Research on land-space ecological restoration zoning based on the types of Earth’s Critical Zone: A case study of Xixia County, Henan Province
-
摘要:
地球关键带类型单元反映自然本底特征,可为国土空间生态修复提供科学参考。以土地覆盖、地形、土壤为构成要素,划分县域地球关键带类型,并结合InVEST模型和Conefor2.6模型评估区域生态重要性和生态敏感性,识别县域国土空间生态修复分区。结果显示:①西峡县地球关键带类型可划分为一级类型8种,二级类型19种,一级类中阔叶林丘陵地类型为主要类型,二级类中阔叶林丘陵地淋溶土为主要类型;②高生态重要性等级地球关键带集中在中部和北部分布,约占县域的9.3%。生态敏感性等级高的地球关键带单元主要分布在北部丘陵区;③按生态等级将地球关键带单元分为底线型、紧张型、缓冲型和一般型4类,县域国土空间生态修复区域分为自然保护地核心保育区、重点生态保护区、一般生态保护区和其他区域。
Abstract:The type units of Earth’s Critical Zone reflect the characteristics of the natural background, which can provide scientific reference for the ecological restoration of land and space. We use land cover, topography and soil as the constituent elements to divide the types of Earth’s Critical Zone, the regional ecological importance and ecological sensitivity are evaluated by combining the InVEST model and Conefor2.6 model, and the land−space ecological restoration zone is identified. The results show that: ① The types of Earth’s Critical Zone in Xixia County could be divided into 8 first−class types and 19 second−class types, with the Broadleaf forest−Hilly in the first−class types as the main type, and the Broadleaf forest−Hilly−Leaching soil in the second−class types as the main type. ② The units of high ecological importance were concentrated in the central and northern parts, accounting for about 9.3% of the county. The units with high ecological sensitivity are mainly distributed in the northern hilly area. ③ According to the ecological level, the units of Earth’s Critical Zone are divided into four categories: bottom line, tension, buffer and general, and the ecological restoration is divided into core conservation area of nature reserve, key ecological reserve, general ecological reserve and other areas.
-
-
表 1 地球关键带分类级别与命名规则
Table 1 Classification levels and naming rules for Earth's Critical Zone
级别 包含要素 理论单元种类 实际单元种类 命名举例 一级地球关键带 土地覆盖、地形 5×2 8 阔叶林丘陵地 二级地球关键带 土地覆盖、地形、土壤类型 5×2×5 19 阔叶林丘陵地淋溶土 表 2 威胁源参数设置
Table 2 Threat source parameter settings
威胁源 建设用地 耕地 裸地 草地 0.6 0.6 0.5 林地 0.7 0.5 0.5 园地 0.7 0.6 0.5 水域 0.7 0.4 0.3 权重 1 0.7 0.2 最大影响距离 0.8 0.5 0.3 表 3 水土流失敏感性影响因子分级
Table 3 Grading of erosion sensitivity impact factors
分级 不敏感(1) 轻度敏感(2) 中度敏感(3) 高度敏感(4) 极敏感(5) R值 <25 >600 400 ~ 600 100 ~ 400 25 ~ 100 土壤质地 石砾、沙 粗砂土、细砂土、粘土 面砂土、壤土 砂壤土、粉粘土、壤粘土 砂粉土、粉土 地形起伏度/m 0 ~ 20 20 ~ 50 50 ~ 100 100 ~ 300 300 ~ 450 沟谷密度/(km·km−2) <1 1 ~ 2 2 ~ 3 3 ~ 5 >5 植被类型 水体 阔叶林、针叶林 草丛 栽培植被 裸地 分级赋值(C) 1 3 5 7 9 表 4 地球关键带单元生态等级判别原则
Table 4 Discriminating principles of the ecological level of Earth's Critical Zone units
生态重要性等级
生态敏感性等级轻度重要 一般重要 中度重要 高度重要 极度重要 不敏感 其他单元 其他单元 其他单元 其他单元 其他单元 低敏感 其他单元 其他单元 其他单元 其他单元 其他单元 中敏感 其他单元 其他单元 一般型单元 缓冲型单元 紧张型单元 高敏感 其他单元 其他单元 缓冲型单元 紧张型单元 底线型单元 极敏感 其他单元 其他单元 紧张型单元 底线型单元 底线型单元 表 5 一级地球关键带类型数量结构
