• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

扬子地块西缘乌蒙山地区早白垩世橄榄玄武玢岩的发现及其对陆缘碰撞造山事件陆内响应的启示

张宏辉, 袁永盛, 李致伟, 谢财富, 张七道, 陈贵仁, 吴亮, 朱利东, 潘江涛, 李仕忠, 胡关云, 张沥元

张宏辉, 袁永盛, 李致伟, 谢财富, 张七道, 陈贵仁, 吴亮, 朱利东, 潘江涛, 李仕忠, 胡关云, 张沥元. 2025: 扬子地块西缘乌蒙山地区早白垩世橄榄玄武玢岩的发现及其对陆缘碰撞造山事件陆内响应的启示. 地质通报, 44(2~3): 477-492. DOI: 10.12097/gbc.2023.01.021
引用本文: 张宏辉, 袁永盛, 李致伟, 谢财富, 张七道, 陈贵仁, 吴亮, 朱利东, 潘江涛, 李仕忠, 胡关云, 张沥元. 2025: 扬子地块西缘乌蒙山地区早白垩世橄榄玄武玢岩的发现及其对陆缘碰撞造山事件陆内响应的启示. 地质通报, 44(2~3): 477-492. DOI: 10.12097/gbc.2023.01.021
Zhang H H, Yuan Y S, Li Z W, Xie C F, Zhang Q D, Chen G R, Wu L, Zhu L D, Pan J T, Li S Z, Hu G Y, Zhang L Y. The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event. Geological Bulletin of China, 2025, 44(2/3): 477−492. DOI: 10.12097/gbc.2023.01.021
Citation: Zhang H H, Yuan Y S, Li Z W, Xie C F, Zhang Q D, Chen G R, Wu L, Zhu L D, Pan J T, Li S Z, Hu G Y, Zhang L Y. The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event. Geological Bulletin of China, 2025, 44(2/3): 477−492. DOI: 10.12097/gbc.2023.01.021

扬子地块西缘乌蒙山地区早白垩世橄榄玄武玢岩的发现及其对陆缘碰撞造山事件陆内响应的启示

基金项目: 自然资源综合调查指挥中心科创基金《滇东北峨眉山地幔柱活动与地表系统响应之间的耦合关系》(编号:KC20230020)、中国地质调查局项目《滇中楚雄地区云龙镇等4幅1∶5万区域地质调查》(编号:DD20220987)及《云南乌蒙山区1∶5万瓦岗等9幅区域地质调查》(编号:DD20191012-01)
详细信息
    作者简介:

    张宏辉(1989− ),男,硕士,高级工程师,从事区域地质调查工作。E−mail:673872084@qq.com

    通讯作者:

    张七道(1987− ),男,硕士,高级工程师,从事区域地质矿产调查工作。E−mail:506676421@qq.com

  • 中图分类号: P534.53; P588.12

The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event

  • 摘要:
    研究目的 

    扬子板块西缘燕山期岩浆活动的缺失致使该时期的构造运动缺乏精确的时间记录,本次工作首次在滇东北乌蒙山地区发现了早白垩世的基性侵入岩,探讨其成因及地质意义对于探索扬子西缘燕山期构造活动具有重要意义。

    研究方法 

    通过详细的野外地质观测、镜下鉴定、锆石U−Pb测年和岩石地球化学方法对新发现的侵入岩进行研究。

    研究结果 

    早白垩世基性侵入岩的岩性为橄榄玄武玢岩,呈斑状结构,杏仁状构造,斑晶以斜长石及橄榄石为主;其31个锆石测点的U−Pb谐和年龄为134.0± 0.4 Ma,形成时代为早白垩世早期。岩石地球化学特征显示其具有富碱、高Ti、高Al、低SiO2的特征,稀土元素总量较高,重稀土元素亏损,轻、重稀土元素分馏明显,与研究区二叠纪峨眉山玄武岩具有高度相似的地球化学特征,二者应同源,可能是二叠纪形成的峨眉地幔柱尾部交代富集地幔,在班公湖-怒江结合带俯冲-碰撞作用的远程挤压效应下引起软流圈部分熔融,上升侵位过程中与地壳发生轻度混染,形成的基性—超基性侵入岩。

    结论 

    早白垩世橄榄玄武岩玢岩的地球化学特征表明,特提斯构造域与扬子板块西缘的陆缘碰撞造山运动具有巨大的远程效应,其发现也将滇西地区燕山期岩浆活动的研究扩展到了小江断裂带以东的乌蒙山区一带,填补了四川盆地周缘燕山期岩浆活动的空白,同时,橄榄玄武玢岩的形成也表明,扬子板块西缘大规模陆内挤压造山达到高峰,134 Ma左右是扬子板块西缘陆内造山温压达到高峰的时间记录。

    Abstract:
    Objective 

    The absence of Yanshanian magmatic activities in the western margin of the Yangtze block has led to a lack of precise time records of tectonic movements during this period. In this study, Early Cretaceous basic intrusive rocks were discovered for the first time in the Wumengshan area of northeastern Yunnan. This discovery is of great significance for exploring the Yanshanian tectonic activities in the western margin of the Yangtze block.

    Methods 

    This paper conducts research on the newly discovered intrusive rocks through detailed field geological observations, microscopic identification, zircon U−Pb dating, and petrogeochemical methods, and explores their genesis and geological significance.

    Results 

    The lithology of the Early Cretaceous basic intrusive rocks is olivine basaltic porphyrite, which has a porphyritic texture and amygdaloidal structure. The phenocrysts are mainly plagioclase and olivine. The U−Pb concordia age of 31 zircon measurement points is 134.0 ± 0.4 Ma, indicating that the formation age is the early stage of the Early Cretaceous. Petrogeochemical characteristics show that these rocks are rich in alkalis, high in Ti and Al, and low in SiO2. They have a relatively high total rare earth content, depleted heavy rare earths, and obvious fractionation between light and heavy rare earths elements. These characteristics are highly similar to those of the Permian Emeishan basalts in the study area, suggesting that they are the same origin. They may be the metasomatized and enriched mantle at the tail of the Emeishan mantle plume formed in the Permian. Under the long−range extrusion effect of the subduction−collision in the Bangonghu−Nujiang suture zone, partial melting of the asthenosphere occurred. During the ascending and emplacement process, they underwent mild contamination with the crust, forming basic−ultrabasic intrusive rocks.

    Conclusions 

    The Early Cretaceous olivine basaltic porphyrite indicates that the continental−margin collision orogeny between the Tethys tectonic domain and the western margin of the Yangtze Block has a significant long−range effect. Its discovery has extended the research on Yanshanian magmatic activities in western Yunnan to the Wumengshan area east of the Xiaojiang Fault Zone, filling the gap in the study of Yanshanian magmatic activities around the Sichuan Basin. The formation of olivine basaltic porphyrite also indicates that the large−scale intra−continental compressional orogeny in the western margin of the Yangtze Plate reached its peak. 134 Ma is the time record when the temperature and pressure of the intra−continental orogeny in the western margin of the Yangtze block reached their peak.

    创新点

    在乌蒙山地区首次发现燕山期基性侵入岩,其源于峨眉山地幔柱。

  • 关于琼东南盆地内的烃源岩,前人重点对渐新统崖城组烃源岩特征及其对油气富集的控制作用进行了分析,而对始新统烃源岩方面的研究较少,主要是由于之前琼东南盆地几乎未钻遇过始新统(杨泽光等,2022)。随着勘探的深入,近期在琼东南盆地松西凹陷新钻探了S32-6-1井,钻遇一套75 m厚的始新统油页岩。这是琼东南盆地首次钻遇油页岩,取得了盆地油气勘探史上的新突破,对下一步油气勘探具有里程碑式的意义。为进一步评价该源岩,理清这套油页岩的地球化学特征及其生烃潜力,本文利用新钻探的S32-6-1井油页岩壁心、岩屑样品,通过一系列地球化学分析测试,在录井和测井资料基础上,结合地震资料解释及盆地模拟技术,精细分析了油页岩特征及生烃潜力,并对比分析了周缘地区原油的地球化学特征,厘清了油、源之间的关系,为琼东南盆地后续勘探选区提供决策参考。

