滇中扬子西南缘戛洒地区大红山岩群高压榴闪岩的发现及厘定

    黄亮, 黄钊, 孙载波, 曾文涛, 何云龙, 吕卫, 杨旭山, 刘福来, 何兆荣

    黄亮, 黄钊, 孙载波, 曾文涛, 何云龙, 吕卫, 杨旭山, 刘福来, 何兆荣. 2024: 滇中扬子西南缘戛洒地区大红山岩群高压榴闪岩的发现及厘定. 地质通报, 43(10): 1818-1829. DOI: 10.12097/gbc.2022.08.003
    引用本文: 黄亮, 黄钊, 孙载波, 曾文涛, 何云龙, 吕卫, 杨旭山, 刘福来, 何兆荣. 2024: 滇中扬子西南缘戛洒地区大红山岩群高压榴闪岩的发现及厘定. 地质通报, 43(10): 1818-1829. DOI: 10.12097/gbc.2022.08.003
    Huang L, Huang Z, Sun Z B, Zeng W T, He Y L, Lyu W, Yang X S, Liu F L, He Z R. Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province. Geological Bulletin of China, 2024, 43(10): 1818−1829. DOI: 10.12097/gbc.2022.08.003
    Citation: Huang L, Huang Z, Sun Z B, Zeng W T, He Y L, Lyu W, Yang X S, Liu F L, He Z R. Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province. Geological Bulletin of China, 2024, 43(10): 1818−1829. DOI: 10.12097/gbc.2022.08.003

    滇中扬子西南缘戛洒地区大红山岩群高压榴闪岩的发现及厘定

    基金项目: 云南省科技厅科技计划项目《昌宁−孟连结合带北端大理漕涧地区流纹岩型铌矿的成矿时代及矿床成因》(编号:202401AT070157)、国家自然科学基金项目《三江南段景洪大勐龙地区高压变质岩p-T-t轨迹及其对原−古特提斯构造演化的制约》(批准号:42062005)、云南省新一轮找矿行动暨地勘基金项目《云南省1∶5万乐在等3幅区域地质调查》(编号:D202306)
    详细信息
      作者简介:

      黄亮(1985− ),男,硕士,高级工程师,从事云南区域地质调查工作。E−mail:409090169@qq.com

      通讯作者:

      孙载波(1981− ),男,硕士,正高级工程师,从事云南区域地质调查工作。E−mail:1553974947@qq.com

    • 中图分类号: P588.3

    Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province

    • 摘要:

      通过野外地质调查,在滇中新平县戛洒的浅部熔岩铁矿地区原划分的大红山岩群红山组内部,新发现了一套变质强烈的变质岩。岩相学研究表明,该变质岩为榴闪岩类,退变质作用强烈,仅保留有部分俯冲−折返的矿物学记录,未见岩石早期变质及峰期变质阶段的矿物组合,且矿物世代具顺时针变质轨迹特征。据电子探针测试结果,通过GBP(石榴子石−黑云母−斜长石)平均温压计法,其记录的最大变质压力达1.52 GPa;角闪石单矿物温压计法获得角闪石记录的最大变质压力为0.66 GPa,表明榴闪岩为高压变质级。结合大红山岩群的成岩时代、变质时代、岩石地球化学特征等,认为大红山岩群成岩于Columbia 超大陆裂解期,是古元古代晚期洋盆的岩石组分;主期变质作用形成于Rodinia 超大陆拼合−裂解过程的俯冲−折返作用;大红山岩群可能是一套不完整的蛇绿混杂岩,代表了古元古代晚期洋盆的残迹。

      Abstract:

      In the course of field geological investigation, a new set of metamorphic rocks with strong metamorphism was discovered in the Hongshan Formation of Dahongshan Group in the shallow lava iron ore area of Jiesa, Xinping County, central Yunnan Province. Petrographic studies show that the metamorphic rocks are eclogite amphibolites with strong retrometamorphism and only partial subduction−reentrant mineralogical records. There is no mineral association in the early metamorphic and peak metamorphic stages of the rocks, and the mineral generations have the characteristics of clockwise metamorphic tracks. According to the results of electron probe test, the maximum metamorphic pressure recorded by GBP (Garnet−Biotite−Plagioclase) average temperature manometer is 1.52 GPa. The maximum metamorphic pressure of hornblende recorded by temperature manometer method is 0.66 GPa, which indicates that the eclogite in this study is of high pressure metamorphic grade. According to the diagenetic age, metamorphic age and geochemical characteristics of Dahongshan Group, it is believed that Dahongshan Group was formed in the cracking period of the Columbia supercontinent and is a rock component of the Late Paleoproterozoic ocean basin. The main−stage metamorphism was formed by the subduction−reentrant process of the Rodinia supercontinent, and the Dahongshan Group may be an incomplete set of ophiolitic melanomics, representing the remnants of the Late Paleoproterozoic ocean basin.

    • 图  1   研究区区域地质图(据金廷福等,2017修改)

      Figure  1.   Regional geological map of the study area

      图  2   各类变质岩照片

      a—石榴绿泥片岩;b—斜长角闪石榴绿泥片岩;c—石榴斜长角闪片岩;d—角闪石榴子石岩

      Figure  2.   Photographs of various metamorphic rocks

      图  3   石榴子石探针剖面位置图

      Grt—石榴子石;Amp—角闪石;Qz—石英

      Figure  3.   Location of garnet probe section

      图  4   石榴子石环带成分剖面图

      Py—镁铝榴石;Alim—铁铝榴石;Gro—钙铝榴石;Sps—锰铝榴石

      Figure  4.   Composition profile of garnet band

      表  1   角闪石榴子石岩的石榴子石成分剖面电子探针分析结果

      Table  1   Electron probe analysis results of garnet composition profile of amphibole garnet %

      测点号 SiO2 TiO2 Al2O3 TFeO MnO MgO CaO Na2O K2O 合计 Py Alm Gro Sps
      Line1 37.66 0.02 20.77 35.21 0.2 3.01 3.13 0 0 100 11.98 78.61 8.95 0.46
      Line2 37.53 0 20.56 35.94 0.49 2.25 3.37 0 0 100.15 8.95 80.3 9.64 1.11
      Line3 37.41 0 20.65 35.1 1.06 2 3.4 0 0.01 99.63 8.06 79.6 9.89 2.44
      Line4 37.25 0.03 20.49 34.6 1.22 1.64 4 0.05 0 99.29 6.67 78.83 11.68 2.82
      Line5 37.38 0.06 20.35 33.83 1.6 1.46 5.01 0.01 0 99.71 5.84 76.08 14.44 3.64
      Line6 37.67 0.07 20.47 33.07 2.5 1.55 4.95 0.02 0 100.3 6.17 73.98 14.19 5.66
      Line7 37.37 0.09 20.37 32.4 3.82 1.1 4.81 0.02 0 99.99 4.43 72.97 13.87 8.72
      Line8 37.62 0.03 20.76 30.07 3.14 2.49 4.5 0.01 0.01 98.63 10.2 69.22 13.26 7.32
      Line9 37.1 0.09 20.26 30.29 4.93 1.31 5.19 0.03 0 99.2 5.29 68.42 15.01 11.28
      Line10 37.82 0.08 20.35 31.57 2.98 1.85 4.31 0.04 0.01 99.02 7.61 72.72 12.72 6.95
      Line11 37.66 0.08 20.5 32.04 4.47 1.09 4.48 0.01 0 100.32 4.38 72.42 12.97 10.23
      Line12 37.59 0.02 20.68 32.14 3.35 1.91 4.05 0.01 0 99.75 7.73 72.83 11.76 7.68
      Line13 37.84 0.09 20.6 31.24 2.87 2.42 4.97 0.03 0.01 100.08 9.62 69.69 14.2 6.48
      Line14 37.53 0.05 20.48 32.63 3.72 0.99 4.91 0 0 100.31 3.97 73.4 14.14 8.48
      Line15 37.11 0.06 20.49 33.01 3.66 0.98 4.67 0.01 0 99.97 3.93 74.27 13.46 8.34
      Line16 37.05 0.12 20.74 33.09 2.82 1.09 5.01 0.01 0 99.92 4.38 74.69 14.49 6.44
      Line17 37.23 0.04 20.45 34.69 1.62 1.08 4.59 0.02 0.01 99.73 4.38 78.59 13.31 3.72
      Line18 37.23 0.03 20.65 36.22 1.17 1.3 3.66 0 0 100.25 5.22 81.56 10.56 2.66
      Line19 37.17 0 20.59 36 1.12 1.47 3.63 0.01 0 99.99 5.89 81.09 10.47 2.56
      Line20 37.56 0.07 20.44 34.81 1.19 1.88 4.2 0.03 0 100.18 7.5 77.77 12.03 2.7
        注:12个氧原子
      下载: 导出CSV