Table 5 Quantitative structure of first-class types of Earth’s Critical Zone
一级地球关键带类型 面积比 频率比 多样性指数 草丛平原地 0.51% 13.54% 0.000001 草丛丘陵地 0.03% 1.30% 0 灌丛平原地 0.07% 2.60% 0 阔叶林平原地 37.80% 33.59% 0.007182 阔叶林丘陵地 47.62% 18.75% 0.021154 栽培植被平原地 13.26% 8.07% 0.006164 针叶林平原地 0.36% 12.50% 0 针叶林丘陵地 0.34% 9.64% 0.000001 表 6 二级地球关键带类型数量结构
Table 6 Quantitative structure of second-class types of Earth’s Critical Zone
二级地球关键带类型 面积比 频率比 多样性指数 草丛平原地初育土 0.068% 2.08% 0 草丛平原地淋溶土 0.444% 11.46% 0.000001 草丛丘陵地淋溶土 0.033% 1.30% 0 灌丛平原地半水成土 0.007% 0.26% 0 灌丛平原地初育土 0.004% 0.26% 0 灌丛平原地淋溶土 0.060% 2.08% 0 阔叶林平原地半水成土 0.005% 0.26% 0 阔叶林平原地初育土 2.266% 4.17% 0.000074 阔叶林平原地淋溶土 35.521% 28.91% 0.007108 阔叶林平原地人为土 0.005% 0.26% 0 阔叶林丘陵地初育土 0.152% 0.78% 0.000001 阔叶林丘陵地淋溶土 47.470% 17.97% 0.021152 栽培植被平原地半水成土 0.293% 0.52% 0.000007 栽培植被平原地初育土 7.392% 2.34% 0.004952 栽培植被平原地淋溶土 5.572% 4.95% 0.001206 栽培植被平原地灰岩 0.007% 0.26% 0 针叶林平原地初育土 0.033% 1.30% 0 针叶林平原地淋溶土 0.326% 11.20% 0 针叶林丘陵地淋溶土 0.344% 9.64% 0.000001 表 7 各生态等级地球关键带类型
Table 7 Types of Earth's Critical Zone by ecological class
生态等级 一级地球关键带类型 二级地球关键带类型 一般型单元 栽培植被平原地 栽培植被平原地淋溶土 阔叶林平原地 阔叶林平原地淋溶土、阔叶林平原地初育土 针叶林平原地 针叶林平原地淋溶土、针叶林平原地初育土 草丛平原地 草丛平原地初育土、草丛平原地淋溶土 阔叶林丘陵地 阔叶林丘陵地淋溶土 针叶林丘陵地 针叶林丘陵地淋溶土 缓冲型单元 栽培植被平原地 栽培植被平原地初育土、栽培植被平原地淋溶土、栽培植被平原地灰岩 阔叶林平原地 阔叶林平原地淋溶土 针叶林平原地 针叶林平原地淋溶土 草丛平原地 草丛平原地淋溶土 阔叶林丘陵地 阔叶林丘陵地淋溶土 针叶林丘陵地 针叶林丘陵地淋溶土 紧张型单元 阔叶林平原地 阔叶林平原地淋溶土 针叶林平原地 针叶林平原地淋溶土 阔叶林丘陵地 阔叶林丘陵地淋溶土 针叶林丘陵地 针叶林丘陵地淋溶土 底线型单元 阔叶林平原地 阔叶林平原地淋溶土 针叶林平原地 针叶林平原地淋溶土 草丛平原地 草丛平原地淋溶土 阔叶林丘陵地 阔叶林丘陵地淋溶土 针叶林丘陵地 针叶林丘陵地淋溶土 -
Bushnell T M. 1943. Some aspects of the soil catena concept[J]. Soil Science Society of America Journal, 7(C): 466−476. doi: 10.2136/sssaj1943.036159950007000C0079x
Cui N, Yu E Y, Li S, et al. 2021. Protection measures of plateau lake based on ecosystem sensitivity and importance of ecosystem function: the case of Lake Dalinor Basin[J]. Acta Ecologica Sinica, 41(3): 949−958 (in Chinese with English abstract).
Ding G H. 2021. Research on identification and strategy of key areas of ecological protection and restoration based on circuit theory: A case of Xixia County, Henan Province[D]. Master's thesis, China University of Geosciences (Beijing) (in Chinese with English abstract).
Fridland V M. 1974. Structure of the soil mantle[J]. Geoderma, 12(1): 35−41.
Gao H. 2018. Land classification and division in Hunan Province[D]. Master's thesis, Hunan Agricultural University (in Chinese with English abstract).
Guo C H, Zhang M S, Wang Y, et al. 2023. Ecological restoration of China's territorial space in Yulin section of the Yellow River Basin through nature−based solutions[J]. Geological Bulletin of China, 42(10): 1745−1756(in Chinese with English abstract).