    琼东南盆地是位于南海西北部的新生代大陆边缘拉张性盆地,始新世—早渐新世,盆地受太平洋−欧亚板块相互作用及印度−欧亚板块作用,产生北西—南东向拉张应力场,形成北东向控凹断裂,盆地整体呈北东—南西走向。琼东南盆地平面上表现为“多坳多隆”的构造特征,纵向上具有“下断上坳”的双层结构(张功成等,2007朱伟林等,2008毛雪莲等,2021),自北向南可分为4个一级构造单元。北部坳陷位于盆地西北部,是主要的生油气区,北邻海南隆起,南接中部隆起(朱伟林等,2007何家雄等,2020),自西往东可进一步划分为崖北凹陷、松西凹陷、松东凹陷3个次级凹陷(图1)。北部坳陷在5号断裂的控制下形成了北断南超的大型半地堑结构。在始新世处于断陷阶段,发育多个孤立凹陷,该时期海侵范围小,主要为湖相沉积。早期湖水较浅,发育滨浅湖相沉积,随着湖水加深,逐渐发育中深湖相沉积。渐新世处于断-坳转换阶段,海平面开始扩张,主要为滨浅海相沉积。至新近纪,发生大规模区域海侵,沉积了厚层的新近系海相地层。古近系自下而上为始新统岭头组、渐新统崖城组和陵水组(黄保家等,2014徐新德等,2016范彩伟等,2021),其中始新统油页岩是本次研究的目标层段。

    图  1  琼东南盆地构造单元划分图
    Figure  1.  Structural unit division map of Qiongdongnan Basin

    松西凹陷始新统岭头组岩性存在明显的上、中、下三分结构,上部岭头组一段主要为细砂岩、泥质细砂岩与泥岩不等厚互层,与顶部的渐新统崖城组整合接触。该段化石相对较丰富,以裸子植物花粉双束松粉为主,被子植物花粉含量相对较低,常见栎粉(小栎粉和小亨氏栎粉),其他藻类以葡萄藻未定多种为主,盘星藻未定多种和粒面球藻少量出现。根据孢粉组合特征,推断该段沉积环境为浅湖,地层时代应为早渐新世—晚始新世。下部岭头组三段为细砂岩、粉砂岩、粉砂质泥岩与泥岩不等厚互层,与底部的中生界花岗岩呈不整合接触。该段孢粉组合以被子植物花粉栎粉(包括小栎粉和小亨氏栎粉)为主,裸子植物花粉(包括双束松粉和巨大双束松粉)含量相对较低,推断该段沉积环境也为浅湖,地层时代应为始新世。中部岭头组二段为一套厚层油页岩,该段化石十分丰富,以被子植物花粉(小栎粉和小亨氏栎粉)为主,裸子植物花粉(主要为双束松粉)含量较低。此外,该段富含湖相浮游藻类,以粒面球藻为主,其次为葡萄藻未定多种,盘星藻未定多种零星出现。根据孢粉组合特征,结合藻类分析结果,推断该段沉积环境为中深湖,地层时代应为始新世。类比珠江口盆地顺德凹陷已证实的始新统文昌组及油页岩层可以发现,琼东南盆地松西凹陷始新统与其具有相似的孢粉组合特征:均是以被子植物花粉栎粉为主,裸子植物花粉(主要为双束松粉)含量相对较低,反映为温度较高的亚热带气候;其次,在油页岩层段,湖相浮游藻类占绝对优势,以粒面球藻和盘星藻未定多种为主,葡萄藻未定多种在个别层段比较显著,指示中深湖相沉积环境。油页岩主要为灰黑色、灰褐色,泥质结构,性中硬、较脆,层状构造,具贝壳状断口,泛有油脂光泽。混杂少量石英等碎屑颗粒,见沥青条带,偶见黄铁矿,可见颜色较浅的粘土质条带或透镜体顺层理发育。闻着有很浓的油味,点火可燃,火苗呈黄色,岩屑搌碎后丙酮滴照呈乳白色中速扩散(图2)。

    图  2  S32-6-1井油页岩现场鉴定图片
    a—油页岩岩屑,呈灰黑色、灰褐色;b—油页岩壁心,层状构造,具贝壳状断口,泛油脂光泽;c—油页岩荧光,丙酮滴照呈乳白色扩散;d—油页岩点火,可燃,火苗呈黄色
    Figure  2.  S32-6-1 well oil shale field identification picture

    油页岩由于泥质、有机质含量高,在测井曲线上与砂岩和泥岩存在一定差异。一般来说,油页岩测井响应特征表现为“四高一低”的特点,即高自然伽马、高电阻率、高声波时差、高中子、低密度。根据录井岩性对S32-6-1井测井曲线进行分析,发现油页岩段对应的曲线存在明显差异,自然伽马明显较高(一般大于145 API),电阻率明显增大,中子明显较高,密度曲线特征不是很明显,仅部分段表现为低值,整体与下伏砂岩相近(2.3~2.6 g/cm3),推测与质不纯有关(图3)。

    图  3  S32-6-1井油页岩测井曲线特征
    Figure  3.  Characteristics of oil shale logging curves in well S32-6-1

    油页岩的形成环境一般为温暖湿润的还原环境,利于藻类的生长及有机质的保存。母源一般以湖相原生藻类体为主,陆源输入的高等植物为辅(曹涛涛等,2024)。微量元素地球化学参数Sr/Cu值对气候变化较敏感,是常用的古气候研究指标。在温暖湿润的气候环境中,Sr/Cu值呈现低值,一般为1.3~5.0;在干旱炎热的气候环境中,Sr/Cu值较高,一般大于5(Sarki Yandoka et al., 2014)。此外,气候指标C=(Fe+Mn+Cr+Ni+V+Co)/(Ca+Mg+Sr+Ba+K+Na)也可反映古气候条件。一般C>0.8代表温湿气候,0.2<C<0.8代表半湿润气候,C<0.2代表干热气候(Moradi et al., 2016)。S32-6-1油页岩段Sr/Cu平均值为3.66,C平均值为0.53,反映油页岩形成时为半湿润气候。油页岩段V/(V+Ni)和Th/U平均值分别为0.81、4.38,表明其形成于较缺氧的还原环境,有利于有机质的富集保存。另外,油页岩段反映其古盐度的指标Sr/Ba、Ga/(Ga+Fe)值均较低,平均值分别为0.15、0.001,表明其形成于陆相淡水环境。P、Cd被广泛用于古生产力研究。此外,研究表明,Mo与有机质的堆积速度一致,因此Mo元素也可以用来指示古湖泊生产力的大小(孙莎莎等,2015)。S32-6-1油页岩段P平均含量高达434.5×10−6,Cd平均含量高达0.3×10−6,Mo平均含量高达3.1×10−6,高于北美页岩中Mo的含量,反映该段油页岩具有很高的初级生产力。另外,该段油页岩中还有一定量的Ti,表明具有一定的陆源碎屑输入(于婷婷等,2022)。综上分析,松西凹陷油页岩沉积时期为温暖半湿润的还原淡水湖泊环境。P、Cd、Mo等营养元素输入增加,有利于藻类的大量繁殖,具有较高的古生产力,存在大量藻类、水生植物和少量陆源碎屑的供给,形成了有机质大量富集的厚层油页岩。

    从有机质丰度、类型、热演化程度等方面可研究分析有机质的性质。有机质丰度是表征烃源岩中有机质富集程度的指标,常用的参数较多,本次以总有机碳含量(TOC)、热解生烃潜量(S1+S2)指标来评价油页岩中的有机质丰度(卢双舫等,2008王元等,2018罗丽荣等,2022)。松西凹陷钻探的S32-6-1井的始新统油页岩样品TOC分布在1.33%~7.48%之间,平均为3.33%;S1+S2分布范围为6.43~52.41 mg/g,平均为22.2 mg/g,依据陆相烃源岩有机质丰度评价标准,该油页岩为好—优质级别的烃源岩(图4)。

    图  4  松西凹陷始新统油页岩有机质丰度评价
    Figure  4.  Evaluation of organic matter abundance of Eocene oil shale in Songxi Sag

    有机质类型不同,其生成的烃类特征会存在一定差异。通常有机质类型为腐泥型的,偏向于生油,有机质类型为腐殖型的,偏向于生气。利用烃源岩热解参数HITmax关系图(图5),对S32-6-1井钻遇的始新统油页岩的有机质类型进行研究判定。分析结果表明,琼东南盆地松西凹陷的这套始新统油页岩氢指数(HI)平均为606 mg/gTOC,有机质类型为Ⅰ~Ⅱ1型,为较好的生油母质类型。

    图  5  松西凹陷始新统油页岩有机质类型划分
    Figure  5.  Classification of organic matter types of Eocene oil shale in Songxi Sag

