• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

甘肃大道尔吉蛇绿岩岩石成因及其对南祁连早古生代构造演化的约束

冯鹏宇, 任文秀, 谢奋全, 丁仨平, 黄增保, 郝丽荣

冯鹏宇, 任文秀, 谢奋全, 丁仨平, 黄增保, 郝丽荣. 2025: 甘肃大道尔吉蛇绿岩岩石成因及其对南祁连早古生代构造演化的约束. 地质通报, 44(2~3): 493-510. DOI: 10.12097/gbc.2023.01.027
引用本文: 冯鹏宇, 任文秀, 谢奋全, 丁仨平, 黄增保, 郝丽荣. 2025: 甘肃大道尔吉蛇绿岩岩石成因及其对南祁连早古生代构造演化的约束. 地质通报, 44(2~3): 493-510. DOI: 10.12097/gbc.2023.01.027
Feng P Y, Ren W X, Xie F Q, Ding S P, Huang Z B, Hao L R. Petrogenesis of the Dadaoerji ophiolite from the Gansu Province, NW China: Constraints on the Early Paleozoic tectonic evolution of the South Qilian Orogen. Geological Bulletin of China, 2025, 44(2/3): 493−510. DOI: 10.12097/gbc.2023.01.027
Citation: Feng P Y, Ren W X, Xie F Q, Ding S P, Huang Z B, Hao L R. Petrogenesis of the Dadaoerji ophiolite from the Gansu Province, NW China: Constraints on the Early Paleozoic tectonic evolution of the South Qilian Orogen. Geological Bulletin of China, 2025, 44(2/3): 493−510. DOI: 10.12097/gbc.2023.01.027

甘肃大道尔吉蛇绿岩岩石成因及其对南祁连早古生代构造演化的约束

基金项目: 中国地质调查局项目《甘肃省区域地质调查片区总结与服务产品开发》(编号:12120113013500)、国家自然科学基金项目《甘肃中口子盆地早白垩世植物多样性与古环境演变》(批准号:42362003)及甘肃省自然科学基金《甘肃北山罗雅楚山地区沉积-变质型铁矿成矿规律与隐伏矿床预测》(批准号:22JR5RA820)
详细信息
    作者简介:

    冯鹏宇(1987− ),男,博士,实验师,从事地球化学、岩浆作用与矿床成因研究。E−mail:rockfpy@163.com

    通讯作者:

    任文秀(1981− ),男,博士,正高级工程师,从事区域地质调查及矿产勘查。E−mail:ldwxren@163.com

  • 中图分类号: P534.4; P597+.3

Petrogenesis of the Dadaoerji ophiolite from the Gansu Province, NW China: Constraints on the Early Paleozoic tectonic evolution of the South Qilian Orogen

  • 摘要:
    研究目的 

    南祁连大道尔吉地区赋存有著名的蛇绿岩型中型铬铁矿矿床。为进一步限定大道尔吉蛇绿岩的形成时代、岩石成因及其构造环境,

    研究方法 

    对大道尔吉蛇绿岩堆晶岩系内的辉橄岩进行了LA−ICP−MS锆石U−Pb年龄分析,对辉橄岩和均质辉长岩进行了全岩地球化学分析。

    研究结果 

    辉橄岩锆石U−Pb定年结果显示,年龄主要集中在471~420 Ma,年龄加权平均值为460±15 Ma (MSWD=3.8),限定了大道尔吉蛇绿岩形成年代为中奥陶世晚期。辉长岩属于亚碱性中的低钾拉斑系列,辉橄岩与辉长岩富集大离子亲石元素(如Rb、Ba、U、Sr),亏损高场强元素(如Nb、Ta、Zr、Hf),且具有明显的Th负异常。辉长岩表现为轻稀土元素略富集的近平坦型,δEu具有轻微正异常。全岩地球化学数据表明,辉长岩是受俯冲流体交代作用所导致的亏损尖晶石二辉橄榄岩地幔经过20%~30%部分熔融的产物,岩浆源区可能经历了地壳的混染作用。进一步推测,辉橄岩中较老锆石可能源于受壳源物质混染的岩浆源区。

    结论 

    结合区域地质背景,认为南祁连大道尔吉蛇绿岩形成于中奥陶世晚期柴北缘洋俯冲作用所导致的弧后盆地拉张环境,并被归属为俯冲带(SSZ)型蛇绿岩,同时也为南祁连早古生代存在俯冲消减阶段提供了新的证据。

    Abstract:
    Objective 

    The Dadaoerji region in the South Qilian Orogen hosts medium−sized ophiolite−type chromite deposits. However, the formation age, petrogenesis and tectonic evolution of the Dadaoerji ophiolite suite are still unclear.

    Methods 

    Hence, in this study, we conducted systematic LA−ICP−MS zircon U−Pb for pyroxene peridotive dating and whole−rock geochemical studies of both pyroxene peridotite and gabbros within the upper part of this ophiolite suite.

    Results 

    Zircon U−Pb dating show 206Pb/238U spot ages that are concordant with the main concentration range of 471~420 Ma, and also yielded a weighted mean age of 460±15 Ma (MSWD=3.8), suggesting that the timing of formation of the Dadaoerji ophiolite suite could be constrained in the Late Middle Ordovician. These gabbros belong to low potassium tholeiitic series, both pyroxene peridotites and gabbros are enriched in large ion lithophile elements (e.g., Rb, Ba, U, Sr) and depleted in high field strength elements (e.g., Nb, Ta, Zr, Hf), with Th negative anomalies. Moreover, these gabbros also display a near flat and slightly right pattern ((La/Yb)N = 1.54~2.43) and slight Eu positive anomalies. These together indicate that the magma of gabbros was derived from a depleted spinel Lherzolite mantle via metasomatism of subduction fluids, and evolved by partial melting of 20%~30%. Furthermore, the magma source of gabbros might have underwent crustal contamination. Accordingly, we also infer that the older zircons in pyroxene peridotite likely inherited from magma source.

    Conclusions 

    In combination with the regional geological settings, this study suggests that the Dadaoerji ophiolite suite formed under the extensional environment of the back−arc basin caused by the subduction of the North Qaidam Ocean during the late Middle Ordovician. The Dadaoerji ophiolite was also classified as a subduction zone type (SSZ) ophiolite, which provides new evidence for the subduction evolution of the South Qilian Orogen during the early Paleozoic.

    创新点

    (1)大道尔吉蛇绿岩形成于中奥陶世晚期,地幔源区可能受壳源物质混染。(2)大道尔吉蛇绿岩属于俯冲带(SSZ)型,形成于弧后盆地构造环境,见证了早古生代南祁连地区柴北缘洋的俯冲消减过程。

  • 蛇绿岩是大陆造山带内非原地残存的古大洋岩石圈残片,记录了大洋岩石圈岩浆-变质过程与构造演化历史等地质信息,可作为确定古板块边界的重要依据,对探讨古洋壳的形成与演化精细过程具有重要意义(Coleman, 1977史仁灯,2005Yang et al., 2021a, 2022张旗等,2022杨高学等,2023)。蛇绿岩往往受到后期构造肢解作用,以叠置构造岩片的形式产出于混杂岩带,亦常见不同时代与成因的岩性单元(地幔橄榄岩、堆晶岩系、火山熔岩等)通过断层相拼接(张维骐等,2022),对蛇绿岩形成时代与构造属性的厘定是造山带构造演化研究中的重要组成部分(Dilek et al., 2011, 2014宋述光等,2019)。关于蛇绿岩形成时代与构造属性的研究,多以地幔橄榄岩、火山熔岩及辉绿岩为研究对象(Zeng et al., 2018Yang et al., 2022张旗等,2022张维骐等,2022杨高学等,2023)。还需要重视对蛇绿岩套中堆晶岩系的研究,对堆晶岩系中单一岩性开展研究容易造成误判,而对不同岩性单元,如对堆晶岩系中不同岩性开展同位素年代学、元素地球化学等研究,有利于进一步限定蛇绿岩的形成年代、构造属性及古洋盆演化历史(张维骐等,2022)。近年来,在蛇绿岩地幔橄榄岩和铬铁矿中发现以金刚石为代表的深成超高压矿物,且此类蛇绿岩型金刚石具有轻的碳同位素组成特征,记录了深部地幔经历过地壳混染,表明壳源物质在地幔及幔源源区可保留、运移并参与深部循环,因此蛇绿岩也是探讨地壳物质循环与深部地幔动力学的理想窗口(Yang et al., 2021a杨高学等,2024)。

    尽管前人研究表明,超基性岩中赋存有少量锆石等定年副矿物,但多数为壳源捕虏晶锆石(Belousova et al., 2015),常与俯冲相关熔体-流体相互作用关联(Belousova et al., 2015; Yang et al., 2017, 2021b)。蛇绿岩的超基性岩中也发现有锆石,且锆石年龄分布范围很广(Yamamoto et al., 2013; Robinson et al., 2015),其年龄、来源及与寄主超基性岩的关系,对于限定蛇绿岩的形成年代,即蛇绿岩岩浆地壳层序的形成时代,探讨岩石成因、壳幔动力学机制及上地幔岩石构造演化历史意义重大(Yamamoto et al., 2013; Belousova et al., 2015; Robinson et al., 2015; 申婷婷等,2017)。蛇绿岩堆晶杂岩,如辉橄岩、辉长岩作为基性—超基性深层侵入岩,是古洋壳的重要代表性岩石之一,多起源于岩浆分异作用,其地球化学特征可为蛇绿岩的源区性质、岩浆演化过程及其构造环境识别提供重要信息(Dunning et al., 1988; Abati et al., 1999张旗和周国庆,2001陈博和朱永峰,2014张维骐等,2022)。因此,对蛇绿岩套堆晶杂岩内辉长岩、辉橄岩进行地球化学研究,亦可探究蛇绿岩及其相关古洋壳的形成演化过程(张旗和周国庆,2001陈博和朱永峰,2014Yang et al., 2021a, 2022)。

    大道尔吉蛇绿岩位于中祁连地块与南祁连造山带结合部位,是中祁连地块与南祁连造山带蛇绿混杂岩的重要组成部分,赋存有中型铬铁矿矿床,铬储量仅次于西藏罗布莎矿床,位居全国第二(董显扬等,1981鲍佩声和王希斌,1989苟国朝等,1994黄增保等,2016宋述光等,2019方春家,2023)。大道尔吉蛇绿岩古生代属于南祁连造山带,之后逆冲于中祁连地块之上(鲍佩声和王希斌,1989),岩性主要由地幔橄榄岩-镁铁质堆晶杂岩-玄武安山质火山熔岩岩石单元组成(苟国朝等,1994黄增保等,2016)。前人已对大道尔吉蛇绿岩及相关铬铁矿开展了大量研究(董显扬等,1981鲍佩声和王希斌,1989苟国朝等,1994),集中于矿床地质、成矿作用与找矿勘查方面,对赋矿岩体研究仍较缺乏。不同学者对大道尔吉成矿岩体形成时代、岩石成因及构造背景先后提出不同观点,早期学者们认为其形成时代为早石炭世—中侏罗世(苟国朝等,1994),为深源分异的多期侵入杂岩体(董显扬等,1981)。近年学者们认为大道尔吉岩体是被肢解的蛇绿岩残片(鲍佩声和王希斌,1989苟国朝等,1994黄增保等,2016),如黄增保等(2016)查明大道尔吉蛇绿岩层序,测定大道尔吉蛇绿岩堆晶杂岩中辉石橄榄岩Sm−Nd同位素等时线年龄为 441 ± 58 Ma,误差较大,并把大道尔吉蛇绿岩归为俯冲带(SSZ)型蛇绿岩套。

    在前人研究基础上,对大道尔吉蛇绿岩堆晶杂岩中的辉橄岩进行了锆石U−Pb同位素年龄测试,并对辉橄岩和其上部的均质辉长岩进行了全岩地球化学分析研究,限定大道尔吉蛇绿岩的形成时代,探讨其源区特征、岩石成因及构造背景,为南祁连地区构造演化过程提供更精细的地质年代学与岩石地球化学依据。

