基于MobileViT的岩石薄片图像岩性识别方法研究

    Lithology identification method of rock thin section images based on MobileViT

    • 摘要: 岩石薄片图像中包含了大量肉眼无法观察到的地质特征信息,对岩石薄片图像的岩性识别结果为后续的石油勘探和开发奠定了基础。针对岩性识别数据集不均衡、识别模型参数多等问题,提出一种改进的轻量化MobileViT模型,该模型针对涵盖了90%以上常见岩性的岩石薄片图像进行建模分析。首先,为使模型更好地学习到每类岩石薄片图像中所包含的独特特征,对数据集进行数字增加。其次,使用GELU替换MobileViT中MV2模块中常规ReLU6,从而作为该模块的激活函数,有效解决神经元死亡的问题,提升模型的收敛速度。最后,划分训练集和测试集,使用余弦退火算法自动更新学习率,以迁移学习加速训练过程,实现岩石薄片图像中针对岩性的自动识别。实验结果表明,改进后的MobileViT对岩性识别的准确率达82.9%,模型的参数仅为7.66M,通过实例验证该算法具有较好的鲁棒性。

       

      Abstract: The rock thin−section images contain a large amount of geological feature information that cannot be observed with the naked eye. The lithology identification of rock thin−section images lays the foundation for subsequent oil exploration and production. Aiming at the problems of unbalanced lithology identification data set and many identification model parameters, an improved lightweight MobileViT model is proposed to model and analyze the rock slice images covering more than 90% of common lithology. First, to enable the model to better learn the unique features contained in each type of rock slice image, adding numbers of the dataset set is performed on the image. Secondly, use GELU to replace the ReLU6 of the MV2 module in MobileViT as the activation function of the module, which effectively solves the problem of neuron death and improves the convergence speed of the model. Finally, the training set and the test set are divided, the cosine annealing algorithm is used to automatically update the learning rate, and the transfer learning is used to speed up the training process, so as to realize the automatic identification of rock slice images. The experimental results show that the accuracy of the improved MobileViT for lithology identification is 82.8%, and the model parameters are only 7.66M, which has good robustness.

       

    /

    返回文章
    返回