    有机质热演化程度是衡量烃源岩实际生烃能力的另一个重要指标,只有当有机质的热演化程度达到一定阶段时,才能大量生烃,热演化程度的高低直接影响了生油气的量和油气藏的规模(刘旭明等,2011王崇敬等,2018)。本次主要应用镜质体反射率(Ro/%)、岩石最高热解峰温(Tmax/℃)指标,根据《中华人民共和国石油天然气行业标准陆相烃源岩地球化学评价方法(SY/T 5735—1995)》(表1),对S32-6-1井钻遇的始新统油页岩成熟度进行判识。结果表明,琼东南盆地松西凹陷始新统油页岩Ro为0.7%~0.75%,Tmax为436~446℃,整体处于低熟—成熟阶段。

    表  1  陆相烃源岩有机质成烃演化阶段划分及判别指标(据SY/T 5735—1995)
    Table  1.  Hydrocarbon generation and evolution stages of organic matter in continental source rocks
    演化阶段 未成熟 低成熟 成熟 高成熟 过成熟
    Ro/% <0.5 0.5~0.7 0.7~1.3 1.3~2 >2
    Tmax/℃ <435 435~440 440~450 450~580 >580
    ɑɑɑ-C2920S/(20S+20R) <0.2 0.2~0.4 >0.4
    C29ββ/(ββ+ɑɑ) <0.2 0.2~0.4 >0.4
    下载: 导出CSV 
    | 显示表格

    生物标志化合物具有稳定的碳骨架,在沉积成岩和热演化的过程中基本能保持原始先质结构(Peters et al,2005),能反映原始先质的特征及古形成环境。因此,生物标志化合物在生源构成、沉积环境及有机质热演化方面应用广泛(孔庆云等,1987)。

    琼东南盆地松西凹陷钻遇的始新统油页岩样品正构烷烃主要呈过渡的“平台型”(图6),反映其母质输入以混源为主。姥植比(Pr/Ph)是判定氧化-还原古沉积水体环境的常用指标(王铁冠等,1995);奇偶优势指数(OEP)<1指示偏咸水强还原环境,OEP>1指示偏淡水湖沼相沉积环境(黄谦等,2000)。松西凹陷始新统油页岩Pr/Ph分布在2.2~2.65之间(表2),OEP为1.25~1.44,表明其沉积环境为弱还原的淡水湖沼相环境。碳优势指数(CPI)为1.19~1.26,表明油页岩成熟度相对较低。

    图  6  松西凹陷始新统油页岩正构烷烃碳数分布
    Figure  6.  Carbon number distribution of n-Alkanes in Eocene oil shale in Songxi Sag
    表  2  松西凹陷始新统油页岩生物标志化合物参数
    Table  2.  Biomarker parameters of Eocene oil shale in Songxi Sag
    生标参数 深度/m
    3536 3568 3586 3598
    nC21+nC22)/(nC28+nC29 0.81 0.88 0.85 0.77
    CPI 1.24 1.26 1.19 1.19
    OEP 1.27 1.44 1.31 1.25
    Pr/Ph 2.2 2.32 2.22 2.65
    Pr/nC17 1.99 1.3 1.22 2.01
    Ph/nC18 0.68 0.44 0.36 0.6
    C19TT/C23TT 0.19 0.36 0.4 0.25
    C24TeT/C26TT 0.77 1.4 1.22 0.91
    OL/C30H 0.1 0.17 0.16 0.16
    Ga/C30H 0.06 0.07 0.06 0.06
    Ts/Tm 1.71 1.74 1.96 2.35
    C27/C29ɑɑɑR 0.86 0.83 0.8 1.06
    C2920S/(20S+20R 0.36 0.4 0.39 0.42
    C29ββ/(ββ+ɑɑ 0.47 0.51 0.56 0.54
    4-甲基甾烷/C29甾烷 0.92 0.6 0.69 1
    下载: 导出CSV 
    | 显示表格

    此外,松西凹陷钻遇的始新统油页岩中普遍检测出了长链三环萜烷(TT)、四环萜烷(TeT)和五环三萜烷化合物。三环萜烷碳数分布主峰为C21TT,表明沉积环境为淡水湖相环境(肖洪等,2019)。伽马蜡烷是常用的沉积水体盐度指示参数(包建平等,2010),油页岩的伽马蜡烷指数(Ga/C30H)为0.06左右,表明其沉积水体为淡水环境。前人研究认为,C19TT/C23TT和C24TeT/C26TT对陆源输入指示作用较强,受成熟度影响较小(Hao et al,2011)。松西凹陷油页岩C19TT/C23TT值较低,分布在0.19~0.4之间,奥利烷指数(OL/C30H)为0.1~0.17,均较低,反映油页岩的母源输入中低等水生藻类较多,而该套油页岩的C24TeT/C26TT值分布在0.77~1.4之间,反映油页岩母质中含有一定量的陆源输入。对于甾烷系列化合物,通常在C27~C29规则甾烷系列中,C27规则甾烷来自低等水生生物和藻类,C29规则甾烷主要来源于高等植物。4-甲基甾烷可指示沟鞭藻和甲藻的贡献(陈建平等,2016)。松西凹陷这套始新统油页岩C27-C28-C29规则甾烷呈近“V”形,C27规则甾烷/C29规则甾烷值平均为0.89,表现出C29规则甾烷相对占优势,反映生源构成中具有一定量陆生高等植物输入;4-甲基甾烷指数为0.6~1,平均为0.8,含量较高,指示该套始新统油页岩生源构成中低等藻类含量较高。此外,松西凹陷油页岩C29甾烷ββ/(ββ+ɑɑ)值在0.47~0.56之间,表明其成熟度为低熟—成熟。综上所述,琼东南盆地松西凹陷油页岩的母质构成既有低等水生生物,又有高等陆生植物,具有混源输入特征,沉积环境为淡水湖沼相环境,热演化程度为低熟—成熟阶段。

    根据烃源岩的有机质性质,结合分布发育特征,对琼东南盆地松西凹陷S32-6-1井钻遇的始新统油页岩地球化学特征进行了研究。松西凹陷这套始新统油页岩有机质丰度高,类型为Ⅰ~Ⅱ1型,处于低熟—成熟阶段,生源构成具有混源输入特征,沉积环境为弱还原的淡水湖沼相环境,分布范围较广,发育厚度较大,具有良好的生烃潜力。

    围区内即北部坳陷带Y9、S34-3-1、S24-1-1等井(图1)均钻获原油,碳同位素对比发现,这些原油的全油碳同位素(δ13CPDB)值分布范围为−28.9‰~−24.83‰,与松西凹陷的S32-6-1井钻遇的始新统油页岩干酪根同位素(−28.5‰~−25.78‰)分布范围相近。

    油源色谱质谱指纹特征分析表明,围区内Y9、S34-3-1、S24-1-1等井已钻获的原油与S32-6-1井钻遇的始新统油页岩在母源特征上有良好的相似性(图7)。具体如下:奥利烷含量均很低,C27,C28,C29规则甾烷均呈弱“L”形或近“V”形,4-甲基甾烷含量整体较高,C27重排甾烷较高,伽马蜡烷含量低。但S32-6-1井油页岩成熟度明显较低,与原油成熟度不匹配。由此推测,围区内原油来自凹陷内部这套成熟的始新统源岩生成的页岩油。

    图  7  琼东南盆地北部坳陷带油源色谱质谱对比
    Figure  7.  Comparison of chromatographic mass spectra between crude oil and source rock in the northern depression of Qiongdongnan Basin

    此外,选取了反映生源构成、沉积环境等的多项生物标志物参数,对琼东南盆地北部坳陷带内的原油与始新统油页岩进行了对比研究(图8),两者整体表现出较强的相似性,进一步说明北部坳陷带原油主要来自成熟的始新统油页岩。

    图  8  琼东南盆地北部坳陷带原油及烃源岩生物标志物参数对比
    P1—奥利烷/C30藿烷;P2—伽马蜡烷/C30藿烷;P3—C31S藿烷/(S+R);P4—(藿烷+莫烷)C29/C30;P5—Ts/(Ts+Tm);P6—C27/C29ɑɑɑR;P7—C28/C29ɑɑɑR;P8—C2920S/(20S+20R);P9—C29ββ/(ββ+ɑɑ);P10—4-甲基甾烷/C29甾烷)
    Figure  8.  Comparison of biomarker parameters between crude oil and source rock in the northern depression of Qiongdongnan Basin

    琼东南盆地松西凹陷始新统烃源岩的钻揭发现,打开了琼东南盆地原油勘探新格局,实现了新领域突破。北部坳陷带原油生标特征与S32-6-1井钻遇的始新统源岩相似,反映北部坳陷带原油主要来自始新统成熟源岩,证实了这套始新统源岩的生烃能力。

    松西凹陷的油页岩地震相可类比阳江、开平等其他勘探成功的凹陷。油页岩层段地震相表现为低频、连续强反射特征。地震资料解释研究表明,松西凹陷的油页岩主要发育在凹陷的东洼,在洼陷中心部位沉积最厚,往南部的缓坡方向上倾尖灭(图9)。