    祁连造山带位于青藏高原东北缘秦祁昆造山带中段,是中国典型的加里东期造山带,呈北西—南东走向,长宽分别可达1000 km和300 km,北与阿拉善地块相邻,南与柴达木地块相接,西以左行走滑的阿尔金断裂为界与敦煌地块相邻,东与北秦岭相接(图1−a)。由北向南,祁连造山带依次被区域断裂划分为北祁连造山带-中祁连地块-南祁连造山带及柴北缘超高压变质带(冯益民和何世平,1996Xiao et al., 2009Song et al., 2013)。

    图  1  南祁连大道尔吉蛇绿岩地质简图(a, b)、成矿岩体岩相地质简图(c)和岩体东段柱状剖面简图(d)(据苟国朝等,1994黄增保,2012黄增保等,2016修改)
    Figure  1.  Geological sketch maps (a, b), lithofacies of ore forming intrusive rock (c) and eastern end columnar section (d) of the Dadaoerji ophiolite

    北祁连造山带有典型的沟-弧-盆体系,由新元古代—古元古代蛇绿岩套、岛弧火山岩、低温高压变质带、花岗岩、晚古生代泥盆纪磨拉石建造及石炭纪—三叠纪沉积盖层等弧后盆地相关岩石构造单元组成(肖序常等,1978冯益民和何世平,1996张建新等,1997夏林圻等,1998王金荣等,2006, 2008Tseng et al., 2007)。中祁连地块与南祁连造山带以党河断裂为界(图1−a),中祁连地块主要为前寒武纪结晶基底,由片麻岩、混合岩、片岩、板岩、大理岩,变质火山岩等组成,并伴有中—新元古代花岗质片麻岩及加里东期花岗质岩浆侵入作用。南祁连造山带主要由早古生代火山岩、火山碎屑与海相沉积建造组成,主要发育双峰式火山岩系奥陶系吾力沟组和残留海盆相复理石建造盐池湾组,残留海盆浊流相沉积建造特征的志留系巴龙贡嘎尔群等,局部含洋壳碎片-蛇绿岩残片(夏林圻等,1998潘桂棠等,2002Xu et al., 2006胡万龙等2016ab)。柴北缘超高压变质带由前寒武系结晶基底及古生代—中生代沉积盖层组成,其中基底岩性主要有中—高级片麻岩、角闪岩、片岩等,原岩主要为玄武岩、泥质片麻岩、片麻岩、蛇绿岩及花岗片麻岩(杨经绥等,2003张贵宾等2005宋述光等,2011)。

    前人研究表明,祁连地区南缘褶皱带在加里东运动早—中期的晚寒武世—晚奥陶世, 受柴北缘洋向中祁连地块俯冲消减影响, 形成了滩间山群岛弧火山岩系与中酸性侵入岩体(吴才来等, 2001袁桂邦等, 2002Song et al., 2014a), 同期柴北缘洋北侧形成超高压变质带 (许志琴等, 2003),奥陶系发育巨厚中基性、中酸性火山-沉积岩系,形成南祁连裂谷。加里东运动晚期,受柴北缘洋闭合背景下的造山运动影响,褶皱逐渐封闭,形成一定规模的钙碱性中酸性侵入体(邱家骧等,1998)、S型花岗岩(吴才来等,2008)及埃达克岩(Yu et al., 2012; Song et al., 2014b)。

    大道尔吉蛇绿岩位于肃北蒙古自治县县城南东向约86 km处,由地幔橄榄岩、镁铁质—超镁铁质堆晶杂岩(含3个堆晶旋回)及上覆玄武安山岩及沉积岩系3种蛇绿岩单元构成,受北西向党河断裂控制,呈北西西向展布(图1−b),区域上大道尔吉蛇绿岩与其东部的拉脊山蛇绿混杂岩相连,两者均分布在中祁连地块与南祁连褶皱带间分界断裂带(冯益民和何世平,1996邱家骧等,1998Xiao et al., 2009付长垒等,2014黄增保等,2016)。各蛇绿岩单元倾向为北东,倾角70°~80°,与北大河岩群呈断层接触关系,在野人沟和大道尔吉一带被奥陶纪中酸性岩侵入(图1−b)。其中,镁铁质—超镁铁质堆晶杂岩为大道尔吉铬铁矿床含矿层位,岩性主要有纯橄岩、辉橄岩、(透)辉石岩、辉长岩等。主体发育堆晶结构与韵律层理,由底部至顶部可划分为3个堆晶旋回:(Ⅰ)第一旋回,含铬尖晶石纯橄岩/辉橄岩类(Ⅰ1)−韵律层状透辉石岩及异剥橄榄岩类(Ⅰ2);(Ⅱ)第二旋回,含铬尖晶石纯橄岩-辉橄岩类(Ⅱ1)−辉橄岩(Ⅱ2)−透辉石岩及辉长岩类(Ⅱ3);(Ⅲ)第三旋回,含铬铁矿层纯橄岩-辉橄岩类(Ⅲ1)(图1−c, d、图2−a, b)−透辉石岩及辉长岩类(Ⅲ2)−具辉长结构、块状构造,非韵律层状的均质辉长岩(Ⅲ3)(图1−c, d、图2−c, d)。与产于地幔橄榄岩中的豆荚状铬铁矿矿床不同,大道尔吉的工业铬铁矿矿体产于第三堆晶旋回下部的纯橄岩-辉橄岩类中(图1−c, d),详细的矿区(床)地质特征可见鲍佩声和王希斌(1989)和黄增保等(2016)。

    图  2  大道尔吉辉橄岩和辉长岩野外与镜下照片
    a—辉橄岩野外照片;b—辉橄岩正交偏光镜下照片;c, d—均质辉长岩野外照片;e—均质辉长岩单偏光镜下照片;f—均质辉长岩正交偏光镜下照片。Ol—橄榄石; Cpx—单斜辉石;Pl—斜长石;Hb—角闪石;Bi—黑云母
    Figure  2.  Photos of outcrops and photomicrographs of the pyroxene peridotites (a, b) and gabbros (c~f) in the Dadaoerji

    本次选取的辉橄岩与辉长岩样品(共8件)均采自大道尔吉蛇绿岩镁铁-超镁铁质堆晶杂岩的第三堆晶旋回(Ⅲ)中。其中,4件辉橄岩样品(dd01-04)为第三堆晶旋回下部的辉橄岩(Ⅲ1),4件辉长岩样品(dd05-08)为第三堆晶旋回上部的均质辉长岩(Ⅲ3)。

    辉橄岩呈绿黑色,自形—半自形粒状结构,主要组成矿物为橄榄石,可见少量辉石,自形程度均较好。其中,橄榄石含量约80%,粒度0.20~0.50 mm,呈自形粒状。单斜辉石含量约10%,粒度0.20~0.45 mm,呈自形—半自形状。自形—半自形的橄榄石与辉石晶体间充填有小的矿物晶体和不透明金属矿物(图2−a, b)。

    辉长岩呈黑灰色,以辉长结构和块状构造为特征(图2−c, d)。岩石蚀变程度较高,斜长石的黝帘石化及辉石的角闪石化较发育,主要由黝帘石、角闪石、白云母组成。其中,黝帘石含量55%~60%,粒度0.16~0.48 mm,呈他形粒状,无色,正高突起,应为长石蚀变产物。角闪石含量约35%,粒径0.30~0.65 mm,呈柱状,浅黄绿色—黄绿色,可见闪石式解理,多发生阳起石化、透闪石化。白(绢)云母含量约5%,呈鳞片状,分布在黝帘石颗粒间,部分发生绿泥石化,应为黑云母蚀变造成(图2−e, f)。

    辉橄岩样品锆石挑选工作在河北省廊坊市区域地质调查所完成。选取颗粒大、无裂隙及包裹体、晶形好、透明度高的锆石制靶,后在西北大学大陆动力学国家重点实验室进行锆石阴极发光(CL)显微照相和LA−ICP−MS分析。采用FEG quanta400扫描电子显微镜进行锆石阴极发光(CL)显微图像分析。锆石U−Pb 年龄分析采用的是Geolas-193型激光剥蚀系统和Agilient 7500a型ICP-MS,利用单点剥蚀的激光采样方式。激光剥蚀束斑直径及剥蚀样品的深度分别为30 μm和20~40 μm,数据处理与同位素比值计算采用Glitter (Version4.1.0) 软件,年龄计算、谐和图的制作采用Isoplot (4.15)软件完成。年龄与同位素比值误差为1σ,具体实验条件及数据处理方法见柳小明等(2007)。

    辉长岩与辉橄岩的全岩主量和微量元素分析,在长安大学西部矿产资源与地质工程教育部重点实验室完成。主量元素采用XRF法完成,微量及稀土元素测定采用X-7型ICP-MS完成,元素的分析误差均小于5%,详细实验步骤及过程可参考王岩等(2019)。

    本次对辉橄岩样品(dd02)进行了LA−ICP−MS锆石U−Pb年龄分析。锆石阴极发光图像(图3−a)显示,锆石无色,透明,晶形较完整,呈半自形—自形粒状,粒度为40~150 μm,长宽比大多数在1∶1.5左右。大多数锆石具有较好的岩浆振荡环带结构,表明为典型的岩浆成因锆石(Pidgeon et al., 1998)。此外,少量锆石颗粒无明显的岩浆结晶振荡环带,但显示为均一灰色。

    图  3  大道尔吉辉橄岩部分锆石阴极发光(CL)图像(a)、LA−ICP−MS U−Pb谐和图(b, c)和年龄分布直方图(d)
    Figure  3.  Part of zircon CL images (a), zircons LA−ICP−MS U−Pb concordia diagram (b, c)and weighted average result(d)for the Dadaoerji pyroxene peridotite

    本次共测得数据点21个,分析结果见表1,测点的U、Th、Pb含量变化较大,分别为4.42×10−6~51.7×10−6,1.92×10−6~19.9×10−6,1.18×10−6~20.38×10−6。通常认为,岩浆成因与变质成因锆石具有不同的Th、U含量及Th/U值 (Rubatto, 2000)。其中,岩浆锆石Th/U值一般高于0.4,变质锆石Th/U值一般小于0.07(Hoskin et al., 2003)。本次研究的大道尔吉辉橄岩锆石Th/U 值较高,为0.06~0.97(平均0.61),说明所测锆石多为岩浆锆石(吴元保和郑永年,2004)。少量锆石年龄数据较发散,其中1个分析点206Pb/238U年龄为783 Ma,7个分析点207Pb/206Pb年龄为2556~1212 Ma,而剩余绝大部分锆石年龄较集中,主要分布在471~420 Ma范围内(图3−b)。根据锆石U−Pb年龄谐和度较高的测试点,计算得到年龄加权平均值为460 ± 15 Ma (MSWD=4.0;图3−c~d)。此年龄(460 Ma)与大道尔吉蛇绿岩堆晶杂岩中辉石橄榄岩Sm−Nd同位素等时线年龄(441 ± 58 Ma; 黄增保等,2016)在误差范围内基本一致,进一步限定了大道尔吉辉橄岩的形成年代为中奥陶世晚期。