      表  2   黑云母−斜长石−石榴子石电子探针数据及温压计运算结果

      Table  2   Electron probe data of biotite-plagioclase-garnet and calculation results of pyrometer %

      代号岩石类型黑云母斜长石石榴子石温压运
      算结果
      SiO2TiO2Al2O3TFeOMnOMgOCaONa2OK2OSiO2TiO2Al2O3TFeOMnOMgOCaONa2OK2OSiO2TiO2Al2O3TFeOMnOMgOCaONa2OK2O
      HS05-1-1-①石榴斜长
      角闪片岩
      35.981.6617.8419.120.069.890.030.289.5364.930.0021.520.120.010.022.749.700.0437.100.0221.0433.351.722.604.610.020.00603℃、1.14GPa
      HS05-1-1-②35.431.8216.5119.180.0510.210.120.288.8761.030.0023.680.050.000.006.078.200.0636.790.0320.6233.001.572.685.110.020.00598℃、0.81GPa
      HS08-1-1-①角闪石榴
      子石岩
      36.781.1815.0418.540.0511.370.000.389.3762.150.0023.520.270.000.024.908.450.0537.120.0621.0832.711.163.343.790.030.00613℃、0.81 GPa
      HS08-1-1-②36.821.2415.5318.990.0411.560.020.389.1861.540.0023.390.160.020.005.648.550.0337.030.1020.7432.951.183.424.360.030.01621℃、0.82 GPa
      HS03-1-6-①石榴绿
      泥片岩
      36.861.4916.4317.010.0012.140.070.359.2365.910.0020.590.120.010.001.5410.640.0437.130.0020.8335.610.581.825.170.040.00485℃、1.13 GPa
      HS03-1-6-②37.381.1516.1317.140.0012.270.010.358.8467.170.0019.890.110.040.000.9011.180.0537.170.0120.6635.350.152.874.270.040.00561℃、1.52 GPa
      HS03-1-4-①绿泥角闪
      石榴片岩
      36.351.4216.1419.510.0410.930.000.309.1663.990.0322.360.100.020.003.789.400.0636.830.0320.4230.433.311.048.580.030.00461℃、0.87 GPa
      HS03-1-4-②36.521.3815.5620.110.0810.140.000.199.4063.140.0022.020.100.030.003.919.570.0536.630.0520.3632.111.801.587.300.020.00527℃、0.97 GPa
      HS03-1-7-①斜长角闪石
      榴绿泥片岩
      36.491.4316.0319.020.0011.540.020.249.0163.350.0022.480.150.040.004.599.060.0437.380.0320.9035.250.393.014.240.000.00577℃、0.82 GPa
      HS03-1-7-②36.611.2515.9819.080.0011.740.080.288.6963.280.0021.970.290.000.003.729.380.0737.140.0320.8934.860.393.104.260.040.00587℃、0.93 GPa
        注:每一组的黑云母、斜长石、石榴子石为相共生
      下载: 导出CSV

      表  3   角闪石电子探针数据及温压运算结果

      Table  3   Electronic probe data of amphibole and results of temperature and pressure calculation %