    图  9  松西凹陷始新统油页岩展布图
    Figure  9.  Distribution map of Eocene oil shale in Songxi Sag

    用地震资料落实了松西凹陷始新统油页岩的规模、埋深及空间展布特征。松西凹陷油页岩/页岩的面积约102 km2,平均厚度282 m(图10),埋深3200~4800 m。根据松西凹陷周缘已钻井Ro统计结果,松西凹陷生油门限(Ro=0.5%)约为3200 m。结合实际钻井资料进行盆地模拟,结果显示,松西凹陷主体部位,即凹陷内始新统油页岩/页岩的Ro为0.8%~1.3%,表明已进入成熟大量生油阶段,生油强度大,原油资源量约3760×104 t。凹陷边缘斜坡带即S32-6-1井所处位置,始新统油页岩/页岩成熟度较低,Ro为0.5%~0.7%,还未大量生烃,生油强度较小,原油资源潜力仅380×104 t(图11图12)。经计算,松西凹陷可产生的原油资源潜力约为4140×104 t(主要是凹陷内成熟源岩),原油资源丰富,是有利的原油勘探领域。

    图  10  松西凹陷始新统油页岩/页岩厚度分布图
    Figure  10.  Thickness distribution map of Eocene oil shale&shale in Songxi Sag
    图  11  松西凹陷始新统油页岩/页岩成熟度Ro平面分布图
    Figure  11.  Plane distribution map of vitrinite reflectance of Eocene oil shale&shale in Songxi Sag
    图  12  松西凹陷始新统油页岩/页岩生油强度分布图
    Figure  12.  Distribution of oil generation intensity of Eocene oil shale&shale in Songxi Sag

    松西凹陷始新统油页岩的生烃潜力分析研究表明,松西凹陷油页岩发育且品质高,该套油页岩整装且源储配置好,既具备常规油气勘探的成藏条件,又是探索页岩油勘探的有利区带。探索发现,琼东南盆地北部坳陷带的其他各凹陷及顺德凹陷和北礁凹陷中均发育相似地震相的始新统,表明皆有较大的勘探潜力。因此,松西凹陷始新统油页岩的评价对琼东南盆地勘探具有重要的指导意义。

    (1)琼东南盆地松西凹陷始新统油页岩沉积环境为弱还原的淡水湖沼相环境,具有低等水生生物和高等陆生植物混源输入的特征。有机质丰度高、类型好,成熟度存在明显的分带性,凹陷内部成熟度较高,周缘斜坡成熟度较低。综合评价为好—优质级别烃源岩,凹陷内具备良好的生烃潜力。

    (2)油源色谱质谱指纹特征分析表明,北部坳陷带内原油与这套始新统油页岩有良好的亲属性,反映北部坳陷带原油主要来自始新统油页岩,证实了该套始新统油页岩的生烃能力

    (3)琼东南盆地松西凹陷始新统油页岩的面积为102 km2,平均厚度为282 m,埋深3200~4800 m,凹陷主体部位已进入成熟大量生油阶段,原油资源潜力约为4140×104 t。围区圈闭发育且成藏条件匹配好,常规油气和页岩油均有较大的勘探潜力。

  • 图  1   研究区大地构造位置(a)及地质简图(b)(据Hou et al., 2002潘江涛等,2022a修改)

    Figure  1.   Tectonic outline (a) and simplified geological map (b) of the research area

    图  2   橄榄玄武玢岩野外出露特征及镜下照片

    a—橄榄玄武玢岩产出示意图;b—橄榄玄武玢岩侵入于峨眉山玄武岩一段火山集块岩中;c—橄榄玄武玢岩手标本照片;d—橄榄玄武玢岩镜下照片(单偏光);e—橄榄玄武玢岩镜下照片(正交偏光);1—凝灰岩;2—灰岩;3—玄武岩;4—灰屑斜斑玄武质火山集块岩;5—玄武质火山角砾岩;6—斜斑辉绿玢岩;7—橄榄玄武玢岩;8—分层线;9—平行不整合界线;10—侵入接触界线;11—产状;P2m—茅口组;P2-3e1—峨眉山玄武岩一段;K1pσβμ—早白垩世橄榄玄武玢岩;P2-3pβμ—二叠纪斜斑辉绿玢岩;Ol—橄榄石;Pl—斜长石

    Figure  2.   Field outcrop characteristics and micrographs of the olivine basaltic porphyrite

    图  3   橄榄玄武玢岩锆石阴极发光(CL)(a)及锆石U−Pb年龄(b,c)

    Figure  3.   Zircon CL images (a) and zircon U−Pb age diagrams (b, c) of the olivine basaltic porphyrite

    图  4   橄榄玄武玢岩TAS图解(a)及Nb/Y−Zr/(TiO2×104)图解(b)(图a据Middlemost, 1994);图b据Winchester and Floyd, 1977)

    Figure  4.   TAS diagram (a) and Nb/Y−Zr/(TiO2×104) diagram (b) for the olivine basaltic porphyrite

    图  5   橄榄玄武玢岩稀土元素配分曲线图(a)及微量元素蛛网图(b)(二叠纪斜斑辉绿玢岩数据据潘江涛等,2022b;球粒陨石和原始地幔标准化值据Sun et al., 1989

    Figure  5.   Chondrite-normalized REE patterns (a) and primitive mantle normalized trace element spider diagrams(b) of the olivine basaltic porphyrite

    图  6   橄榄玄武玢岩(La/Sm)N−(Tb/Yb)N图解(a)及Sm/Yb−La/Sm图解(b)(a据McKenzie et al., 1991;b据Lassiter et al., 1997;峨眉山玄武岩数据及斜斑辉绿玢岩玢岩据潘江涛等,2022b;丽江玄武岩、宾川和永胜玄武岩数据据张招崇等,2005)

    UC—上地壳;CC—地壳;LC—下地壳;CLM—大陆岩石圈地幔

    Figure  6.   (La/Sm)N−(Tb/Yb)N diagram (a) and Sm/Yb−La/Sm diagram (b) for the olivine basaltic porphyrite

    图  7   橄榄玄武玢岩的Ti/100−Zr−Y×3图解(a,据Pearce and Cann, 1973修改)及Zr−Y/Zr图解(b,据Pearce and Norry, 1979修改)

    CAB—岛弧拉斑玄武岩;OFB—岛弧拉斑玄武岩和钙碱性玄武岩;LKT—钙碱性玄武岩;WPB—板内玄武岩;WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—火山岛弧玄武岩

    Figure  7.   Ti/100−Zr−Y×3 diagram (a) and Zr−Y/Zr diagram (b) for the plagioclase olivine basaltic porphyrite

    表  1   乌蒙山地区橄榄玄武玢岩LA−ICP−MS锆石U−Th−Pb分析结果

    Table  1   LA−ICP−MS zircon U−Th−Pb data for the olivine basaltic porphyrite in Wumengshan area