    表  1  大道尔吉辉橄岩LA−ICP−MS锆石U−Th−Pb分析结果
    Table  1.  LA−ICP−MS zircon U−Pb data of the Dadaoerji pyroxene peridotite
    测点号 元素含量/10−6 Th/U 同位素比值 同位素年龄/Ma
    Th U Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 6.26 13.1 10.87 0.48 0.0988 0.0015 3.2078 0.0526 0.2353 0.0030 1602 27.6 1459 12.7 1362 15.5
    2 6.54 12.7 17.37 0.52 0.1501 0.0018 7.4064 0.1028 0.3577 0.0044 2347 20.4 2162 12.4 1971 20.9
    3 6.37 8.73 2.35 0.73 0.0614 0.0030 0.5968 0.0290 0.0704 0.0012 654 101.7 475 18.4 439 7.3
    4 4.43 9.65 7.37 0.46 0.0953 0.0015 2.6362 0.0459 0.2006 0.0026 1533 30.0 1311 12.8 1179 13.8
    5 1.89 4.64 1.18 0.41 0.0658 0.0030 0.5933 0.0264 0.0654 0.0011 800 91.2 473 16.8 408 6.6
    6 7.25 12.4 20.38 0.59 0.1698 0.0020 10.1783 0.1363 0.4346 0.0053 2556 19.1 2451 12.4 2326 23.8
    7 11.1 19.2 12.77 0.58 0.0806 0.0013 1.9629 0.0344 0.1765 0.0022 1212 31.7 1103 11.8 1048 12.2
    8 1.92 4.42 4.90 0.43 0.1150 0.0020 4.5775 0.0849 0.2885 0.0039 1880 30.6 1745 15.5 1634 19.4
    9 6.01 6.22 1.61 0.97 0.0649 0.0022 0.5967 0.0202 0.0666 0.0010 772 69.6 475 12.9 416 5.9
    10 4.86 6.39 1.92 0.76 0.0578 0.0016 0.5948 0.0171 0.0746 0.0010 522 61.3 474 10.9 464 6.1
    11 11.0 24.7 7.12 0.45 0.0568 0.0014 0.5947 0.0154 0.0759 0.0010 482 55.3 474 9.8 472 6.0
    12 9.97 10.6 3.16 0.94 0.0619 0.0014 0.6081 0.0141 0.0712 0.0009 672 47.7 482 8.9 443 5.6
    13 7.68 8.72 2.61 0.88 0.0637 0.0016 0.6471 0.0165 0.0736 0.0010 733 52.0 507 10.2 458 5.9
    14 8.30 10.7 2.97 0.78 0.0573 0.0019 0.5659 0.0191 0.0716 0.0010 503 72.7 455 12.4 446 6.2
    15 5.14 15.6 7.18 0.33 0.0648 0.0020 1.1538 0.0354 0.1292 0.0019 767 62.6 779 16.7 783 10.7
    16 5.36 7.22 2.16 0.74 0.0586 0.0018 0.6120 0.0189 0.0758 0.0011 551 65.6 485 11.9 471 6.3
    17 10.2 18.3 19.13 0.56 0.1364 0.0018 5.3943 0.0785 0.2867 0.0036 2182 22.4 1884 12.5 1625 17.8
    18 8.76 11.3 3.07 0.78 0.0625 0.0021 0.5944 0.0196 0.0690 0.0010 691 68.6 474 12.5 430 6.0
    19 9.32 14.0 3.94 0.67 0.0619 0.0014 0.5918 0.0140 0.0693 0.0009 672 48.7 472 8.9 432 5.4
    20 3.27 51.7 12.96 0.06 0.0593 0.0013 0.5554 0.0125 0.0679 0.0009 579 47.0 449 8.2 423 5.2
    21 19.9 30.4 8.86 0.65 0.0574 0.0017 0.5719 0.0169 0.0723 0.0010 505 63.8 459 10.9 450 6.0
    下载: 导出CSV 
    | 显示表格

    大道尔吉辉橄岩与均质辉长岩主量和微量元素分析结果见表2。由于样品经历了较强的蚀变作用,烧失量(LOI)较高(辉橄岩:9.82%~11.10%;辉长岩:1.94%~2.94%),将其扣除后,对样品的主量元素分析结果进行100%无水标准化计算后,再进行讨论与投图分析,以消除蚀变作用对原始岩石成分的影响。

    表  2  大道尔吉辉橄岩与均质辉长岩主量和微量元素含量
    Table  2.  Major and trace element concentrations of pyroxene peridotites and gabbros from the Dadaoerji ophiolite
    元素 dd01 dd02 dd03 dd04 dd05 dd06 dd07 dd08
    辉橄岩 辉橄岩 辉橄岩 辉橄岩 辉长岩 辉长岩 辉长岩 辉长岩
    SiO2 40.00 40.10 39.73 40.92 48.55 47.16 49.48 46.91
    TiO2 0.06 0.03 0.04 0.04 0.32 0.54 0.64 0.10
    Al2O3 1.10 1.79 2.12 1.37 19.36 19.76 21.27 18.03
    TFe2O3 11.02 11.26 9.27 8.65 9.54 9.98 6.89 7.14
    MnO 0.15 0.10 0.11 0.07 0.13 0.15 0.11 0.13
    MgO 33.66 32.89 33.36 33.74 5.10 4.14 3.81 9.11
    CaO 3.74 4.13 3.79 4.35 11.53 12.18 11.65 13.34
    Na2O <0.01 <0.01 <0.01 0.01 2.92 2.28 3.56 1.27
    K2O <0.01 <0.01 0.01 <0.01 0.05 0.03 0.04 0.04
    P2O5 0.01 0.01 0.01 0.01 0.04 0.05 0.10 0.02
    烧失量 11.10 9.82 10.26 10.16 2.16 2.37 1.94 2.94
    总计 100.84 100.13 98.70 99.32 99.70 98.64 99.49 99.03
    Mg# 85.81 85.26 87.69 88.54 51.42 45.10 52.27 71.64
    Li 0.56 0.80 0.94 0.78 1.24 1.04 1.23 1.51
    Be 0.018 0.023 0.026 0.012 0.36 0.30 0.39 0.11
    Sc 37.52 12.21 12.21 33.22 39.97 39.70 15.89 67.08
    V 113.1 97.68 114.4 83.70 302.3 497.1 233.7 199.7
    Cr 3625 6368 10869 3551 42.49 3.34 38.44 131.0
    Co 123.6 146.5 172.9 119.4 43.84 47.29 22.12 45.43
    Ni 1590 2246 2368 1758 24.16 16.21 33.54 70.10
    Cu 23.81 10.44 7.38 5.77 2.08 5.67 2.59 4.59
    Zn 34.74 64.87 119.0 34.94 30.03 36.39 25.62 35.88
    Ga 1.44 2.40 2.63 1.93 17.01 20.03 17.70 13.54
    Rb 0.52 0.050 1.33 0.030 6.93 4.28 4.08 1.60
    Sr 5.32 8.40 10.68 22.18 316.2 364.7 428.1 221.4
    Y 1.49 0.59 0.50 0.60 3.83 3.15 7.49 2.68
    Cd 0.033 0.016 0.029 0.016 0.031 0.025 0.039 0.042
    In 0.005 0.001 0.001 0.002 0.024 0.024 0.010 0.018
    Cs 0.53 0.005 0.004 0.004 0.005 0.005 0.003 0.004
    Ba 1.10 0.75 3.78 0.52 29.15 22.69 40.39 14.95
    Pb 0.45 0.23 0.32 0.093 0.99 0.57 0.65 1.33
    Bi 0.003 0.002 0.003 0.003 0.002 0.036 0.003 0.004
    Th 0.005 0.003 0.004 0.004 0.003 0.005 0.004 0.005
    U 0.005 0.004 0.017 0.003 0.11 0.075 0.15 0.12
    Nb 0.038 0.022 0.041 0.013 0.12 0.17 0.31 0.10
    Ta 0.025 0.013 0.012 0.008 0.009 0.020 0.013 0.012
    Zr 0.74 0.56 0.88 0.39 2.83 2.27 13.64 3.52
    Hf 0.039 0.024 0.036 0.018 0.10 0.081 0.38 0.10
      注:主量元素含量单位为%,微量元素含量单位为10−6
    下载: 导出CSV 
    | 显示表格

    辉橄岩主量元素含量变化较大,SiO2=44.40%~45.89%, Al2O3=1.23%~2.40%,低于地幔岩Al2O3含量(4.45%),CaO=4.17%~4.88%,高于地幔岩CaO含量(3.55%)(McDonough et al., 1995),TFe2O3=9.70%~12.47%,TiO2含量较低,TiO2=0.03%~0.07%。MgO=36.42%~37.84%和Mg# = 85.26%~88.54,低于其下部的地幔橄榄岩(MgO=40.41%~40.96%;Mg#=90~91)(黄增保等,2016)。均质辉长岩SiO2=48.82%~50.72%,Na2O 和K2O 含量较低,Na2O=1.32%~3.65%,K2O=0.03%~0.05%,TiO2=0.10%~0.66%,Al2O3=18.76%~21.80%,MgO=3.91%~9.48%和Mg#=45.10~71.64,低于其下部堆晶旋回中的辉橄岩。均质辉长岩样品在SiO2−(Na2O+K2O)图解中,属亚碱性系列并落入辉长岩范围(图4−a),在SiO2−K2O岩石系列划分图解中,落入低钾拉斑系列区域(图4−b)。

    图  4  大道尔吉辉长岩SiO2−(Na2O+K2O)图解(a,底图据Middlemost, 1994)和SiO2−K2O图解(b,底图据Rollinson, 1993)
    Figure  4.  Total alkali vs. SiO2 (a) and K2O vs. SiO2 (b) diagrams of the Dadaoerji gabbro

    大道尔吉辉橄岩与均质辉长岩的微量和稀土元素分析结果见表2表3。在原始地幔标准化微量元素蛛网图中,辉橄岩与辉长岩显示相对富集大离子亲石元素Rb、Ba、U、Sr,亏损高场强元素Nb、Ta、Zr、Hf,Th明显负异常特征(图5−a)。辉长岩∑REE = 4.21×10−6~12.58×10−6,低于正常洋中脊玄武岩(N-MORB)(53.74×10−6)、富集型洋中脊玄武岩(E-MORB)(77.39×10−6)、亏损型洋中脊玄武岩(D-MORB)(48.54×10−6)及弧后盆地玄武岩(BAB) (48.93×10−6) 的∑REE平均值 (Gale et al., 2013)。在稀土元素球粒陨石标准化配分图中,辉长岩样品表现为LREE略微相对富集,(La/Yb)N = 1.54~2.43,轻、重稀土元素分馏不明显,稀土元素配分模式表现为LREE微弱富集的近平坦型(图5−b)。样品的平坦型曲线区别于 N-MORB 和D-MORB的 LREE 亏损型分布型式,显示出不同于典型N-MORB与D-MORB、向 E-MORB 过渡的性质,与BAB的稀土元素球粒陨石标准化配分型式更为类似(图5−b)。δEu = 1.00~1.22,平均1.10,δCe = 0.99~1.13,平均1.08,轻微正异常。

    图  5  大道尔吉辉橄岩与均质辉长岩微量元素原始地幔标准化蜘蛛图(a)和均质辉长岩稀土元素球粒陨石标准化配分图(b)(原始地幔标准化数据据Sun et al., 1989,球粒陨石标准化数据据Boynton, 1984,4类玄武岩稀土数据及3种MORB定义据Gale et al., 2013
    N-MORB—正常洋中脊玄武岩 (LaN/SmN<1);D-MORB—亏损型洋中脊玄武岩 (LaN/SmN<0.8);E-MORB—富集型洋中脊玄武岩 (LaN/SmN>1.5);BAB—弧后盆地玄武岩
    Figure  5.  Primitive mantle-normalized trace element spider diagram of the Dadaoerji pyroxene peridotites and gabbros (a) and chondrite-normalized REE patterns diagram of the Dadaoerji gabbros (b)
    表  3  大道尔吉均质辉长岩稀土元素含量
    Table  3.  REE composition of the Dadaoerji gabbros 10−6
    样号 dd05 dd06 dd07 dd08
    La 0.72 0.51 1.27 0.41
    Ce 2.03 1.24 3.69 1.20
    Pr 0.26 0.17 0.48 0.15
    Nd 1.23 0.90 2.70 0.83
    Sm 0.30 0.28 0.67 0.26
    Eu 0.11 0.10 0.33 0.10
    Gd 0.34 0.33 0.98 0.29
    Tb 0.069 0.065 0.16 0.064
    Dy 0.41 0.39 1.05 0.38
    Ho 0.079 0.074 0.17 0.073
    Er 0.22 0.21 0.51 0.20
    Tm 0.038 0.036 0.076 0.034
    Yb 0.20 0.18 0.43 0.18
    Lu 0.031 0.032 0.074 0.032
    ∑REE 6.03 4.52 12.58 4.21
    ∑LREE 4.65 3.20 9.13 2.95
    ∑HREE 1.38 1.32 3.45 1.25
    LREE/HREE 3.37 2.43 2.65 2.36
    δEu 1.06 1.00 1.22 1.11
    δCe 1.10 0.99 1.11 1.13
    (La/Yb)N 2.43 1.91 2.00 1.54
    下载: 导出CSV 
    | 显示表格

