold Mineralization Mechanism[J]. Gold Science and Technology, 30(5): 676−690 (in Chinese with English abstract).

      Wei H T , Shao Y J, Wang C, et al. 2020. Petrogenesis of the Granitoids in the Jinji Au Deposit, Northeastern Hunan Province[J]. Acta Geoscientica Sinica, 41(2): 253–266 (in Chinese with English abstract).

      Wen Z L , Deng T, Dong G J, et al. 2016. Characteristics of ore−controlling Structures of Wangu gold depositin northeastern Hunan Province[J]. Geotectonica et Metallogenia, 40(2): 281–294 (in Chinese with English abstract).

      Wu Y F, Fougerouse D, Evans K, et al. 2019. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 47: 641−644.

      Xu D R, Wang L, Li P C. 2009. Petrogenesis of the Liyunshan granites in northeastern Hunan Province, South China, and its geodynamic implication[J]. Acta Petrologica Sinica, 25(5): 1056−1078.

      Xu D R, Zou F H, Ning J T, et al. 2017a. Discussion on geological andstructural characteristics and associated metallogeny in northeastern Hunan Province, South China[J]. Acta Petrologica Sinica, 33(3): 695−715 (in Chinese with English abstract).

      Xu D R, Deng T, Chi G X, et al. 2017b. Gold mineralization in the Jiangnan orogenic belt of south China: Geological, geochemical and geochronological characteristics, ore deposit−type and geodynamic setting[J]. Ore Geology Reviews, 88: 565−618. doi: 10.1016/j.oregeorev.2017.02.004

      Xu K, Xu D R. 2022. Study on the formation mechanism of altered rock type gold mineralization of Huangjindong gold deposit in Jiangnan Orogenic Belt[J]. Gold Science and Technology, 30(2): 151−164 (in Chinese with English abstract).

      Yin F Y, Li W, Xie G Q, et al. 2024. Genesis of the Wangu Au deposit in the Jiangnan orogenic belt: Constraints from texture, trace element, and in−situ Sr isotope of scheelite[J]. Ore Geology Reviews, 106375.

      Zhang L, Groves D, Yang L Q, et al. 2020. Utilization of pre−existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Mineralium Deposita, 55: 363−380. doi: 10.1007/s00126-019-00904-5

      Zhang L, Yang L Q, Groves D I, et al. 2019a. An overview of timing and structural geometry of gold, gold−antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173

      Zhang L, Yang L Q, Groves D I, et al. 2018. Geological and isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 99: 264−281. doi: 10.1016/j.oregeorev.2018.06.013

      Zhang W L, Hu W X, Hu S X, et al. 1997. Study on the mode of gold in arsenopyrite from Huangjindong gold deposit, Hunan, by using electron probe microanalysis[J]. Geological Journal of China Universities, 3(3): 256−262 (in Chinese with English abstract).

      Zhang Z Y, Xie G Q, Olin P, et al. 2022. Texture, in−situ geochemical, and S isotopic analyses of pyrite and arsenopyrite from the Longshan Sb−Au deposit, southern China: Implications for the genesis of intrusion−related Sb−Au deposit[J]. Ore Geology Reviews, 143: 104781. doi: 10.1016/j.oregeorev.2022.104781

      Zhang Z Y, Xie G Q, Mao J W, et al. 2019b. Sm−Nd dating and In−situ LA−ICP−MS trace element analyses of scheelite from the Longshan Sb−Au deposit, Xiangzhong Metallogenic Province, South China[J]. Minerals, 9(87). doi: 10.3390/min9020087

      Zhang Z Y, Xie G Q, Li H C, et al. 2018. Preliminary study on muscovite 40Ar−39Ar geochronology and its significance ofthe Longshan Sb−Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 34(9): 2535−2547 (in Chinese with English abstract).

      Zhou Y Q, Dong G J, Xu D R, et al. 2021. Scheelite Sm−Nd age of the Huangjindong Au deposit in Hunanand its geological significance[J]. Geochimica, 50(4): 381–397 (in Chinese with English abstract).