    点号 元素含量/10−6 232Th/
    238U
    同位素比值及误差 年龄/Ma 谐和
    度/%
    Pb* 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th
    比值 比值 比值 比值 年龄 年龄 年龄 年龄
    1 6.7 163.2 294.5 0.55 0.0488 0.0047 0.1400 0.0130 0.0208 0.0005 0.0064 0.0005 60.0 190.0 132.0 11.0 132.4 3.0 129.7 10.0 100
    2 3.8 62.9 160.4 0.39 0.0505 0.0043 0.1510 0.0130 0.0213 0.0004 0.0070 0.0006 120.0 160.0 141.0 11.0 135.8 2.7 141.4 11.0 96
    3 5.5 108.2 228.7 0.47 0.0489 0.0039 0.1450 0.0120 0.0212 0.0003 0.0065 0.0005 40.0 150.0 135.5 10.0 135.4 2.2 130.1 9.3 100
    4 5.4 111.4 227.2 0.49 0.0513 0.0040 0.1440 0.0110 0.0206 0.0004 0.0062 0.0004 120.0 150.0 136.4 10.0 131.4 2.2 124.3 8.5 96
    5 5.2 86.0 224.2 0.38 0.0501 0.0041 0.1450 0.0120 0.0212 0.0004 0.0066 0.0005 80.0 150.0 137.0 11.0 135.1 2.2 132.2 11.0 99
    6 7.1 103.3 302.4 0.34 0.0489 0.0033 0.1423 0.0099 0.0210 0.0003 0.0070 0.0005 60.0 130.0 133.7 8.8 134.0 2.1 140.4 10.0 100
    7 5.1 92.4 211.5 0.44 0.0515 0.0036 0.1540 0.0110 0.0217 0.0004 0.0075 0.0005 150.0 140.0 144.1 9.5 138.2 2.4 150.2 9.4 96
    8 8.0 151.0 329.7 0.46 0.0465 0.0031 0.1339 0.0090 0.0207 0.0003 0.0063 0.0004 0.0 130.0 126.5 8.0 132.1 1.8 126.2 7.5 96
    9 4.2 77.6 191.8 0.40 0.0456 0.0039 0.1380 0.0120 0.0217 0.0004 0.0065 0.0005 90.0 150.0 130.0 11.0 138.1 2.6 131.4 11.0 94
    10 5.7 383.0 254.8 1.50 0.0514 0.0028 0.1506 0.0086 0.0211 0.0003 0.0036 0.0003 230.0 120.0 143.6 8.0 134.4 1.9 72.6 5.8 93
    11 3.5 58.1 151.4 0.38 0.0495 0.0046 0.1430 0.0130 0.0211 0.0004 0.0067 0.0006 50.0 170.0 134.0 12.0 134.5 2.5 135.0 12.0 100
    12 4.6 82.0 189.9 0.43 0.0501 0.0041 0.1430 0.0120 0.0206 0.0004 0.0066 0.0005 100.0 160.0 135.0 11.0 131.6 2.5 133.6 11.0 97
    13 3.0 39.0 129.5 0.30 0.0455 0.0046 0.1340 0.0130 0.0213 0.0005 0.0068 0.0008 100.0 180.0 126.0 12.0 135.8 3.0 137.0 15.0 93
    14 7.8 147.4 331.3 0.44 0.0506 0.0031 0.1455 0.0093 0.0205 0.0003 0.0064 0.0004 150.0 120.0 136.8 8.2 131.2 2.0 129.0 8.9 96
    15 5.2 95.5 215.1 0.44 0.0502 0.0039 0.1460 0.0110 0.0211 0.0004 0.0064 0.0005 80.0 150.0 136.8 10.0 134.6 2.4 129.6 9.3 98
    16 4.8 68.1 217.3 0.31 0.0524 0.0060 0.1490 0.0170 0.0207 0.0004 0.0073 0.0009 140.0 210.0 139.0 15.0 132.1 2.8 148.0 17.0 95
    17 7.7 135.7 322.9 0.42 0.0475 0.0032 0.1368 0.0095 0.0209 0.0003 0.0066 0.0004 20.0 130.0 128.9 8.5 133.1 1.9 132.9 8.4 97
    18 6.8 120.9 297.9 0.41 0.0451 0.0029 0.1304 0.0088 0.0208 0.0003 0.0065 0.0004 50.0 120.0 123.5 7.8 132.4 1.9 130.4 8.8 93
    19 5.9 89.4 243.6 0.37 0.0496 0.0044 0.1420 0.0120 0.0212 0.0005 0.0064 0.0006 90.0 170.0 135.0 11.0 135.2 3.0 128.0 12.0 100
    20 4.9 72.6 206.7 0.35 0.0477 0.0036 0.1351 0.0100 0.0208 0.0004 0.0063 0.0005 0.0 140.0 128.3 9.2 132.7 2.2 127.6 11.0 97
    21 6.4 94.1 277.8 0.34 0.0470 0.0032 0.1363 0.0096 0.0211 0.0003 0.0068 0.0005 10.0 130.0 128.6 8.5 134.5 2.0 136.5 10.0 96
    22 4.8 67.0 201.5 0.33 0.0461 0.0039 0.1340 0.0110 0.0212 0.0004 0.0071 0.0006 60.0 150.0 127.5 10.0 135.0 2.8 142.0 13.0 94
    23 6.3 129.0 275.1 0.47 0.0487 0.0046 0.1380 0.0120 0.0209 0.0005 0.0066 0.0006 60.0 170.0 132.0 12.0 133.6 3.3 134.0 13.0 99
    24 6.8 106.7 271.0 0.39 0.0484 0.0032 0.1420 0.0098 0.0211 0.0003 0.0067 0.0004 50.0 130.0 133.5 8.6 134.3 2.1 134.3 8.4 99
    25 4.7 69.3 191.2 0.36 0.0529 0.0046 0.1580 0.0140 0.0216 0.0004 0.0074 0.0006 140.0 170.0 146.0 12.0 137.5 2.5 148.0 13.0 94
    26 4.3 78.6 191.7 0.41 0.0482 0.0038 0.1370 0.0110 0.0205 0.0004 0.0064 0.0005 20.0 140.0 128.7 9.5 130.8 2.3 128.9 10.0 98
    27 4.2 60.5 188.7 0.32 0.0527 0.0055 0.1500 0.0150 0.0211 0.0004 0.0069 0.0007 100.0 190.0 139.0 13.0 134.3 2.8 138.0 15.0 97
    28 6.4 104.2 269.2 0.39 0.0466 0.0035 0.1344 0.0100 0.0209 0.0004 0.0065 0.0005 20.0 140.0 126.6 9.2 133.2 2.2 130.5 9.7 95
    29 4.8 69.4 203.8 0.34 0.0475 0.0038 0.1370 0.0110 0.0211 0.0004 0.0063 0.0006 0.0 150.0 129.1 9.8 134.7 2.6 126.0 11.0 96
    30 4.3 60.2 181.4 0.33 0.0470 0.0045 0.1360 0.0130 0.0212 0.0004 0.0064 0.0006 30.0 180.0 130.0 12.0 135.1 2.5 129.0 12.0 96
    31 9.5 208.5 375.8 0.55 0.0494 0.0026 0.1469 0.0082 0.0214 0.0003 0.0068 0.0004 140.0 110.0 138.3 7.2 136.5 2.0 136.7 7.7 99
    32 6.7 115.8 292.0 0.40 0.0574 0.006 0.1680 0.0170 0.0212 0.0006 0.0212 0.0006 330.0 210.0 156.2 14.9 135.4 3.5 160.2 15.3 86
    33 3.8 123.2 204.8 0.60 0.0582 0.0044 0.1650 0.0130 0.0205 0.0004 0.0205 0.0004 380.0 160.0 154.3 11.2 130.9 2.3 120.9 10.2 84
    34 5.5 85.3 219.1 0.39 0.0593 0.0084 0.1720 0.0140 0.0211 0.0004 0.0078 0.0006 390.0 170.0 159.5 12.3 134.7 2.5 158.3 12.1 83
      注:Pb*为全Pb;谐和度计算公式为:谐和度=100*(1−abs((206Pb/238U)age−(207Pb/235U)age))/(((206Pb/238U)age+(207Pb/235U)age)/2)))
    下载: 导出CSV

    表  2   乌蒙山地区橄榄玄武玢岩样品主量、稀土和微量元素分析结果及相关参数

    Table  2   Analysis results and related parameters of major, rare earth and trace elements of samples for the olivine basaltic porphyrite in Wumengshan area