    本次研究的辉橄岩与辉长岩样品具有较高的烧失量(1.94%~11.10%),说明经历了一定程度的蚀变。主量元素中Mg、Fe、Al、Ti、P等相对稳定,K、Na相对具有活动性,微量元素中的大离子亲石元素Rb、Ba等在蚀变过程中具有不稳定性,但高场强元素Nb、Ta、Zr、Hf、Th,以及稀土元素等在蚀变过程中具有稳定性(Qiang et al., 2006; Dilek et al., 2011; Yong et al., 2013)。因此,重点利用此类稳定性元素示踪岩石物质来源、源区性质及岩浆作用过程。

    大道尔吉镁铁—超镁铁质堆晶岩系中均质辉长岩样品在微量元素原始地幔标准化蜘蛛图与稀土元素球粒陨石标准化配分图中,配分曲线模式均一致(图5),只是元素含量有差异,表明辉长岩样品可能为同源岩浆演化的产物。通常而言,不易受后期热液蚀变改造的高场强元素Zr、Nb与重稀土元素Yb之间的比值,可作为判断地幔富集、俯冲作用影响程度的重要依据(Pearce et al., 1973; Sun et al., 1989)。所测辉橄岩Zr/Nb值为19.23~30.84,平均24.07,辉长岩Zr/Nb值为13.63~44.16,平均28.70,均位于亏损地幔值(>18)(Roex et al., 1983)范围内。辉长岩Nb/Yb值为0.57~0.92,平均0.71,大多数样品Nb/Yb值略低于N-MORB的值(0.76,Sun et al., 1989)(图6−a),暗示辉橄岩与辉长岩源区为亏损地幔源区。

    图  6  大道尔吉均质辉长岩Nb /Yb-Th /Yb 图解(a,底图据Pearce, 2008)和辉橄岩与均质辉长岩Th/Nb-Ba/Th图解(b) (底图据Elliott et al., 1997
    N-MORB—正常洋中脊玄武岩 (LaN/SmN<1);E-MORB—富集型洋中脊玄武岩 (LaN/SmN>1.5);OIB—洋岛玄武岩;SSZ—俯冲带之上(SSZ定义据 Pearce et al., 1984
    Figure  6.  Nb/Yb−Th/Yb diagram of the Dadaoerji gabbros (a) and Th/Nb-Ba/Th diagram of the Dadaoerji gabbros and pyroxene peridotites (b)

    大离子亲石元素Rb、Ba、U、Sr等流体相容元素在辉橄岩及均质辉长岩中相对富集(图5−a),暗示岩浆源区存在俯冲组分的影响 (Pearce, 2014)。通常认为,与俯冲流体交代作用相关的岩浆Th/Yb值往往低于1 (Woodhead et al., 2001; Nebel et al., 2007)。本次所测辉长岩Th /Yb 值为0.01~0.03,均值为0.02。在Nb/Yb−Th/Yb图解(图6−a)中,辉长岩样品投点位于MORB-SSZ趋势带范围内,更接近于N-MORB,且有向SSZ偏移的趋势,暗示辉长岩存在俯冲组分的影响。同时,板片流体的交代作用可导致岩浆作用产物形成高的Sr/Nd值 (Pearce, 2014),辉长岩样品Sr/Nd值为158.8~407.0,平均271.9,明显高于N-MORB(12.33)(Sun et al., 1989),同样表明辉长岩在形成过程中可能遭受明显的俯冲板片流体作用影响。此外,利用Th/Nb-Ba/Th 图解(图6−b)可有效识别俯冲交代物质中是含水流体或是俯冲带沉积物,辉橄岩与辉长岩Ba/Th值的变化范围(131~10097)远大于Th/Nb值的变化范围(0.01~0.32)(图6−b),也揭示大道尔吉辉橄岩与均质辉长岩源区受俯冲流体交代作用影响,且受俯冲带大洋沉积物影响相对较弱。

    利用基性岩浆岩的稀土元素含量与比值,可有效限定幔源岩浆岩的源区物质组成和部分熔融程度(Aldanmaz et al., 2000)。若岩石圈地幔中的尖晶石二辉橄榄岩发生部分熔融,地幔残留体与熔体具备很接近的Sm/Yb值,而随着地幔源区部分熔融程度的增高,La/Sm值则降低(Aldanmaz et al., 2000)。Xu et al.(2001)利用Dy、Yb、La等稳定元素间比值表征了岩石源区形成特征,本文所测大道尔吉均质辉长岩在Dy/Yb-La/Yb图解中落入尖晶石二辉橄榄岩区域(图7−a),显示岩浆源区为岩石圈地幔尖晶石二辉橄榄岩,经历了20%~30%的部分熔融。在La/Sm−Sm/Yb图解(图7−b)中,均质辉长岩的La/Sm值变化范围远大于Sm/Yb值变化范围,且Sm/Yb值变化范围微弱,表明均质辉长岩岩浆源区物质以尖晶石二辉橄榄岩为主,具有亏损型地幔向富集型地幔过渡的适度亏损型地幔源区特征。此外,由于HREE在部分熔融过程中与石榴子石具有相容性,若源于石榴子石相的原生岩浆形成的岩浆产物,通常会亏损HREE,而大道尔吉均质辉长岩在稀土元素球粒陨石标准化配分图中表现为近平坦型配分模式,HREE无亏损,也可排除源区物质为石榴子石二辉橄榄岩的可能。

    图  7  大道尔吉均质辉长岩La/Yb−Dy/Yb图解(a,底图据武勇等,2018修改)与La/Sm−Sm/Yb源区判别图解(b,底图据Aldanmaz et al., 2000修改)
    N-MORB—正常洋中脊玄武岩;DM—亏损地幔;PM—原始地幔
    Figure  7.  La/Yb−Dy/Yb diagram (a) and La/Sm−Sm/Yb diagram (b) of the Dadaoerji Gabbros

    大道尔吉辉橄岩中年龄较老的锆石可能来自于受俯冲作用影响的地幔源区,俯冲作用携带壳源物质进入上地幔,地幔源区中可能保留了俯冲的壳源物质,源区经历过壳源物质混染作用。本次发现的少部分年龄值偏高的锆石(2556~783 Ma)形成年龄远老于蛇绿岩的形成年龄(460 ± 15 Ma)。锆石形态结构具有多样性、不同范围的Th/U值及较分散的年龄值,进一步表明锆石形成背景的复杂性与多源性。锆石复杂的年代学结果,也反映辉橄岩经历了多阶段地质演化历史。前人研究表明,多地蛇绿岩内部的基性和超基性岩中锆石年龄也同样较分散(Yamamoto et al., 2013; Robinson et al., 2015; 徐向珍等,2016),如Oman蛇绿岩中锆石年龄分布范围为1411~84 Ma,西藏东巧蛇绿岩中锆石年龄分布范围为2695~484 Ma(Robinson et al., 2015)。这些年龄均被理解为,俯冲作用将壳源物质带入上地幔,并通过岩浆作用循环至新生蛇绿岩中,使蛇绿岩中可存在壳源继承锆石(Yamamoto et al., 2013; Robinson et al., 2015)。徐向珍等(2016)对西藏罗布莎蛇绿岩铬铁矿矿体近矿围岩纯橄岩和方辉橄榄岩进行了锆石SHRIMP U−Pb年龄研究,发现样品年龄值非常发散,认为是岩石地幔源区经历了地壳混染过程,并揭示了一个壳源物质俯冲至地幔,之后由大洋中脊返回至地表的壳幔物质循环过程。

    此外,大道尔吉辉橄岩与辉长岩Nb−Ta亏损特征可能是由于地幔源区遭受了壳源物质混染作用,为岩浆源区地球化学特征的继承。两类岩石在微量元素原始地幔标准化蛛网图中,均具有明显的Nb−Ta亏损特征(图5−a),类似于典型岛弧玄武岩的特征(Li et al., 2015) 。由于与俯冲作用相关的岩浆产物通常具有Nb−Ta亏损的特征(Class and Le Roex, 2008),且全球地壳的整体平均成分显著富集轻稀土元素和作为地壳物质富集程度的指示元素Th,相对原始地幔明显亏损Nb−Ta(Rudnick and Gao, 2014)。所以,幔源岩浆后期上升侵位演化过程中如果发生明显的壳源物质混染,也会表现出亏损Nb−Ta,且富集轻稀土元素和Th的特征。然而,大道尔吉辉长岩在稀土元素球粒陨石标准化图解上表现为轻稀土元素(LREE)微弱富集的近平坦型(图5−b),且两类岩石均具有明显的Th负异常特征(图5−a)。这种两类岩石相对原始地幔Nb−Ta亏损,却具有明显Th负异常及辉长岩球粒陨石标准化轻稀土元素成平坦型的解耦关系,难以用普通地壳混染机制来解释,可能存在特殊混染机制。祁连造山带南缘地区地幔源区经历了大规模的古生代柴北缘洋向北俯冲交代作用(Yang et al., 2002; Xu et al., 2006),笔者认为最合理的推测是地幔源区混染机制,而岩浆侵位过程中可能未遭受明显的壳源物质混染作用。上述元素地球化学特征是对辉橄岩及均质辉长岩岩浆源区特征的继承,此观点也同样支持辉橄岩中年龄较老的锆石可能来源于地幔源区,老锆石为继承锆石的推论。

    通常认为,深部岩浆在上升侵位过程中如遭受地壳混染,岩浆产物会形成大离子亲石元素、轻稀土元素的富集及Th、U、Zr、Hf正异常的特征(Rudnick and Gao, 2014; Taylor and Mclennan, 1985)。如前文所述,大道尔吉均质辉长岩在微量元素原始地幔标准化蜘蛛图中具有显著的Th、Hf和Zr的负异常特征(图5−a),且稀土元素球粒陨石标准化图解上具有近平坦型配分模式(图5−b)。此外,总分配系数接近或相同的元素比值因不受矿物结晶分异与部分熔融的影响,也可作为判断地壳混染及混染程度的依据。均质辉长岩的Th/La值范围为0.003~0.012,平均0.007,远低于大陆地壳Th/La值0.3(Plank, 2005)。若岩浆上升侵位作用过程中发生地壳物质混染,La/Sm值则会快速变大,而所测均质辉长岩样品La/Sm值范围为1.58~2.40,小于陆壳La/Sm值5(Plank, 2005),Lu/Y=0.008~0.012,平均0.01,也远低于大陆地壳的分布范围0.16~0.18(Rudnick and Gao, 2014)。因此,认为可基本排除幔源岩浆在上升侵位过程中发生了显著的地壳混染作用。