      序号 测点代号 SiO2 TiO2 Al2O3 TFeO MnO MgO CaO Na2O K2O 合计 温压运算结果
      1 HS08-1-1-Q1-11 37.22 0.22 13.04 27.09 0.17 3.00 10.23 1.96 1.26 94.19 660℃、0.47GPa
      2 HS05-1-1-1-Q4-01 41.28 0.38 15.46 19.94 0.11 7.50 9.01 2.20 0.38 96.26 637℃、0.61GPa
      3 HS05-1-1-1-Q4-02 40.50 0.31 15.73 20.13 0.10 6.98 9.44 2.11 0.45 95.75 645℃、0.61GPa
      4 HS05-1-1-1-Q4-03 40.76 0.31 16.31 18.67 0.16 7.29 9.57 1.98 0.34 95.39 642℃、0.65GPa
      5 HS05-1-1-1-Q2-02 40.21 0.40 16.80 19.27 0.15 6.89 9.44 1.98 0.50 95.64 650℃、0.66GPa
      6 HS05-1-1-2-Q5-02 40.01 0.32 15.68 19.77 0.17 7.65 9.40 1.92 0.41 95.33 656℃、0.60GPa
      7 HS05-1-1-2-Q5-04 39.31 0.46 16.21 19.36 0.15 6.57 10.30 1.93 0.44 94.73 657℃、0.63GPa
      8 HS05-1-1-2-Q5-09 38.94 0.35 16.57 19.78 0.22 6.56 9.40 2.10 0.38 94.30 660℃、0.65GPa
      9 HS03-1-11-3-Q5-03 39.43 0.32 15.87 22.19 0.11 5.23 10.31 1.80 0.70 95.96 654℃、0.61GPa
      10 HS03-1-11-3-Q6-01 40.63 0.32 15.77 19.94 0.08 7.05 9.69 1.96 0.52 95.96 645℃、0.61GPa
      11 HS03-1-11-3-Q6-02 38.90 0.41 15.32 23.82 0.09 4.65 10.40 1.62 1.10 96.31 660℃、0.57GPa
      12 HS03-1-11-3-Q6-03 40.34 0.35 15.09 20.39 0.09 7.17 9.95 2.01 0.38 95.77 651℃、0.57GPa
      13 HS03-1-2-Q1-01 41.36 0.31 15.11 19.61 0.02 7.53 9.74 2.16 0.34 96.18 637℃、0.59GPa
      下载: 导出CSV
    • Cao D B. 1997. Metamorphism characteristics of Dahongshan rock group in the Nangan Xilahe area[J]. Yunnan Geology, 6(2): 184−191(in Chinese with English abstract).

      Cheng S H, You Z D. 2018. Metamorphic petrology[M]. Beijing: Geological Publishing House: 1−300(in Chinese).

      Coleman R G, Lee D E, Beatty L B, et al. 1965. Eclogites: their difference and similarities[J]. Geological Society America Bulletin, 76: 483−508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2

      Cui Y L, Qin D X, Gao J, et al. 2005. An introductory comparative discussion beteewn Longbohe copper deposit and Dahongshan iron−copper deposit in Yunnan Province[J]. Strategic Study of CAE, (S1): 195−201(in Chinese with English abstract).

      Gerya T V, Perchuk L L, et al. 1997. Petrology of the tunmanshet zonal metamorphic complex[J]. Eastern Sayan Petrology, 5(6): 503−533.

      Feng Y C. 2015. Geological Characteristics and Metallogenic Model Research of the Fe−Cu Deposit in Dahongshan, Yunnan Province[D]. Master's thesis of Kunming University of Science and Technology: 1−56(in Chinese with English abstract).

      Geng Y S, Yang C H, Wang X S, et al. 2007. Age of Crystalline Basement in Western Margin of Yangtze Terrane[J]. Geological Journal of China Universities, 13(3): 429−441(in Chinese with English abstract).

      Greentree M R, Li Z X. 2008. The oldest known rocks in south−western China: SHRIMP U−Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33(5): 289−302.

      Holdway M J. 2000. Application of new experiment al and garnet Margules data to the garnet−biotite geothermometer[J]. American Mineralogist, 85: 881−892. doi: 10.2138/am-2000-0701

      Holland T, Blundy J. 1994. Non−ideal interactions in calcic amphiboles and their bearing on amphibole−plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 116: 443−447.