    样品编号 SiO2 Al2O3 CaO MgO Fe2O3 FeO TiO2 P2O5 Na2O K2O MnO CO2 烧失量 TFe2O3
    P24-1QY 44.82 13.81 9.04 5.07 4.31 9.03 3.99 0.42 2.02 0.83 0.22 5.51 6.23 14.35
    P24-5YQ 48.02 13.44 8.47 4.85 2.75 9.91 3.84 0.39 1.92 1.18 0.20 4.09 4.77 13.77
    P24-6YQ 47.23 13.75 9.01 4.91 3.08 9.45 3.84 0.44 2.03 1.13 0.20 4.24 4.70 13.60
    P24-7YQ 47.87 12.65 8.31 6.16 5.21 8.63 3.81 0.29 1.96 0.80 0.21 3.61 3.88 14.82
    P24-8YQ 48.38 13.27 7.80 5.90 5.14 8.73 3.79 0.29 1.81 0.81 0.20 3.13 3.66 14.86
    P24-9YQ 48.58 13.02 8.76 6.19 5.89 7.85 3.77 0.29 1.81 0.93 0.21 4.25 2.51 14.63
    P24-10YQ 48.13 12.52 8.89 5.80 4.60 8.54 3.75 0.29 1.91 0.89 0.20 4.16 4.32 14.11
    P24-11YQ 46.50 12.41 9.34 6.09 5.26 8.05 3.63 0.30 1.89 0.89 0.19 4.51 5.28 14.22
    P24-20YQ 44.24 12.23 8.87 5.51 5.88 8.89 3.70 0.27 1.43 1.37 0.09 6.23 7.34 15.78
    P24-21YQ 44.60 11.81 8.70 5.66 5.38 9.37 3.63 0.26 1.32 1.51 0.09 6.03 7.59 15.81
    P24-22YQ 44.12 12.10 8.95 5.74 5.80 9.02 3.77 0.28 1.45 1.15 0.10 5.72 7.29 15.84
    样品编号 Na2O+K2O Mg# TFeO/MgO Ir La Ce Pr Nd Sm Eu Gd Tb Dy Ho
    P24-1QY 2.85 50.06 4.81 0.89 46.3 99.9 13.9 59.1 11.4 3.51 10.2 1.49 7.84 1.34
    P24-5YQ 3.11 46.59 5.12 1.32 45.5 95.6 12.5 52.5 10.1 3.23 9.49 1.31 6.81 1.16
    P24-6YQ 3.16 48.10 4.91 0.83 45.6 97.9 13.2 56.4 10.5 3.41 9.76 1.37 7.31 1.3
    P24-7YQ 2.76 55.97 3.97 0.79 45 94.4 13.4 57.4 11.8 3.5 10.2 1.51 7.86 1.36
    P24-8YQ 2.62 54.64 4.17 1.27 42.6 92 13 56 11.6 3.44 9.91 1.47 7.65 1.33
    P24-9YQ 2.74 58.41 3.78 0.39 45 95.7 13.3 56.7 11.6 3.39 9.96 1.48 7.7 1.35
    P24-10YQ 2.80 54.75 4.07 0.71 47.8 98.9 13.7 58.5 11.9 3.42 10.1 1.48 7.72 1.35
    P24-11YQ 2.78 57.41 3.81 0.99 51.4 104 14.2 59.8 12 3.42 10.3 1.5 7.73 1.35
    P24-20YQ 2.81 52.52 4.65 1.33 46.6 94.8 13.4 56.9 11.6 3.64 9.8 1.44 7.54 1.32
    P24-21YQ 2.83 51.85 4.64 0.21 45.1 92.7 13.1 55.9 11.4 3.46 9.61 1.42 7.39 1.28
    P24-22YQ 2.60 53.14 4.51 0.05 47.4 96.2 13.6 58.2 11.7 3.62 9.89 1.48 7.63 1.33
    样品编号 Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE Sm/Nd (La/Yb)N (Tb/Yb)N (La/Sm)N δEu
    P24-1QY 3.54 0.47 2.82 0.44 35.5 262.25 234.11 28.14 8.32 0.19 11.78 2.35 2.62 1.00
    P24-5YQ 3.16 0.43 2.5 0.33 31.7 244.62 219.43 25.19 8.71 0.19 13.05 2.10 2.91 1.01
    P24-6YQ 3.44 0.46 2.74 0.37 32.7 253.76 227.01 26.75 8.49 0.19 11.94 2.49 2.80 1.03
    P24-7YQ 3.67 0.48 2.92 0.42 36.9 253.92 225.50 28.42 7.93 0.21 11.05 2.50 2.46 0.98
    P24-8YQ 3.54 0.48 2.83 0.41 35.9 246.26 218.64 27.62 7.92 0.21 10.80 2.29 2.37 0.98
    P24-9YQ 3.58 0.48 2.9 0.41 36.1 253.55 225.69 27.86 8.10 0.20 11.13 2.38 2.50 0.96
    P24-10YQ 3.59 0.49 2.9 0.41 36.3 262.26 234.22 28.04 8.35 0.20 11.82 2.39 2.59 0.95
    P24-11YQ 3.59 0.48 2.88 0.42 37 273.07 244.82 28.25 8.67 0.20 12.80 2.35 2.77 0.94
    P24-20YQ 3.52 0.47 2.84 0.42 36.6 254.29 226.94 27.35 8.30 0.20 11.77 2.32 2.59 1.04
    P24-21YQ 3.39 0.45 2.71 0.4 35.1 248.31 221.66 26.65 8.32 0.20 11.94 2.27 2.55 1.01
    P24-22YQ 3.56 0.48 2.83 0.42 37 258.34 230.72 27.62 8.35 0.20 12.01 2.48 2.62 1.03
    样品编号 δCe Ni Co Cu Pb W As Se Cr V Ga In Rb Cs
    P24-1QY 0.97 49.6 48.6 226 10.3 1.83 0.72 0.28 79.4 487 28.5 0.1 23.3 1.17
    P24-5YQ 0.98 44.7 46.8 217 10.5 2.43 0.83 0.32 73.8 447 25.6 0.09 31.7 0.85
    P24-6YQ 0.98 47.9 48.3 217 8.65 4.32 0.73 0.3 75.9 450 26.5 0.1 24.1 0.9
    P24-7YQ 0.94 47.3 48.1 220 10.7 15.8 0.98 0.29 78.6 463 28.1 0.097 20.5 1.2
    P24-8YQ 0.96 49.3 75.6 226 11.4 41.7 0.68 0.28 77.6 455 28.5 0.099 20.1 1.23
    P24-9YQ 0.96 47.4 47.8 219 10.7 21.1 0.83 0.29 73.4 448 28.1 0.1 23.5 1.64
    P24-10YQ 0.95 47.8 45.4 231 12.9 4.04 0.51 0.28 76 445 28.3 0.099 22.2 1.02
    P24-11YQ 0.94 45.8 46.4 211 11.1 3.56 0.77 0.28 73.5 452 29 0.1 25.2 1.1
    P24-20YQ 0.93 45.4 43.8 198 9.82 0.61 0.34 0.27 76 463 26.8 0.096 44.1 1.54
    P24-21YQ 0.94 44.1 44.6 195 9.86 0.61 0.34 0.26 74.4 445 27.2 0.1 42.8 1.6
    P24-22YQ 0.93 46.4 45.6 204 7.92 0.53 0.34 0.27 76.6 472 27.7 0.11 35.1 1.64
    样品编号 Th Hf Zr Nb Ta U Li B Sr Cd Ge Sn F Ba
    P24-1QY 5.75 10.9 327 34.4 2.71 1.29 20.5 4.04 592 0.062 1.37 2.64 892 255
    P24-5YQ 4.81 9.26 317 32.3 2.48 1.16 18 4.68 561 0.06 1.47 2.98 792 358
    P24-6YQ 5.29 9.75 317 33 2.68 1.27 17.6 4.43 573 0.05 1.38 2.52 944 324
    P24-7YQ 5.64 9.37 332 34.6 2.61 1.33 19.8 7.15 567 0.062 1.46 2.88 789 327
    P24-8YQ 5.77 9.51 342 34.8 2.68 1.33 19.2 9.27 544 0.055 1.5 3.4 783 342
    P24-9YQ 5.98 9.47 333 33.8 2.6 1.46 19.6 12.5 553 0.06 1.48 2.62 737 423
    P24-10YQ 5.39 9.29 330 33.7 2.58 1.29 17.3 7.35 562 0.058 1.41 2.86 823 322
    P24-11YQ 5.34 9.06 319 33.5 2.51 1.27 21.6 6.88 568 0.059 1.46 3.24 671 324
    P24-20YQ 5.54 9 320 36 2.48 1.28 27.8 5.41 583 0.07 1.02 3.15 560 350
    P24-21YQ 5.53 9.19 307 33.4 2.53 1.3 27.9 5.13 580 0.063 0.98 3.19 511 386
    P24-22YQ 5.34 9.23 315 34.1 2.49 1.26 28.3 4.85 618 0.061 1.09 2.7 529 306
      注:Mg#=(100×Mg2+)/(Mg2++Fe2+);Mg2+= MgO/ 40.30;TFeO= FeO+ Fe2O3× 0.8998;TFe2O3=Fe2O3+FeO× 1.1113; δCe=CeN/((LaN+PrN)/2);δEu=EuN/((SmN+GdN)/2);主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV

    表  3   橄榄玄武玢岩和OIB端元及各主要化学储库不相容元素比值

    Table  3   Ratio of incompatible elements for the olivine basaltic porphyrite and end member component

    元素 Zr/Nb La/Nb Ba/Nb Ba/Th Rb/Nb Th/Nb Th/La Ba/La
    原始地幔 14.8 0.94 9 77 0.91 0.117 0.125 9.6
    N-MORB 330 1.07 4.3 60 0.36 0.071 0.067 4
    EMⅠ-OIB 5~13.1 0.78~1.32 9.1~23.4 80~204 0.69~1.41 0.094~0.130 0.089~0.147 11.2~19.1
    EMⅡ-OIB 4.4~7.8 0.79~1.19 6.4~11.3 57~105 0.58~0.87 0.105~0.168 0.108~0.183 7.3~13.5
    HIMU-OIB 3.2~5 0.66~0.77 4.9~5.9 63~77 0.35~0.38 0.078~0.101 0.107~0.133 6.8~8.7
    橄榄玄武玢岩 9.52 1.36 9.95 61.56 0.83 0.16 0.12 7.31
    斜斑辉绿玢岩 10.48 1.48 12.64 71.92 1.53 0.17 0.12 8.53
      注:原始地幔、N-MORB、HIMU-OIB、EMⅠ-OIB和EMⅡ-OIB元素比值据Weaver, 1991
    下载: 导出CSV
  • Baker M B, Wyllie P J. 1992. High−pressure apatite solubility in carbonate−rich liquids: Implications for mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 56(9): 3409−3422.