Kong L Q, Zheng H, Ouyang Z Y. 2019. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem services: a case study in Dongting Lake Watershed[J]. Acta EcologicaSinica, 39(23): 8903−8910(in Chinese with English abstract).
Li X, Wu K N, Liu Y N, et al. 2019. Ecological protection and restoration of mountains−rivers−forests−farmlands−lakes−grasslands based onecosystem services−utilizing Heshan section of the south Taihang area as an example[J]. Acta EcologicaSinica, 39(23): 8806−8816(in Chinese with English abstract).
Li X L, Wu K N, Feng Z, et al. 2022. Research progress of land surface system classification: From land type to Earth's critical zone type[J]. Progress in Geography, 41(3): 531−540(in Chinese with English abstract). doi: 10.18306/dlkxjz.2022.03.015
Liu K, Kang Y, Cao M M, et al. 2004. GIS−based assessment on sensitivity to soil and water loss in Shaanxi Province[J]. Journal of Soil and Water Conservation, 18(5): 168−170(in Chinese with English abstract).
Liu S D, Liu L, Zhang J J, et al. 2019. Study on ecological protection and restoration path of arid area based on improvement of ecosystem service capability: A case of the ecological protection and restoration pilot project area in Irtysh River Basin[J]. Acta Ecologica Sinica, 39(23): 8998−9007 (in Chinese with English abstract).
Liu S L, Dong Y H, Sun Y X, et al. 2019. Priority area of mountains−rivers−forests−farmlands−lakes−grasslands based on the improvement of ecosystem services: A case study of Guizhou Province[J]. Acta EcologicaSinica, 39(23): 8957−8965(in Chinese with English abstract).
Liu Y N, Wu K N, Li X L, et al. 2021. Land−type classification at provincial level based on GIS and Fuzzy SOFM model: A case study of Henan Province[J]. China Land Science, 35(11): 112−122(in Chinese with English abstract).
Ministry of Natural Resources. 2020. Guidelines for ecological protection and restoration of mountains, waters, forests, fields, lakes and grasses (trial)[R].
Niu Z J. 2018. Study on the classification and structure analysis of land types in Laiyuan County[D]. Master's thesis, Hebei Agricultural University (in Chinese with English abstract).
Shen Y C, Li C W. 1983. A preliminary study on the structure of land types and agricultural natural regionalization: Based on the study of Beijing area[J]. Geographical Research, (4): 11−22 (in Chinese with English abstract).
Shen Y C. 2010. Studies on land types: Academic significance, function and prospect[J]. Geographical Research, 29(4): 575−583(in Chinese with English abstract).
Shi Y L. 1985. Main characteristics of China's mountains and their rational utilization[J]. Resources Science, (4): 1−7(in Chinese with English abstract).
Wang X Y, Feng Z, Wu K N, et al. 2019. Ecological conservation and restoration of life community theory based on the construction of ecological security pattern[J]. Acta EcologicaSinica, 39(23): 8725−8732 (in Chinese with English abstract).
Wu G, Zhao M, Wang C X. 2019. Research on the theoretical support system of ecological protection and restoration of full−array ecosystems[J]. Acta EcologicaSinica, 39(23): 8685−8691 (in Chinese with English abstract).
Wu K N, Zhao R. 2019. Soil texture classification and its application in China[J]. Acta PedologicaSinica, 56(1): 227−241(in Chinese with English abstract).
Yang S H, Zhang G L. 2021. What is the Critical Zone[J]. Science, 73(5): 4,33−36(in Chinese with English abstract).
Yu E Y, Qi L, Dai L M, et al. 2019. Correlation analysis of elements in the mountains−rivers−forests−farmlands−lakes−grasslands life community: using Changbai mountains as an example[J]. Acta EcologicaSinica, 39(23): 8837−8845(in Chinese with English abstract).
Zhang C, Fang S M. 2021. Identifying and zoning key areas of ecological restoration for territory in resource−based cities: A case study of Huangshi City, China[J]. Sustainability, 13(7): 3931. doi: 10.3390/su13073931
Zhang G L, Song X D, Wu K N. 2021. A classification scheme for Earth’s critical zones and its application in China[J]. Science China Earth Sciences, 64(10): 1709−1720(in Chinese with English abstract). doi: 10.1007/s11430-020-9798-2
Zhang H T, Li J L, Tian P, et al. 2022. Construction of ecological security patterns and ecological restoration zones in the city of Ningbo, China[J]. Journal of Geographical Sciences, 32(4): 663−681. doi: 10.1007/s11442-022-1966-9
Zhang X Y. 2021. Analysis and Evaluation of Sensitivity ofSoil Erosion in Bin Xian[D]. Master's thesis, Northeast Agricultural University (in Chinese with English abstract).