    关于蛇绿岩形成的构造环境,普遍认为只有少数蛇绿岩是大洋中脊(MOR)扩张的产物,而大部分蛇绿岩是在板块俯冲消减带(SSZ)之上形成的(Pearce, 2008Dilek and Furnes, 2014宋述光等,2019杨高学等,2023)。2种构造环境下形成的蛇绿岩首先在岩石组合上会存在一定差异。大洋中脊环境中形成的蛇绿岩多发育厚层枕状熔岩及岩墙群,其下部的镁铁—超镁铁质堆晶岩系通常发育较差,而俯冲带环境中形成的蛇绿岩发育厚层状镁铁—超镁铁质堆晶岩系,且不发育其上部的枕状熔岩和岩墙群(Pearce et al., 1984)。大道尔吉蛇绿岩型铬铁矿矿区由北至南,从蛇绿岩底部到顶部发育有600~800 m厚层状镁铁—超镁铁质堆晶岩系(图1−b, c, d),且枕状熔岩和岩墙群在矿区内不发育(鲍佩声等,1989)。大道尔吉铬铁矿矿区岩石组合与岩相学特征表明,大道尔吉蛇绿岩具有俯冲带型(SSZ)蛇绿岩特征(黄增保等,2016)。

    大道尔吉均质辉长岩在主量元素图解中,显示为亚碱性系列中的低钾拉斑系列(图4−a, b),可基本排除板内构造环境(如洋岛、大陆裂谷),可能为岛弧、洋中脊或弧后盆地环境。微量元素中化学性质接近的元素比值通常不受结晶分异作用影响,可作为示踪岩浆源区与构造环境的重要依据。大道尔吉均质辉长岩的Lu/Yb值范围为0.16~0.18(平均0.17),与MORB(0.15)基本一致(Sun et al., 1989; Gale et al., 2013)。在球粒陨石标准化稀土元素配分图解中,辉长岩呈平坦式分布,与典型大洋中脊玄武岩(N-MORB)类似,而轻稀土元素有略微富集,稍向E-MORB过渡的特征(图5−b),轻稀土元素的略微富集可能由于后期洋壳俯冲过程中的流体交代作用所致。TiO2含量为0.03%~0.64%,平均0.22%,低于N-MORB TiO2平均含量1.53%(Gale et al., 2013),与岛弧玄武岩(IAB)(0.58%~0.85%)(Pearce and Cann, 1973)更接近,部分高场强元素比值如Nb/La(0.17~0.33)也与岛弧玄武岩(IAB)Nb/La值(0.37)(Pearce and Cann, 1973)相似,暗示大道尔吉均质辉长岩具有非典型的大洋中脊特征,同时具有与俯冲带相关的亲缘性。

    另外,在微量元素原始地幔标准化蜘蛛图中,相对于N-MORB,大道尔吉均质辉长岩明显具有Rb,Ba富集,U正异常,而具有Nb、Ta亏损特征,显示为俯冲带岩浆特征,表明均质辉长岩与俯冲带具有亲缘性。且在微量元素原始地幔标准化蜘蛛图和稀土元素球粒陨石标准化配分图中,均质辉长岩的微量元素配分模式与弧后盆地玄武岩(BAB)更接近(图5−a),暗示大道尔吉均质辉长岩形成的构造环境可能为与俯冲带相关的弧后盆地拉张构造环境。

    上述地球化学特征表明,大道尔吉均质辉长岩所形成的构造环境既非典型的正常大洋中脊玄武岩(N-MORB),也不同于典型的岛弧玄武岩(IAB)。在目前已知的全球大地构造环境中,只有在俯冲消减带之上,与弧后盆地扩张有关的一套俯冲岩石圈地幔加新生洋壳组合才具备这种既具有N-MORB又具备IAB的复杂地球化学特征(Shinjo et al., 1999; Hawkins, 2003)。一般认为,俯冲带岩浆主要由俯冲板片脱水熔融产生流/熔体交代上部地幔楔,致使地幔楔发生部分熔融(Todd et al., 2012),亦为弧后盆地火山岩的重要特征(Pearce, 2014),在弧后盆地环境中形成的蛇绿岩可同时具有大洋中脊和岛弧(IA)特征(Shinjo et al., 1999张旗和周国庆,2001)。大道尔吉均质辉长岩形成的理想模式是在成熟岛弧基础上发生裂解作用,形成一个扩张环境下的次级弧后盆地,具有非典型的现代大洋或盆地的洋壳-上地幔岩性组合,在弧后盆地扩张初期的玄武质岩浆具有岛弧玄武岩特征,而后随着扩张洋盆的进一步发展,玄武质岩浆又具有正常大洋中脊玄武岩特征。

    综上,结合岩石组合、岩石地球化学、源区特征等认为,大道尔吉均质辉长岩兼具洋脊玄武岩与岛弧玄武岩的地球化学特征(低钾、钛),岩浆作用过程中受洋脊扩张和俯冲消减作用共同影响,应在弧后盆地拉张构造环境下形成。

    大道尔吉辉橄岩锆石U−Pb年龄为460 ± 15 Ma,与获得的堆晶岩系中辉石橄榄岩Sm−Nd等时线年龄在误差范围内一致(441 ± 58 Ma; 黄增保等,2016),为中奥陶世晚期。区域上其东部的拉脊山蛇绿岩中辉绿岩锆石U−Pb年龄为491 ± 5.1 Ma(付长垒等,2014),变质橄榄岩Re-Os同位素年龄为495 ± 9 Ma(Zhao et al., 2019),均为晚寒武世,形成年代早于大道尔吉蛇绿岩。

    结合南祁连地区区域地质特征与前人对南祁连及邻区的研究成果,认为南祁连早古生代构造演化如下:①晚寒武世—早奥陶世,随着柴北缘洋沿SW—NE向向中祁连地块俯冲,在区域上形成了一套岛弧火山-沉积建造即滩间山群(袁桂邦等,2002高晓峰等,2011),在傲崂山及绿梁山一带发育挤压背景下的钙碱性岛弧性质I型花岗岩、钙碱性I型花岗岩(吴才来等,2008齐瑞荣,2012)及柴北缘高压—超高压变质岩带(许志琴等,2003),期间俯冲板片拖曳软流圈,引起位于岛弧及弧后的深部地幔楔物质补充性对流循环,导致深部岩浆上升-岛弧地壳拉张裂谷化(黄增保等,2016),形成了南祁连东侧拉脊山洋及西侧党河南山洋,其中晚寒武世于南祁连东段形成了拉脊山小洋盆,之后洋盆向西裂解,洋盆裂解具有“东早西晚”特点(陶刚,2018);②奥陶纪俯冲作用持续,早—中奥陶世,在党河南山地区形成了一套裂解背景下的双峰式火山岩岩系-吾力沟组(冯益民和何世平,1996夏林圻等,1998邱家骧等,1998),中—晚奥陶世南祁连东、西两侧的2个古洋以俯冲作用为主(陶刚,2018),大道尔吉均质辉长岩与同时代的下部堆晶岩系,上部火山熔岩应在中奥陶世晚期—晚奥陶世弧后扩张构造背景下形成(黄增保等,2016);③晚奥陶世末—中志留世柴北缘洋闭合,柴北缘高压—超高压变质作用于458~420 Ma期间发展至顶峰(Song et al., 2004, 2006; Mattinson et al., 2006; 陈丹玲等,2007Zhang et al., 2009),区域上发育有碰撞背景下的S型花岗岩(吴才来等,2008)及埃达克岩(Yu et al., 2012; Song et al., 2014b),同期南祁连弧后盆地洋盆停止拉张作用,沉积形成了一套以巴龙贡噶尔组为主的含笔石化石厚层状海盆相复理石建造(张国英和丁书宏,2004);④晚志留世—泥盆纪,柴达木地块与中祁连地块汇聚碰撞,高压—超高压变质岩于440~400 Ma折返地表(许志琴等,2003),同期大道尔吉蛇绿岩沿党河断裂逆冲于中祁连地块之上,最终侵位于地表(鲍佩声和王希斌,1989黄增保等,2016)。

    (1)甘肃大道尔吉辉橄岩LA−ICP−MS锆石U−Pb年龄为460 ± 15 Ma,表明蛇绿岩形成时代为中奥陶世晚期。

    (2)大道尔吉均质辉长岩岩浆源区为适度亏损型尖晶石二辉橄榄岩岩石圈地幔,源区受俯冲板片流体交代作用和较复杂的壳源物质混染作用影响,经历了20%~30%程度的部分熔融,岩浆上升侵位过程中地壳混染作用不明显。此外,辉橄岩中偏老年龄的锆石可能来自受壳源物质混染的岩浆源区,岩浆源区中保留了俯冲的壳源物质。

    (3)大道尔吉蛇绿岩形成于柴北缘洋向中祁连地块俯冲背景下的弧后盆地构造环境。结合区域地质及构造演化特征,认为南祁连早古生代整体上受柴北缘洋向中祁连地块俯冲-闭合-碰撞作用影响。

    致谢:长安大学杨高学教授和审稿专家对本文提出了宝贵的指导性意见,文章修改过程中,得到了兰州大学杨帆、赵姣龙老师和王小东博士的有益指导和交流,班舒悦同学协助清绘了区域地质图初稿,在此一并致以诚挚的谢意。

  • 图  1   南祁连大道尔吉蛇绿岩地质简图(a, b)、成矿岩体岩相地质简图(c)和岩体东段柱状剖面简图(d)(据苟国朝等,1994黄增保,2012黄增保等,2016修改)

    Figure  1.   Geological sketch maps (a, b), lithofacies of ore forming intrusive rock (c) and eastern end columnar section (d) of the Dadaoerji ophiolite

    图  2   大道尔吉辉橄岩和辉长岩野外与镜下照片

    a—辉橄岩野外照片;b—辉橄岩正交偏光镜下照片;c, d—均质辉长岩野外照片;e—均质辉长岩单偏光镜下照片;f—均质辉长岩正交偏光镜下照片。Ol—橄榄石; Cpx—单斜辉石;Pl—斜长石;Hb—角闪石;Bi—黑云母

    Figure  2.   Photos of outcrops and photomicrographs of the pyroxene peridotites (a, b) and gabbros (c~f) in the Dadaoerji

    图  3   大道尔吉辉橄岩部分锆石阴极发光(CL)图像(a)、LA−ICP−MS U−Pb谐和图(b, c)和年龄分布直方图(d)

    Figure  3.   Part of zircon CL images (a), zircons LA−ICP−MS U−Pb concordia diagram (b, c)and weighted average result(d)for the Dadaoerji pyroxene peridotite

    图  4   大道尔吉辉长岩SiO2−(Na2O+K2O)图解(a,底图据Middlemost, 1994)和SiO2−K2O图解(b,底图据Rollinson, 1993)

    Figure  4.   Total alkali vs. SiO2 (a) and K2O vs. SiO2 (b) diagrams of the Dadaoerji gabbro

    图  5   大道尔吉辉橄岩与均质辉长岩微量元素原始地幔标准化蜘蛛图(a)和均质辉长岩稀土元素球粒陨石标准化配分图(b)(原始地幔标准化数据据Sun et al., 1989,球粒陨石标准化数据据Boynton, 1984,4类玄武岩稀土数据及3种MORB定义据Gale et al., 2013

    N-MORB—正常洋中脊玄武岩 (LaN/SmN<1);D-MORB—亏损型洋中脊玄武岩 (LaN/SmN<0.8);E-MORB—富集型洋中脊玄武岩 (LaN/SmN>1.5);BAB—弧后盆地玄武岩

    Figure  5.   Primitive mantle-normalized trace element spider diagram of the Dadaoerji pyroxene peridotites and gabbros (a) and chondrite-normalized REE patterns diagram of the Dadaoerji gabbros (b)

    图  6   大道尔吉均质辉长岩Nb /Yb-Th /Yb 图解(a,底图据Pearce, 2008)和辉橄岩与均质辉长岩Th/Nb-Ba/Th图解(b) (底图据Elliott et al., 1997

    N-MORB—正常洋中脊玄武岩 (LaN/SmN<1);E-MORB—富集型洋中脊玄武岩 (LaN/SmN>1.5);OIB—洋岛玄武岩;SSZ—俯冲带之上(SSZ定义据 Pearce et al., 1984

    Figure  6.   Nb/Yb−Th/Yb diagram of the Dadaoerji gabbros (a) and Th/Nb-Ba/Th diagram of the Dadaoerji gabbros and pyroxene peridotites (b)