    Chuan M S, Hu L, Lin R X, et al. 2024. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U−Pb age, trace element and Hf isotope constraints[J]. Earth Science Frontiers, 31(2): 204−223(in Chinese with English abstract).

    Dai C G, Wang X H, Chen J S, et al. 2017. Editorial Board of the Regional Geology of China, Guizhou Province[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Deng J F, Luo Z H, Su S G, et al. 2004. Petrogenesis, Tectonic Environment and Mineralization[M]. Beijing: Geological Publishing House (in Chinese).

    Deng J, Yang L Q, Wang C M. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 27(9) : 2501−2509(in Chinese with English abstract).

    Dong S W, Wu X H , Wu Z H, et al. 2000. On tectonic seesawing of the East Asia Continent—Global implieation of the Yanshanian movement[J]. Geological Review, 46(1): 8−13(in Chinese with English abstract).

    Dong S W, Zhang Y Q, Chen X H, et al. 2008. The formation and deformational characteristics of East Asia multi−direction convergent tectonic system in Late Jurassic[J]. Acta Geoscientica Sinica, 29(3): 306−317(in Chinese with English abstract).

    Dong S W, Zhang Y Q, Li H L, et al. 2019. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 49(6): 913−938(in Chinese with English abstract).

    Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463−513. doi: 10.1093/petrology/19.3.463

    Gorczyk W, Hobbs B, Gessner K, et al. 2013. Intracratonic geodynamics[J]. Gondwana Research, 24(3): 838−848.

    Green H D, Ringwood E A. 1967. The genesis of basaltic magmas[J]. Contributiona to Mineralogy and Petrology, 15(2): 103−190. doi: 10.1007/BF00372052

    He B, Xu Y G, Xiao L, et al. 2003. Generation and spatial distribution of the Emeishan large igneous province: New evidence from stratigraphic records[J]. Acta Geological Sinica, 77(2): 194−202(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2003.tb00562.x

    He X Q, Liu A M, Xiao J F, et al. 2004. Report on the results of 1∶250 000 regional geological survey of Bijie County Sheet[R]. Guiyang: Guizhou Institute of Geological Survey(in Chinese).

    Huang C, Ding W P, Zhang H H, et al. 2019. Report on 1∶50 000 regional geological survey of Dianweijie, Cangxi, Majie and Duomaga Sheets in Western Wumengshan, Yunnan[R]. Haikou: The 9th Detachment of the PAP gold force(in Chinese).

    Hou Z Q, Chen W, Lu J R. 2002. Collision event during 177−135 Ma on the eastern margin of the Qinghai−Tibet Plateau: Evidence from 40Ar/ 39Ar dating for basalts on the western margin of the Yangtze Platform[J]. Acta Geologica Sinica, 76(2): 194−204. doi: 10.1111/j.1755-6724.2002.tb00085.x

    Houseman G A, Mckenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts[J]. Journal of Geophysical Research, 86(B7): 6115−6132. doi: 10.1029/JB086iB07p06115

    Houseman G A, Molnar P. 1997. Gravitational (rayleigh−taylor) instability of a layer with non−linear viscosity and convective thinning of continental lithosphere[J]. Geophysical Journal of the Royal Astronomical Society, 128(1): 125−150. doi: 10.1111/j.1365-246X.1997.tb04075.x

    Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523−548. doi: 10.1139/e71-055

    Lassiter J C, Depaolo D J, Mahoney J J, et al. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints[J]. Geophysical Monograph, 100: 335−355.

    Li X H, Li W X, He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543−559(in Chinese with English abstract).

    Li Z Y, Lippert P, Ding L, et al. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727−730.

    Lu H J, Tian X B, Yun K, et al. 2018. Convective removal of the Tibetan Plateau mantle lithosphere by ~26 Ma[J]. Tectonophysics, 731−732: 17−34.

    Liu J Q, He L, Chen F L, et al. 2021. Studies on the chronology and geochemistry of the green pisolites at the bottom of the Middle Triassic Guanling Formation in Yanjin area, northeastern Yunnan Province[J]. Acta Petrologica Sinica, 37(7): 2245−2255(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.16

    Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo–Asian collision?[J]. Tectonophysics, 393(1): 29−42.

    Ludwig K R. 2003. Isoplot/Ex: a geochronological toolkit for Microsoft Excel, Version 3.00[M]. Berkeley: Geochronology Center, Special Publication.

    Ma Y M, Yang T S, Bian W W, et al. 2018. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa−Qiangtang collision and the maximum width of the Neo−Tethys[J]. Tectonics, 37(9/10): 3853−3876.

    McDonough W F. 1990. Constraints on the composition of the continental lithospheric mantle[J]. Earth Planet. Sci. Lett., 101(1): 1−18. doi: 10.1016/0012-821X(90)90119-I

    McKenzie D P, O'Nions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 32(1): 21−91.

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Sci. Rev., 37(3/4): 215−224.

    Nickel K G. 1986. Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships[J]. Neues Jahrbuch Für Mineralogie−Abhandlungen, 155(3): 259−287.

    Pan J T, Liu H H, Yuan Y S, et al. 2022a. Late Permian Xuanwei Formation tuff from the western margin of the Upper Yangtze: Constraints on volcanica ctivity and Paleotethyan arc volcanism in the Emeishan Large Igneous Province[J]. Acta Geologica Sinica, 96(6): 1985−2000(in Chinese with English abstract).

    Pan J T, Wu L, Zhang H H, et al. 2022b. Report on 1∶50 000 regional geological survey of 9 Sheets including Wagang, Huanggeshu, Dawazi, Shiziba, Lianfeng, Daguan County, Huoshaoba, Wuzhai and Zhashang in Wumeng Mountain Area, Yunnan [R]. Kunming: Kunming General Resources Comprehensive Investigation Center of China Geological Survey(in Chinese).

    Paton C, Woodhead J D, Hellstrom J C, et al. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction[J]. Geochem. Geophys. Geosyst., 11(3): 1−36.

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet. Sci. Lett., 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contrib. Mineral. Petrol., 69(1): 33−47. doi: 10.1007/BF00375192

    Ramsey M H, Potts P J, Webb P C, et al. 1995. An objective assessment of analytical method precision: Comparison of ICP−AES and XRF for the analysis of silicate rocks[J]. Chemical Geology, 124(1/2): 1−19.

    Ruddiman W F, Raymo M E, Prell W L, et al. 1997. The uplift−climate connection: A synthesis[M]. New York and London: Plenum Press: 471−515.

    Slama J, Kosler J, Condon D J, et al. 2008. Plesovice zircon: A new natural reference material for U/Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35.

    Sun S S, McDonough W F, Saunders A D, et al. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tatsumi Y, Sakuyama M, Fukuyama H, et al. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones[J]. Journal of Geophysical Research, 88(B7): 5815−5825. doi: 10.1029/JB088iB07p05815

    Thompson J M, Meffre S, Danyushevsky L. 2018. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by lA−ICPMS[J]. Journal of Analytical Atomic Spectrometry, 33(2): 221−230. doi: 10.1039/C7JA00357A

    Turner S, Hawkesworth C, Liu J Q, et al. 1993. Timing of tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364(6432): 50−54. doi: 10.1038/364050a0

    Weaver B L. 1991. Trace element evidence for the origin of ocean−island basalts[J]. Geology, 19(2): 123−127. doi: 10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2

    Wei J. 2018. Petrology, petrogeochemistry and geodynamic significance of Emeishan basalt[D]. Master's Thesis of Chengdu University of Technology (in Chinese with English abstract).

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325−343. doi: 10.1016/0009-2541(77)90057-2

    Xiao L, Xu Y G, Chung S L, et al. 2003. Chemostratigraphic correlation of Upper Permian lavas from Yunnan Province, China: Extent of the emeishan large igneous province[J]. International geology review, 45(8): 753−766. doi: 10.2747/0020-6814.45.8.753

    Xie Y X, Ma L Y, Zhao G C, et al. 2020. Origin of the heping granodiorite pluton: Implications for syn−convergent extension and asthenosphere upwelling accompanying the Early Paleozoic orogeny in South China[J]. Gondwana Research, 85(4): 149−168.