      Zhou Y Q, Xu D R, Dong G J, et al. 2021. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 145: 104306. doi: 10.1016/j.jsg.2021.104306

      丁兴, 陈培荣, 陈卫锋, 等. 2005. 湖南沩山花岗岩中锆石LA–ICPMS U−Pb定年: 成岩启示和意义[J]. 中国科学: 地球科学, 35(7): 606−616.
      董国军, 许德如, 王力, 等. 2008. 湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J]. 大地构造与成矿学, 32(4): 482−491. doi: 10.3969/j.issn.1001-1552.2008.04.012
      范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA−(MC)−ICPMS 和(Nano) SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479−3496.
      高磊, 彭劲松. 2017. 湖南省平江县黄金洞矿区金塘矿段3号脉明金矿体特征及规律[J]. 国土资源导刊, 14(2): 69−73.
      黄建中, 孙骥, 周超, 等. 2020. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, (2): 230−252.
      胡阿香, 文静, 彭建堂. 2023. 湘中锡矿山锑矿床巨量矿石堆积机制: 来自方解石流体包裹体的约束[J]. 地质通报, 42(7): 1166−1178. doi: 10.12097/j.issn.1671-2552.2023.07.009
      李建华, 张岳桥, 董树文, 等. 2015. 湘东宏夏桥和板杉铺岩体LA−MC−ICPMS锆石U−Pb年龄及地质意义[J]. 地球学报, 36(2): 187−196. doi: 10.3975/cagsb.2015.02.07
      李鹏, 张立平, 李建康, 等. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J]. 矿床地质, 40(4): 819−841.
      李伟, 谢桂青, 张志远, 等. 2016. 流体包裹体和C−H−O同位素对湘中古台山金矿床成因制约[J]. 岩石学报, 32: 3489−3506.
      李亚东, 马明, 蔡文艳, 等. 2024. 鲁西地区沂南金矿床成因: 硫化物矿石与围岩稀土和微量元素的制约[J]. 地质通报, 43(6): 896−913. doi: 10.12097/gbc.2022.12.019
      刘英俊, 崔卫东, 孙承辕, 等. 1989. 湖南黄金洞金矿床毒砂中金的赋存状态的研究[J]. 地质找矿论丛, 4(1): 42−49.
      刘育, 张良, 孙思辰, 等. 2017. 湘东北杨山庄金矿床流体成矿机制[J]. 岩石学报, 33(7): 2273−2284.
      毛景文, 李红艳. 1997a. 江南古陆某些金矿床成因讨论[J]. 地球化学, 26(5): 71−81.
      毛景文, 李红艳, 徐钰, 等. 1997b. 湖南万古地区金矿地质与成果[M]. 北京: 原子能出版社.
      孟亚群, 李伟, 毛景文, 等. 2024. 沉积黄铁矿微量元素和硫同位素组成对黄金洞金矿床的成因约束[J]. 矿床地质, 43(4): 935−950.
      孙思辰, 张良, 吴圣刚, 等. 2018. 江南造山带黄金洞金矿床成矿机制: 矿物形成环境与金成矿物理化学条件制约[J]. 岩石学报, 34(5): 1469−1483.
      万泰安, 许德如, 马文, 等. 2022. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 30(5): 676−690.
      隗含涛, 邵拥军, 汪程, 等. 2020. 湘东北金鸡金矿床岩体成岩机制[J]. 地球学报, 41(2): 253−266. doi: 10.3975/cagsb.2020.010701
      文志林, 邓腾, 董国军, 等. 2016. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 40(2): 281−294.
      许德如, 王力, 李鹏春, 等. 2009. 湘东北地区连云山花岗岩的成因及地球动力学暗示[J]. 岩石学报, 25(5): 1056−1078.
      许德如, 邹凤辉, 宁钧陶, 等. 2017. 湘东北地区地质构造演化与成矿响应探讨[J]. 岩石学报, 33(3): 695−715.
      许可, 许德如. 2022. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 30(2): 151−164. doi: 10.11872/j.issn.1005-2518.2022.02.139
      张文兰, 胡文宣, 胡受奚, 等. 1997. 湖南黄金洞金矿毒砂中Au 赋存状态的电子探针研究[J]. 高校地质学报, 3(3): 256−262.
      张志远, 谢桂青, 李惠纯, 等. 2018b. 湖南龙山锑金矿床白云母40Ar−39Ar年代学及其意义初探[J]. 岩石学报, 34(9): 2535−2547.
      周岳强, 董国军, 许德如, 等. 2021. 湖南黄金洞金矿床白钨矿Sm−Nd 年龄及其地质意义[J]. 地球化学, 50(4): 381−397.
    图(10)  /  表(3)
    计量
    • 文章访问数:  675
    • HTML全文浏览量:  136
    • PDF下载量:  139
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-25
    • 修回日期:  2023-06-21
    • 刊出日期:  2025-03-14

    目录

    /

    返回文章
    返回