    图  7   大道尔吉均质辉长岩La/Yb−Dy/Yb图解(a,底图据武勇等,2018修改)与La/Sm−Sm/Yb源区判别图解(b,底图据Aldanmaz et al., 2000修改)

    N-MORB—正常洋中脊玄武岩;DM—亏损地幔;PM—原始地幔

    Figure  7.   La/Yb−Dy/Yb diagram (a) and La/Sm−Sm/Yb diagram (b) of the Dadaoerji Gabbros

    表  1   大道尔吉辉橄岩LA−ICP−MS锆石U−Th−Pb分析结果

    Table  1   LA−ICP−MS zircon U−Pb data of the Dadaoerji pyroxene peridotite

    测点号 元素含量/10−6 Th/U 同位素比值 同位素年龄/Ma
    Th U Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 6.26 13.1 10.87 0.48 0.0988 0.0015 3.2078 0.0526 0.2353 0.0030 1602 27.6 1459 12.7 1362 15.5
    2 6.54 12.7 17.37 0.52 0.1501 0.0018 7.4064 0.1028 0.3577 0.0044 2347 20.4 2162 12.4 1971 20.9
    3 6.37 8.73 2.35 0.73 0.0614 0.0030 0.5968 0.0290 0.0704 0.0012 654 101.7 475 18.4 439 7.3
    4 4.43 9.65 7.37 0.46 0.0953 0.0015 2.6362 0.0459 0.2006 0.0026 1533 30.0 1311 12.8 1179 13.8
    5 1.89 4.64 1.18 0.41 0.0658 0.0030 0.5933 0.0264 0.0654 0.0011 800 91.2 473 16.8 408 6.6
    6 7.25 12.4 20.38 0.59 0.1698 0.0020 10.1783 0.1363 0.4346 0.0053 2556 19.1 2451 12.4 2326 23.8
    7 11.1 19.2 12.77 0.58 0.0806 0.0013 1.9629 0.0344 0.1765 0.0022 1212 31.7 1103 11.8 1048 12.2
    8 1.92 4.42 4.90 0.43 0.1150 0.0020 4.5775 0.0849 0.2885 0.0039 1880 30.6 1745 15.5 1634 19.4
    9 6.01 6.22 1.61 0.97 0.0649 0.0022 0.5967 0.0202 0.0666 0.0010 772 69.6 475 12.9 416 5.9
    10 4.86 6.39 1.92 0.76 0.0578 0.0016 0.5948 0.0171 0.0746 0.0010 522 61.3 474 10.9 464 6.1
    11 11.0 24.7 7.12 0.45 0.0568 0.0014 0.5947 0.0154 0.0759 0.0010 482 55.3 474 9.8 472 6.0
    12 9.97 10.6 3.16 0.94 0.0619 0.0014 0.6081 0.0141 0.0712 0.0009 672 47.7 482 8.9 443 5.6
    13 7.68 8.72 2.61 0.88 0.0637 0.0016 0.6471 0.0165 0.0736 0.0010 733 52.0 507 10.2 458 5.9
    14 8.30 10.7 2.97 0.78 0.0573 0.0019 0.5659 0.0191 0.0716 0.0010 503 72.7 455 12.4 446 6.2
    15 5.14 15.6 7.18 0.33 0.0648 0.0020 1.1538 0.0354 0.1292 0.0019 767 62.6 779 16.7 783 10.7
    16 5.36 7.22 2.16 0.74 0.0586 0.0018 0.6120 0.0189 0.0758 0.0011 551 65.6 485 11.9 471 6.3
    17 10.2 18.3 19.13 0.56 0.1364 0.0018 5.3943 0.0785 0.2867 0.0036 2182 22.4 1884 12.5 1625 17.8
    18 8.76 11.3 3.07 0.78 0.0625 0.0021 0.5944 0.0196 0.0690 0.0010 691 68.6 474 12.5 430 6.0
    19 9.32 14.0 3.94 0.67 0.0619 0.0014 0.5918 0.0140 0.0693 0.0009 672 48.7 472 8.9 432 5.4
    20 3.27 51.7 12.96 0.06 0.0593 0.0013 0.5554 0.0125 0.0679 0.0009 579 47.0 449 8.2 423 5.2
    21 19.9 30.4 8.86 0.65 0.0574 0.0017 0.5719 0.0169 0.0723 0.0010 505 63.8 459 10.9 450 6.0
    下载: 导出CSV

    表  2   大道尔吉辉橄岩与均质辉长岩主量和微量元素含量

    Table  2   Major and trace element concentrations of pyroxene peridotites and gabbros from the Dadaoerji ophiolite

    元素 dd01 dd02 dd03 dd04 dd05 dd06 dd07 dd08
    辉橄岩 辉橄岩 辉橄岩 辉橄岩 辉长岩 辉长岩 辉长岩 辉长岩
    SiO2 40.00 40.10 39.73 40.92 48.55 47.16 49.48 46.91
    TiO2 0.06 0.03 0.04 0.04 0.32 0.54 0.64 0.10
    Al2O3 1.10 1.79 2.12 1.37 19.36 19.76 21.27 18.03
    TFe2O3 11.02 11.26 9.27 8.65 9.54 9.98 6.89 7.14
    MnO 0.15 0.10 0.11 0.07 0.13 0.15 0.11 0.13
    MgO 33.66 32.89 33.36 33.74 5.10 4.14 3.81 9.11
    CaO 3.74 4.13 3.79 4.35 11.53 12.18 11.65 13.34
    Na2O <0.01 <0.01 <0.01 0.01 2.92 2.28 3.56 1.27
    K2O <0.01 <0.01 0.01 <0.01 0.05 0.03 0.04 0.04
    P2O5 0.01 0.01 0.01 0.01 0.04 0.05 0.10 0.02
    烧失量 11.10 9.82 10.26 10.16 2.16 2.37 1.94 2.94
    总计 100.84 100.13 98.70 99.32 99.70 98.64 99.49 99.03
    Mg# 85.81 85.26 87.69 88.54 51.42 45.10 52.27 71.64
    Li 0.56 0.80 0.94 0.78 1.24 1.04 1.23 1.51
    Be 0.018 0.023 0.026 0.012 0.36 0.30 0.39 0.11
    Sc 37.52 12.21 12.21 33.22 39.97 39.70 15.89 67.08
    V 113.1 97.68 114.4 83.70 302.3 497.1 233.7 199.7
    Cr 3625 6368 10869 3551 42.49 3.34 38.44 131.0
    Co 123.6 146.5 172.9 119.4 43.84 47.29 22.12 45.43
    Ni 1590 2246 2368 1758 24.16 16.21 33.54 70.10
    Cu 23.81 10.44 7.38 5.77 2.08 5.67 2.59 4.59
    Zn 34.74 64.87 119.0 34.94 30.03 36.39 25.62 35.88
    Ga 1.44 2.40 2.63 1.93 17.01 20.03 17.70 13.54
    Rb 0.52 0.050 1.33 0.030 6.93 4.28 4.08 1.60
    Sr 5.32 8.40 10.68 22.18 316.2 364.7 428.1 221.4
    Y 1.49 0.59 0.50 0.60 3.83 3.15 7.49 2.68
    Cd 0.033 0.016 0.029 0.016 0.031 0.025 0.039 0.042
    In 0.005 0.001 0.001 0.002 0.024 0.024 0.010 0.018
    Cs 0.53 0.005 0.004 0.004 0.005 0.005 0.003 0.004
    Ba 1.10 0.75 3.78 0.52 29.15 22.69 40.39 14.95
    Pb 0.45 0.23 0.32 0.093 0.99 0.57 0.65 1.33
    Bi 0.003 0.002 0.003 0.003 0.002 0.036 0.003 0.004
    Th 0.005 0.003 0.004 0.004 0.003 0.005 0.004 0.005
    U 0.005 0.004 0.017 0.003 0.11 0.075 0.15 0.12
    Nb 0.038 0.022 0.041 0.013 0.12 0.17 0.31 0.10
    Ta 0.025 0.013 0.012 0.008 0.009 0.020 0.013 0.012
    Zr 0.74 0.56 0.88 0.39 2.83 2.27 13.64 3.52
    Hf 0.039 0.024 0.036 0.018 0.10 0.081 0.38 0.10
      注:主量元素含量单位为%,微量元素含量单位为10−6
    下载: 导出CSV

    表  3   大道尔吉均质辉长岩稀土元素含量

    Table  3   REE composition of the Dadaoerji gabbros 10−6

    样号 dd05 dd06 dd07 dd08
    La 0.72 0.51 1.27 0.41
    Ce 2.03 1.24 3.69 1.20
    Pr 0.26 0.17 0.48 0.15
    Nd 1.23 0.90 2.70 0.83
    Sm 0.30 0.28 0.67 0.26
    Eu 0.11 0.10 0.33 0.10
    Gd 0.34 0.33 0.98 0.29
    Tb 0.069 0.065 0.16 0.064
    Dy 0.41 0.39 1.05 0.38
    Ho 0.079 0.074 0.17 0.073
    Er 0.22 0.21 0.51 0.20
    Tm 0.038 0.036 0.076 0.034
    Yb 0.20 0.18 0.43 0.18
    Lu 0.031 0.032 0.074 0.032
    ∑REE 6.03 4.52 12.58 4.21
    ∑LREE 4.65 3.20 9.13 2.95
    ∑HREE 1.38 1.32 3.45 1.25
    LREE/HREE 3.37 2.43 2.65 2.36
    δEu 1.06 1.00 1.22 1.11
    δCe 1.10 0.99 1.11 1.13
    (La/Yb)N 2.43 1.91 2.00 1.54
    下载: 导出CSV
  • Abati J, Dunning G R, Arenas R, et al. 1999. Early Ordovician orogenic event in Galicia (NW Spain): Evidence from U−Pb ages in the uppermost unit of the Ordenes Complex[J]. Earth and Planetary Science Letters, 165(2): 213−228. doi: 10.1016/S0012-821X(98)00268-4

    Aldanmaz E, Pearce J A, Thirlwall M F, et al. 2000. Petrogenetic evolution of Late Cenozoic, post−collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 102(1/2): 67−95. doi: 10.1016/S0377-0273(00)00182-7

    Bao P S, Wang X B. 1989. Some new ideas on the genesis of the Dadaoerji chromite deposit[J]. Mineral Deposits, 8(1): 3−18 (in Chinese with English abstract).

    Belousova E A, Gonzalez Jimenez J M, Graham I, et al. 2015. The enigma of crustal zircons in upper−mantle rocks: Clues from the Tumut ophiolite, southeast Australia[J]. Geology, 43(2): 119−122. doi: 10.1130/G36231.1

    Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier: 63–114.

    Chen B, Zhu Y F. 2014. Magmatism and metamorphism of gabbro in Ophiolite: A Review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 226–237 (in Chinese with English abstract).

    Chen D L, Sun Y, Liu L. 2007. The metamorphic ages of the country rock of the Yukahe eclogites in the North Qaidam and its geological significance[J]. Earth Science Frontiers, 14(1): 108−116 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60005-0

    Class C, Roex A P. 2008. Ce anomalies in gough island lavas−trace element characteristics of a recycled sediment component[J]. Earth and Planetary Science Letters, 265: 475−486. doi: 10.1016/j.jpgl.2007.10.030

    Coleman R G. 1977. Ophiolites: Ancient oceanic lithosphere[M]. Berlin Heidelberg: Springer−Verlag.

    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3/4): 387−411. doi: 10.1130/B30446.1

    Dilek Y, Furnes H. 2014. Ophiolite and their origins[J]. Elements, 10(2): 93−100. doi: 10.2113/gselements.10.2.93

    Dong X Y, Li J M. 1981. Tectonism during metallization of Dadaoerji chromite deposit in Northwest China[J]. Northwestern Geology, 2(1): 23–39 (in Chinese with English abstract).