    Xu T, Zhang Z J, Liu B F, et al. 2015. Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity[J]. Science China: Earth Sciences, 45(5): 561−576 (in Chinese with English abstract).

    Xu Y G. 1999. Roles of thermo−mechanic and chemical erosion in continental lithospheric thinning[J]. Petrology and Geochemistry, 18(1): 1−5.

    Yan M D, Zhang D W, Fang X M, et al. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo−and Meso−Tethys[J]. Gondwana Research, 39: 292−316. doi: 10.1016/j.gr.2016.01.012

    Zhang H, Huang H, Hou M C. 2020. Origin of tuffs from Upper Permian Wujiaping Formation in Chaotian section of Guangyuan area, Sichuan, China and its geological significance[J]. Journal of Earch Sciences and Environment. 42(1): 36−48(in Chinese with English abstract).

    Zhang H F. 2009. Peridotite−melt interaction: A key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 54(19): 3417−3437. doi: 10.1007/s11434-009-0307-z

    Zhang H H, Wu. L, Li H, et al. 2022. Relation between the Emeishan mantle plume activity and Wumengshan volcanic−sedimentary Basin in Northeastern Yunnan[J]. Geoscience, 2022, 36(1): 225−243(in Chinese with English abstract).

    Zhang H H, Yang Z, Li Z W, et al. 2024. Discovery of volcanic matter in the Upper Maokou Formation of the Wumengshan area : Evidence of early activity of the Emeishan mantle plume[J]. Geological Bulletin of China, 43(7): 1207−1220.

    Zhang H H, Yuan Y S, Yu Y Z, et al. 2021. The response relationship between Emei mantle plume activity and volcanic sedimentary Basin in Wumengshan area of Northeast Yunnan[J]. Geoscience, 35(5): 1155−1177(in Chinese with English abstract).

    Zhang K X, Pan G T, He W H, et al. 2015. New division of tectonic−strata superregion in China[J]. Earth Science—Journal of China University of Geosciences, 40(2): 206−233(in Chinese with English abstract). doi: 10.3799/dqkx.2015.016

    Zhang Y Q, Dong S W. 2019. East Asia multi−plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613−641(in Chinese with English abstract).

    Zhang Y Q, Dong S W, Li J H, et al. 2011. Mesozoic multi−directional compressive tectonic action and the formation−reformation of the Sichuan Basin[J]. Geology in China, 38(2): 233−250(in Chinese with English abstract).

    Zhang Z C, Wang F S, Hao Y L. 2005. Picrites in the Emeishan Large Igneous Province: Evidence for mantle plume activity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17−22(in Chinese with English abstract).

    Zhao S J, Li S Z, Yu S, et al. 2016. Proto−Tethys ocean in East Asia(Ⅲ): Structures of ductile shear zones in the North Qinling[J]. Acta Petrologica Sinica, 32(9): 2645−2655(in Chinese with English abstract).

    Zhong Y T, Roland M, Chen J, et al. 2020. Geochemical, biostratigraphic, and high−resolution geochronological constraints on the Waning stage of Emeishan large igneous province[J]. Geological Society of America bulletin, 132(9/10): 1969−1986.

    Zhou J X, Chen Z Y. 2007. Research on cathodoluminescence of zircon under electron probe[M]. Chengdu: University of Electronic Science and Technology Press(in Chinese).

    Zhu R X, Zhao P, Zhao Li. 2022. Tectonic evolution and geodynamics of the Neo−Tethys Ocean[J]. Scientia Sinica (Terrae), 52(1): 1−25(in Chinese with English abstract). doi: 10.1360/SSTe-2021-0147

    钏茂山, 胡乐, 蔺如喜, 等. 2024. 扬子板块西缘早中生代 “绿豆岩” 成因及构造启示: 锆石 U−Pb 年龄、微量元素及 Hf 同位素约束[J]. 地学前缘, 31(2): 204−223.
    戴传固, 王雪华, 陈建书, 等. 2017. 中国区域地质志·贵州志 [M]. 北京: 地质出版社.
    邓晋福, 罗照华, 苏尚国, 等. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社.
    邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 27(9): 2501−2509.
    董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变 —— 燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002
    董树文, 张岳桥, 陈宣华, 等. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 29(3): 306−317. doi: 10.3321/j.issn:1006-3021.2008.03.005
    董树文, 张岳桥, 李海龙, 等. 2019. “燕山运动” 与东亚大陆晚中生代多板块汇聚构造 —— 纪念 “燕山运动” 90 周年[J]. 中国科学: 地球科学, 49(6): 913−938.
    何斌, 徐义刚, 肖龙, 等. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 77(2): 194−202. doi: 10.3321/j.issn:0001-5717.2003.02.007
    何熙琦, 刘爱民, 肖加飞, 等. 2004. 1︰25 万毕节县幅区域地质调查成果报告 [R]. 贵阳: 贵州省地质调查院.
    黄诚, 丁伟品, 张宏辉, 等. 2019. 云南乌蒙山西部甸尾街、沧溪、马街、朵马戛幅 1∶5 万区域地质调查报告 [R]. 海口: 武警黄金第九支队.
    李献华, 李武显, 何斌. 2012. 华南陆块的形成与 Rodinia 超大陆聚合-裂解 —— 观察、解释与检验[J]. 矿物岩石地球化学通报, 31(6): 543−559. doi: 10.3969/j.issn.1007-2802.2012.06.002
    刘建清, 何利, 陈风霖, 等. 2021. 滇东北盐津地区中三叠统关岭组底部绿豆岩年代学及地球化学研究[J]. 岩石学报, 37(7): 2245−2255. doi: 10.18654/1000-0569/2021.07.16
    潘江涛, 刘红豪, 袁永盛, 等. 2022a. 上扬子西缘晚二叠世宣威组凝灰岩: 对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束[J]. 地质学报, 96(6): 1985−2000.
    潘江涛, 吴亮, 张宏辉, 等. 2022b. 云南乌蒙山区 1∶5 万瓦岗、黄葛树、大湾子、柿子坝、莲峰、大关县、火烧坝、五寨、闸上 9 幅区域地质调查报告 [R]. 昆明: 中国地质调查局昆明自然资源综合调查中心.
    魏杰. 2018. 峨眉山玄武岩岩石学、岩石地球化学及其地球动力学意义 [D]. 成都理工大学硕士学位论文: 1−69.
    徐涛, 张忠杰, 刘宝峰, 等. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江-清镇宽角地震资料的约束[J]. 中国科学: 地球科学, 45(5): 561−576.
    张晗, 黄虎, 侯明才. 2020. 四川广元地区朝天剖面上二叠统吴家坪组凝灰岩成因及其地质意义[J]. 地球科学与环境学报, 42(1): 36−48.
    张宏辉, 吴亮, 李鸿, 等. 2022. 滇东北乌蒙山地区峨眉地幔柱活动与火山-沉积盆地的响应关系[J]. 现代地质, 36(1): 225−243.
    张宏辉, 杨朝, 李致伟, 等. 2024. 乌蒙山地区茅口组中上部火山物质的发现: 峨眉地幔柱早期活动的证据[J]. 地质通报, 43(7): 1207−1220.
    张宏辉, 袁永盛, 余杨忠, 等. 2021. 扬子板块西缘中生代 — 新生代碰撞造山事件的记录: 来自峨眉山玄武岩的锆石 U−Pb 同位素证据[J]. 现代地质, 35(5): 1155−1177.
    张克信, 潘桂棠, 何卫红, 等. 2015. 中国构造-地层大区划分新方案[J]. 地球科学 (中国地质大学学报), 40(2): 206−233.
    张岳桥, 董树文. 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613−641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059
    张岳桥, 董树文, 李建华, 等. 2011. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 38(2): 233−250. doi: 10.3969/j.issn.1000-3657.2011.02.001
    张招崇, 王福生, 郝艳丽. 2005. 峨眉山大火成岩省中的苦橄岩: 地幔柱活动证据[J]. 矿物岩石地球化学通报, 24(1): 17−22. doi: 10.3969/j.issn.1007-2802.2005.01.003
    赵淑娟, 李三忠, 余珊, 等. 2016. 东亚原特提斯洋 (Ⅲ): 北秦岭韧性剪切带构造特征[J]. 岩石学报, 32(9): 2645−2655.
    周剑雄, 陈振宇. 2007. 电子探针下锆石阴极发光的研究 [M]. 成都: 电子科技大学出版社.
    朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 52(1): 1−25.
图(7)  /  表(3)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  95
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-06-20
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回