Zhou C H, Cheng W M, Qian J K. 2009. Research on the classification system of digital land geomorphology of 1: 1 000 000 in China[J]. Journal of Geo−information Science, 11(6): 707−724(in Chinese with English abstract).
崔宁, 于恩逸, 李爽, 等. 2021. 基于生态系统敏感性与生态功能重要性的高原湖泊分区保护研究——以达里湖流域为例[J]. 生态学报, 41(3): 949−958. 丁广辉. 2021. 基于电路理论的生态保护修复关键区域识别及策略研究[D]. 中国地质大学(北京)硕士学位论文. 高晗. 2018. 湖南省土地分类及分区研究[D]. 湖南农业大学硕士学位论文. 郭迟辉, 张茂省, 王尧, 等. 2023. 基于自然解决方案的黄河中游国土空间生态修复——以陕西榆林国土空间生态修复为例[J]. 地质通报, 42(10): 1745−1756. doi: 10.12097/j.issn.1671-2552.2023.10.011 孔令桥, 郑华, 欧阳志云. 2019. 基于生态系统服务视角的山水林田湖草生态保护与修复——以洞庭湖流域为例[J]. 生态学报, 39(23): 8903−8910. 李潇, 吴克宁, 刘亚男, 等. 2019. 基于生态系统服务的山水林田湖草生态保护修复研究——以南太行地区鹤山区为例[J]. 生态学报, 39(23): 8806−8816. 李晓亮, 吴克宁, 冯喆, 等. 2022. 陆地表层系统分类研究进展——从土地类型到地球关键带类型[J]. 地理科学进展, 41(3): 531−542. doi: 10.18306/dlkxjz.2022.03.015 刘康, 康艳, 曹明明, 等. 2004. 基于GIS的陕西省水土流失敏感性评 价[J]. 水土保持学报, (5): 168−170. doi: 10.3321/j.issn:1009-2242.2004.05.041 刘时栋, 刘琳, 张建军, 等. 2019. 基于生态系统服务能力提升的干旱区生态保护与修复研究——以额尔齐斯河流域生态保护与修复试点工程区为例[J]. 生态学报, 39(23): 8998−9007. 刘世梁, 董玉红, 孙永秀, 等. 2019. 基于生态系统服务提升的山水林 田湖草优先区分析——以贵州省为例[J]. 生态学报, 39(23): 8957−8965. 刘亚男, 吴克宁, 李晓亮, 等. 2021. 基于GIS和模糊SOFM模型的省级尺度土地类型划分研究——以河南省为例[J]. 中国土地科学, 35(11): 112−122. doi: 10.11994/zgtdkx.20211027.092122 牛志君. 2018. 涞源县土地类型划分与结构分析研究[D]. 河北农业大学硕士学位论文. 申元村, 李昌文. 1983. 土地类型结构与农业综合自然区划的初步研 究——以北京市为例[J]. 地理研究, (4): 11−22. 申元村. 2010. 土地类型研究的意义、功能与学科发展方向[J]. 地理研究, 29(4): 575−583. 石玉林. 1985. 我国山地的主要特点及其合理利用[J]. 自然资源, (4): 1−7. 王晓玉, 冯喆, 吴克宁, 等. 2019. 基于生态安全格局的山水林田湖草生态保护与修复[J]. 生态学报, 39(23): 8725−8732. 吴钢, 赵萌, 王辰星. 2019. 山水林田湖草生态保护修复的理论支撑体系研究[J]. 生态学报, 39(23): 8685−8691. 吴克宁, 赵瑞. 2019. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 56(1): 227−241. doi: 10.11766/trxb201803120129 杨顺华, 张甘霖. 2021. 什么是地球关键带[J]. 科学, 73(5): 4, 33−36. 于恩逸, 齐麟, 代力民, 等. 2019. “山水林田湖草生命共同体”要素关联性分析——以长白山地区为例[J]. 生态学报, 39(23): 8837−8845. 张甘霖, 宋效东, 吴克宁. 2021. 地球关键带分类方法与中国案例研 究[J]. 中国科学: 地球科学, 51(10): 1681−1692. 张鑫宇. 2021. 宾县水土流失敏感性分析与评价[D]. 东北农业大学硕士学位论文. 自然资源部. 2020. 山水林田湖草生态保护修复工程指南(试行)[R]. 周成虎, 程维明, 钱金凯, 等. 2009. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报, 11(6): 707−724. doi: 10.3969/j.issn.1560-8999.2009.06.006