    Dunning G R, Pedersen R B. 1988. U/Pb ages of ophiolites and arc−related plutons of the Norwegian Caledonides: Implications for the development of Iapetus[J]. Contributions to Mineralogy and Petrology, 98(1): 13−23. doi: 10.1007/BF00371904

    Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research Solid Earth, 102: 14991−15019. doi: 10.1029/97JB00788

    Feng Y M, He S P. 1996. Geotectonics and orogeny of the Qilian Mountains [M]. Beijing: Geological Publishing House (in Chinese).

    Fu C L, Yan Z, Guo X Q, et al. 2014. Geochemistry and SHRIMP zircon U−Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane[J]. Acta Petrologica Sinica, 30(6): 1695-1706 (in Chinese with English abstract).

    Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts[J]. Geochem. Geophys. Geosyst., 14(3): 489–518.

    Gao X F, Xiao P X, Jia Q Z. 2011. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of Basalts from the margin of the Qaidam Basin[J]. Acta Geologica Sinica, 85(9): 1452−1463 (in Chinese with English abstract).

    Hawkins J W. 2003. Geology of supra−subduction zones−Implications for the origin of ophiolites[J]. Geological Society of America Special Papers, 373: 227−268.

    Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 53: 27-62.

    Hu W L, Hou R N, Zhang C et al. 2016a. Geochemical characteristics and tectonic implications of basaltic porphyry in the western segment of the central Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 52(3): 287-294 (in Chinese with English abstract).

    Hu W L, Jia Z L, Wang J R, et al. 2016b. Geochronology and geochemistry characteristics of the granites from the Huashigou area, South Qilian and their tectonic significance[J]. Geological Journal of China Universities, 22(2): 242-253 (in Chinese with English abstract).

    Huang Z B, Zheng J P, Li B H, et al. 2016. Age and geochemistry of the Early Paleozoic back−arc type ophiolite in Dadaoerji area, South Qilian, China[J]. Geotectonica et Metallogenia, 40(04): 826−838 (in Chinese with English abstract).

    Huang Z B. 2012. Geochemical characteristics and significances of the Dadao Erji chromite deposit ore−forming rock in Gansu province[D]. Master's Thesis of Chengdu University of Technology (in Chinese with English abstract).

    Li C, Arndt N T, Tang Q, et al. 2015. Trace element indiscrimination diagrams[J]. Lithos, 232: 76−83. doi: 10.1016/j.lithos.2015.06.022

    Liu X M, Gao S, Diwu C R, et al. 2007. Simultaneous determination of LA−ICP−MS U−Pb age and trace elements of single grain zircon in situ microzone by 20 µm specular beam[J]. Chinese Science Bulletin, 52(2): 228−235 (in Chinese with English abstract). doi: 10.1360/csb2007-52-2-228

    Mattinson C G, Wooden J L, Liou J G, et al. 2006. Age and duration of eclogite−facies metamorphism, North Qaidam HP/UHP terrane, western China[J]. American Journal of Science, 306: 683−711. doi: 10.2475/09.2006.01

    McDonough W F, Sun S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3): 223−253.

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 0−224.

    Nebel O, Nebel−Jacobsen Y, Mezger K, et al. 2007. Initial Hf isotope compositions in magmatic zircon from Early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages[J]. Chemical Geology, 241(1/2): 23−37. doi: 10.1016/j.chemgeo.2007.02.008

    Pan G T, Li X Z, Wang L Q, et al. 2002. Preliminary division of tectonic units of the Qinghai−Tibet plateau and its adjacent regions[J]. Geological Bulletin of China, 21(11): 701−707(in Chinese with English abstract).

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    Pearce J A, Stern R J. 2006. Origin of back−arc basin magmas: Trace element and isotope perspectives[J]. Monograph Series American Geophysical Union, 166: 63–86.

    Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean Oceanic crust[J]. Lithos, 100(1/4): 14−48. doi: 10.1016/j.lithos.2007.06.016

    Pearce J A. 2014. Immobile element fingerprinting of ophiolites[J]. Elements, 10(2): 101−108. doi: 10.2113/gselements.10.2.101

    Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internet structures of zircons from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U−Pb ages[J]. Contributions to Mineralogy and Petrology, 132: 288−299. doi: 10.1007/s004100050422

    Plank T. 2005. Constraints from thorium / lanthanum on sediment recycling at subduction zones and the evolution of the continents[J]. Journal of Petrology, 4: 921−944.

    Qi R R. 2012. LA−ICP−MS zircon U−Pb ages and geological implications for the Bagadeerji granitic plutons in the central Qilian Mountains, Gansu[J]. Sedimentary Geology and Tethyan Geology, 32(4): 86−93 (in Chinese with English abstract).

    Qiang W, Feng J X, Ping J, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47: 119−144. doi: 10.1093/petrology/egi070

    Qiu j X, Zeng G C, Zhu Y H, et al. 1998. Characteristics and latitudinal comparative research on the early Palaeozoic volcanic rocks of rifted orogenic belts and small ocean basin ophiolite suit from Northern Qinling Mountains and Southern Qilian Mountains[J]. Geological Journal of China Universities, 4(4): 393−405 (in Chinese with English abstract).

    Robinson P T, Trumbull R B, Schmitt A, et al. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2): 486−506. doi: 10.1016/j.gr.2014.06.003

    Roex A L, Dick H, Erlank A J, et al. 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple Junction and 11 degrees east[J]. Journal of Petrology, 24(3): 267−318.

    Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. New York: Longman Group UK Ltd.

    Rubatto D. 2000. Zircon trace element geochemistry: Partitioning with garnet and the link between U−Pb age and metamorphism[J]. Chemical Geology, 184: 123−138.

    Rudnick R L, Gao S. 2014. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry (2nd Edition) Amsterdam: Elsevier, 4: 1–51.

    Shen T T, Zhang L F, Yang J S, et al. 2017. The characteristics and significance of age of zircon from ultramafic rocks: A case study from UHP serpentinites in Chinese southwestern Tianshan[J]. Acta Petrologica Sinica, 33(12): 3783−3800 (in Chinese with English abstract).

    Shi R D. 2005. Comment on the Progress in and Problems on Ophiolite Study[J]. Geological Review, 51(6): 681−693 (in Chinese with English abstract).

    Shinjo R, Chung S I, Kato Y, et al. 1999. Geochemical and Sr−Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research, 104: 10591−10608.

    Song S G, Niu Y L, Li S, et al. 2014a. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth−Science Reviews, 129: 59−84. doi: 10.1016/j.earscirev.2013.11.010

    Song S G, Niu Y L, Su L, et al. 2013. Tectonics of the North Qilian Orogen, NW China[J]. Gondwana Research, 23: 1378−1401. doi: 10.1016/j.gr.2012.02.004

    Song S G, Niu Y L, Su L, et al. 2014b. Adakitic (tonalitic−trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision[J]. Geochimica et Cosmochimica Acta, 130: 42−62. doi: 10.1016/j.gca.2014.01.008

    Song S G, Niu Y L. 2004. Ultra−deep origin of garnet peridotite from the North Qaidam ultrahigh−pressure belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist, 90: 1330−1336.

    Song S G, Wu Z Z, Yang L M, et al. 2019. Ophiolite belts and evolution of the Proto−Tethys Ocean in the Qilian Orogen[J]. Acta Petrologica Sinica, 35(10): 2948−2970 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.02

    Song S G, Zhang C, Li X H, et al. 2011. HP/UHP metamorphic time of eclogite in the Xitieshan terrane, North Qaidam UHPM belt, NW China[J]. Acta Petrologica Sinica, 27(4): 1191−1197 (in Chinese with English abstract).

    Song S G, Zhang L F, Niu Y L, et al. 2006. Evolution from oceanic subduction to continental collision: A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. Journal of Petrology, 47: 435−455. doi: 10.1093/petrology/egi080

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes[J]. Geological Society of America Bulletin, 42: 313−345.

    Tao G. 2018. The ocean−continent evolution process in Shule River, Qilian: Constraints from the Early Paleozoic geological records[D]. PhD Dissertation of Chengdu University of Technology (in Chinese with English abstract).

    Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution[J]. Journal of Geology, 94: 632−633.

    Todd E, Gill J B, Pearce J A. 2012. A variably enriched mantle wedge and contrasting melt types during arc stages following subduction Initiation in Fiji and Tonga, Southwest Pacific[J]. Earth and Planetary Science Letters, 335/336: 180−194. doi: 10.1016/j.jpgl.2012.05.006

    Tseng C Y, Yang H J, Yang H Y, et al. 2007. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo−Qilian ocean[J]. Chinese Science Bulletin, 52: 2390−2401. doi: 10.1007/s11434-007-0300-3

    Wang J R, Wu C J, Cai Z H, et al. 2006. Early Paleozoic high−Mg adakite from Yindongliang in the eastern section of the North Qilian: Implications for geodynamics and Cu−Au minerallzation[J]. Acta Petrologica Sinca, 22(11): 2655−2664 (in Chinese with English abstract).

    Wang J R, Wu J C, Jia Z L. 2008, Sujiashan high−Mg adakite in the eastern section of North Qilian Mountains: Implications for geodynamic[J]. Journal of Lanzhou University (Natural Science), 44(3): 16–23 (in Chinese with English abstract).

    Wang Y, Wang M X, Jiao J G. 2019. Mineral composition and platinum−group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: Implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 25(2): 267−285 (in Chinese with English abstract).

    Woodhead J D, Hergt J M, Davidson J P, et al. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 192: 331−346. doi: 10.1016/S0012-821X(01)00453-8

    Wu C L, Gao Y H, Wu S P, et al. 2008. Geochemistry and zircon SHRIMP U−Pb dating of granitoids from the west segment of the North Qaidam[J]. Science in China: Earth Sciences, 38(8): 930−949 (in Chinese with English abstract).

    Wu C L, Yang J S, Ireland T, et al. 2001. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance[J]. Acta Petrologica Sinica, 17(2): 215−221 (in Chinese with English abstract).

    Wu Y B, Zheng Y F. 2004. Genetic Mineralogy of zircon and its restriction on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    Wu Y, Chen S Y, Qin M K, et al. 2018. Zircon U−Pb ages of Dongcuo ophiolite in western Bangonghu−Nujiang suture zone and their geological significance[J]. Earth Science, 43(4): 1070–1084 (in Chinese with English Abstract).

    Xia L Q, Xia Z C, Xu X Y, et al. 1998. Volcanism in the Early Paleozoic ridge island and backarc basin of the North Qilian Mountains[J]. Acta Geologica Sinica, 72(3): 301−312 (in Chinese with English Abstract).

    Xiao W J, Windley B F, Yong Y, et al. 2009. Early Paleozoic to Devonian multiple−accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3/4): 323−333. doi: 10.1016/j.jseaes.2008.10.001

    Xiao X C, Chen G M, Zhu Z Z. 1978. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China[J]. Acta Geologica Sinica, 52(2): 281−295, 338 (in Chinese with English Abstract).

    Xu X Z, Yang J S, Xiong F H, et al. 2016. Zircon SHRIMP U–Pb age of the mantle peridotite in the Kangjinla chromite deposit, Tibet and its geological significance[J]. Acta Geologica Sinica, 90(11): 3215−3226 (in Chinese with English abstract).

    Xu Y G, Menzies M A, Thirlwall M F, et al. 2001. Exotic Lithosphere Mantle Beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks[J]. Geology, 29(9): 863−866. doi: 10.1130/0091-7613(2001)029<0863:ELMBTW>2.0.CO;2

    Xu Z Q, Yang J S, Wu C L, et al. 2006. Timing and mechanism of formation and exhumation of the northern Qaidam ultrahigh−pressure metamorphic belt[J]. Journal of Asian Earth Sciences, 28: 160−173. doi: 10.1016/j.jseaes.2005.09.016

    Xu Z Q, Yang J S, Wu C L. 2003. Timing and Machanism of Fomation and Exhumation of the Qaidam Ultra−Pressure Metamorphic Belt[J]. Acta Geologica Sinica, 77(2): 163−176 (in Chinese with English abstract).

    Yamamoto S, Komiya T, Yamamoto H, et al. 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Island Arc, 22(1): 89−103. doi: 10.1111/iar.12011

    Yang F, Kim S W, Tsunogae T, et al. 2021b. Multiple enrichment of subcontinental lithospheric mantle with Archean to Mesozoic components: Evidence from the Chicheng ultramafic complex, North China Craton[J]. Gondwana research, 94: 201−221. doi: 10.1016/j.gr.2021.03.005

    Yang F, Santosh M, Tsunogae T, Li Tang, et al. 2017. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic–ultramafic complex of Gaositai, North China Craton[J]. Lithos, 284/285: 525–544.

    Yang G X, Li Y J, Tong L L, et al. 2022. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo−Asian Ocean[J]. Geosystems and Geoenvironment, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004

    Yang G X, Liu X Y, Zhu Z, et al. 2024. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 57(3): 1−10 (in Chinese with English abstract).

    Yang G X, Zhu Z, Liu X Y, et al. 2023. Ophiolite in West Junggar: Records of the subduction−accretion process in ancient ocean[J]. Acta Geologica Sinica, 97(6): 2054–2066 (in Chinese with English abstract).

    Yang J S, Wu W W, Lian D Y, et al. 2021a. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth and Environment, 2: 198−212. doi: 10.1038/s43017-020-00138-4

    Yang J S, Xu Z Q, X Z J, et al. 2002. Early Palaeozoic North Qiadam UHP metamorphic belt on the north−estern Tibetan plateau and a paired subduction model[J]. Terra Nova, 14: 397−404. doi: 10.1046/j.1365-3121.2002.00438.x

    Yang J S, Zhang J X, Meng F C, et al. 2003. Ultra high pressure eclogites of the north qaidam and altun mountains, NW China and their Protoliths[J]. Earth Science Frontiers, 10(3): 291–313 (in Chinese with English abstract).

    Yong S L, Guang F Y, Ming Z S, et al. 2013. Early Middle Triassic mafic dikes from the Baoshan subterrane, western Yunnan: Implications for the tectonic evolution of the Palaeo−Tethys in Southeast Asia[J]. International Geology Review, 55: 976−993. doi: 10.1080/00206814.2012.758354

    Yu S Y, Zhang J X, Real P G D. 2012. Geochemistry and zircon U/Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events[J]. Gondwana Research, 21: 167−179. doi: 10.1016/j.gr.2011.07.024

    Yuan G B, Wang H C, Li H M, et al. 2002. Zircon U−Pb age of the gabbros in Luliangshan area on the northern margin of Qaidam Basin and its geological implication[J]. Progress In Precambrian Research, 25(1): 36−40 (in Chinese with English abstract).

    Zeng Y C, Xu J F, Chen J L, et al. 2018. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe−Yunzhug−Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry, 300: 250–260.

    Zhang G B, Song S G, Zhang L F, et al. 2005. Ophiolite type mantle peridotite from Shaliuhe, North Qaidam UHPM belt, NW China and its tectonic implications[J]. Acta Petrologica Sinica, 21(4): 1049−1058 (in Chinese with English abstract).

    Zhang G Y, Ding S H. 2004. Discussing the Strati Graphic Characteristice and its Time of Balonggonggaer Formation in Qingshuigou of the Western of South Qilian[J]. Acta Geologica Gansu, 13(1): 38−45 (in Chinese with English abstract).

    Zhang J X, Meng F C, Li J P et al. 2009. Coesite in eclogite from the North Qaidam Mountain and its implications[J]. Chinese Science Bulletin, 54(6): 1150−1110.

    Zhang J X, Xu Z Q, Chen W, et al. 1997. A tentative discussion on the ages of the subduction–accretionary complex/volcanic arcs in the middle sector of north Qilian Mountains[J]. Acta Petrol Mineral, 16: 112−119 (in Chinese with English abstract).

    Zhang Q, Ren J S, Zhao L. 2022. Review of ophiolites in China—Discuss on a new method for the study of ophiolites[J]. Geological Review, 68(3): 1061−1078 (in Chinese with English abstract).

    Zhang Q, Zhou G Q. 2001. Ophiolite of China[M]. Beijing: Science Press (in Chinese).

    Zhang W Q, Liu C Z, Liu T. 2022. Compositions of cumulates in lower oceanic crust and implications for ophiolite studies[J]. Acta Petrologica Sinica, 38(6): 1630−1654 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.06.06

    Zhao J, Long X, Dong Y, et al. 2019. Petrogenesis, tectonic setting and formation age of the metaperidotites in the Lajishan ophiolite, Central Qilian Block, NW China[J]. Journal of Asian Earth Sciences, 186: 104076. doi: 10.1016/j.jseaes.2019.104076

    鲍佩声, 王希斌. 1989. 对大道尔吉铬铁矿床成因的新认识[J]. 矿床地质, 8(1): 3−18.
    陈博, 朱永峰. 2014. 蛇绿岩中辉长岩的形成和变质过程研究[J]. 矿物岩石地球化学通报, 33(2): 226−237. doi: 10.3969/j.issn.1007-2802.2014.02.011
    陈丹玲, 孙勇, 刘良, 等. 2007. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J]. 地学前缘, 14(1): 108−116. doi: 10.3321/j.issn:1005-2321.2007.01.010
    董显扬, 李金铭. 1981. 大道尔吉铬铁矿矿床成矿期的构造作用[J]. 西北地质, 2(1): 23−39.
    方春家. 2023. 大道尔吉铬矿床[J]. 甘肃地质, 32(1): 95.
    冯益民, 何世平. 1996. 祁连山大地构造与造山作用[M]. 北京: 地质出版社.
    付长垒, 闫臻, 郭现轻, 等. 2014. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U−Pb年龄[J]. 岩石学报, 30(6): 1695−1706.
    高晓峰, 校培喜, 贾群子. 2011. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 85(9): 1452−1463.
    苟国朝, 田培昭, 张新虎, 等. 1994. 大道尔吉蛇绿岩型超镁铁岩铬铁矿中铂族元素分布特征[J]. 西北地质, 15(1): 11−19.
    胡万龙, 侯荣娜, 张铖, 等. 2016a. 中祁连西段玄武玢岩地球化学特征及其构造意义[J]. 兰州大学学报(自然科学版), 52(3): 287−294.
    胡万龙, 贾志磊, 王金荣, 等. 2016b. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报, 22(2): 242−253.
    黄增保, 郑建平, 李葆华, 等. 2016. 南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义[J]. 大地构造与成矿学, 40(4): 826−838.
    黄增保. 2012. 甘肃大道尔吉铬铁矿矿床成矿岩体地球化学特征及其研究意义[D]. 成都理工大学硕士学位论文.
    柳小明, 高山, 第五春荣, 等. 2007. 单颗锆石的20μm小斑束原位微区LA−ICP−MS U−Pb年龄和微量元素的同时测定[J]. 科学通报, 52(2): 228−235. doi: 10.3321/j.issn:0023-074X.2007.02.017
    潘桂棠, 李兴振, 王立全, 等. 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701−707. doi: 10.3969/j.issn.1671-2552.2002.11.002
    齐瑞荣. 2012. 中祁连西段巴嘎德尔基岩体LA−ICP−MS锆石U−Pb年龄及地质意义[J]. 沉积与特提斯地质, 32(3): 86−93.
    邱家骧, 曾广策, 朱云海, 等. 1998. 北秦岭-南祁连早古生代裂谷造山带: 火山岩与小洋盆蛇绿岩套特征及纬向对比[J]. 高校地质学报, 4(4): 393−405.
    申婷婷, 张立飞, 杨经绥, 等. 2017. 超基性岩中锆石年龄的特征和意义——以西南天山UHP蛇纹岩中锆石U−Pb年龄为例[J]. 岩石学报, 33(12): 3783−3800.
    史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 51(6): 681−693. doi: 10.3321/j.issn:0371-5736.2005.06.010
    宋述光, 吴珍珠, 杨立明, 等. 2019. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 35(10): 2948−2970. doi: 10.18654/1000-0569/2019.10.02
    宋述光, 张聪, 李献华, 等. 2011. 柴北缘超高压带中锡铁山榴辉岩的变质时代[J]. 岩石学报, 27(4): 1191−1197.
    陶刚. 2018. 祁连疏勒河地区早古生代地质记录对洋陆过程的约束[D]. 成都理工大学博士学位论文.
    王金荣, 吴春俊, 蔡郑红, 等. 2006. 北祁连山东段银铜粱早古生代高镁埃达克岩: 地球动力学及成矿意义[J]. 岩石学报, 22(11): 2655−2664. doi: 10.3321/j.issn:1000-0569.2006.11.004
    王金荣, 吴继承, 贾志磊. 2008. 北祁连山东段苏家山高Mg埃达克岩地球动力学意义[J]. 兰州大学学报(自然科学版), 44(3): 16−23.
    王岩, 王梦玺, 焦建刚. 2019. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 25(2): 267−285.
    吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石SHRIMP U−Pb定年及岩石地球化学特征[J]. 中国科学(D辑), 38(8): 930−949. doi: 10.3321/j.issn:1006-9267.2008.08.002
    吴才来, 杨经绥, Trevor Ireland, 等. 2001. 祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 17(2): 215−221.
    吴元保, 郑永年. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    武勇, 陈松永, 秦明宽, 等. 2018. 西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U−Pb年代学及地质意义[J]. 地球科学, 43(4): 1070−1087.
    夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用[J]. 地质学报, 72(3): 301−312. doi: 10.3321/j.issn:0001-5717.1998.04.002
    肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 52(2): 281−295, 338.
    徐向珍, 杨经绥, 熊发挥, 等. 2016. 西藏罗布莎康金拉铬铁矿区地幔橄榄岩锆石SHRIMP U−Pb年龄及地质意义[J]. 地质学报, 90(11): 3215−3226. doi: 10.3969/j.issn.0001-5717.2016.11.015
    许志琴, 杨经绥, 吴才来, 等. 2003. 柴达木北缘超高压变质带形成与折返的时限及机制[J]. 地质学报, 77(2): 163−176. doi: 10.3321/j.issn:0001-5717.2003.02.004
    杨高学, 刘晓宇, 朱钊, 等. 2024. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 57(3): 1−10.
    杨高学, 朱钊, 刘晓宇, 等. 2023. 西准噶尔蛇绿岩: 古大洋俯冲增生过程的记录[J]. 地质学报, 97(6): 2054−2066.
    杨经绥, 张建新, 孟繁聪, 等. 2003. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J]. 地学前缘, 10(3): 291−313. doi: 10.3321/j.issn:1005-2321.2003.03.026
    袁桂邦, 王懋功, 李惠民, 等. 2002. 柴北缘绿梁山地区辉长岩的锆石U−Pb年龄及意义[J]. 前寒武纪研究进展, 25(1): 36−40.
    张贵宾, 宋述光, 张立飞, 等. 2005. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩的发现及其意义[J]. 岩石学报, 21(4): 1049−1058.
    张国英, 丁书宏. 2004. 南祁连西段清水沟南巴龙贡嘎尔组地层特征及时代讨论[J]. 甘肃地质学报, 13(1): 38−45.
    张建新, 许志琴, 陈文, 等. 1997. 北祁连中段增生杂岩/火山弧的时代探讨[J]. 岩石矿物学杂志, 16(2): 112−119.
    张旗, 任纪舜, 赵磊, 等. 2022. 中国蛇绿岩清理——兼论蛇绿岩研究的新思路[J]. 地质论评, 68(3): 1061−1078.
    张旗, 周国庆. 2001. 中国蛇绿岩[M]. 北京: 科学出版社.
    张维骐, 刘传周, 刘通. 2022. 大洋下地壳堆晶岩组成及其对蛇绿岩研究的启示[J]. 岩石学报, 38(6): 1630−1654.
图(7)  /  表(3)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  114
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-08-22
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回