      Huang L, Tian S M, Zhang H, et al. 2021. The discovery and determination of high−pressure gneiss in Caojian area of Yunlong, western Yunnan Province [J]. Acta Petrologica et Mineralogica, 40(4): 747−756(in Chinese with English abstract).

      Leake B E, Woolley A R, Arps C E S, et al. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names[J]. The Canadian Mineralogist, 35: 219−246.

      Li J S, Zhang J J, Liu W, et al. 2022. Mineralogical charcteristics and constrainst of formation conditions of garnet in kimberlite in Shizhuang area, southern He’nan Province[J]. Geologcal Bulletin of China, 41(5): 824−835(in Chinese with English abstract).

      Jin T F, Li Y G, Fei G C, et al. 2017. Geochronology of zircon U−Pb from Hongshan Formation in the Dahongshan Group in the Southwest Yangtze Block for the Redefinitions of the Forming Age of the Protolith and Metamorphic Age[J]. Geological Review, 63(4): 894−910(in Chinese with English abstract).

      Jin T F, Luo W, Li Y G, et al. 2021. Sm−Nd isotopic dating of calcite in the ore−bearing calcite vein from the Dahongshan iron copper polymetallic deposit in the southwestern margin of Yangtze block and its significance[J]. Acta Mineralogica Sinca, 41(3): 343−354(in Chinese with English abstract).

      Kunming Iron and Steel Group Limited Liability Company. 2014. Production and exploration report of Dahongshan Iron and copper mine, Xinping County, Yunnan Province[R](in Chinese).

      O’Brien P J. 1997. Garnetzoning and reaction texturesin overprinted eclogites, BohemianMassif, EuropeanVariscides: A recordoftheir thermalhistoryduringexhumation[J]. Lithos, 41: 119−133. doi: 10.1016/S0024-4937(97)82008-7

      Qian J H, Shen Y R. 1983. Genesis of ancient volcanic iron copper deposit in Dahongshan, Yunnan Province[N]. Geological Bulletin: Mineral deposits and Minerals, 15: 12(in Chinese).

      Wang L B. 2001. Naming convention for pyroxene− International Mineralogical Association Committee on New Minerals and Mineral Nomenclature Report of the Professional Committee on Anthracite[J]. Acta Petrologica et Mineralogica, 20(1): 84−100(in Chinese).

      Wei J D. 2016. Study on the geochemical characteristics of metamorphic volcanic rocks in the Dahongshan Group, Dahongshan area, central Yunnan[D]. Master's thesis of Kunming University of Science and Technology: 1−80(in Chinese with English abstract).

      Wu K W. 2008. Study on geochemistry and metallogenic mechanism of stratified copper deposit in Dahongshan, Yunnan Province[D]. Master's thesis of Institute of Geochemistry, Chinese Academy of Science: 1−113(in Chinese with English abstract).

      Yang H, Liu F L, Du L L, et al. 2012. Zircon U−Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance[J]. Acta Petrologica Sinica, 28(9): 2994−3014(in Chinese with English abstract).

      Yang H, Liu F L, Liu P H, et al. 2013. 40Ar−39Ar dating for muscovite in garnet muscovite−felsic schists of the Dahongshan Group in southwestern Yangtze Block and its geological significance[J]. Acta Petrologica Sinica, 29(6): 2161−2170(in Chinese with English abstract).

      Yang H, Liu P H, Meng E, et, al. 2014. Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in southwestern Yangtze block[J]. Acta Petrologica Sinica, 30(10): 3021−3033(in Chinese with English abstract).

      Yang X L, Zhang L F, Zhao Z D, et al. 2014. Metamorphic evolution of glaucophane eclogites from Sumdo, Lhasa block of Tibetan Plateau: Phase equilibria and metamorphic P−T path[J]. Acta Petrologica Sinica, 30(5): 1505−1519(in Chinese with English abstract).

      Yunnan Province Geological Survey. 2013. Yunnan Province metallogenic geological background research report[M]. Beijing: Geological Publishing House: 1−368 (in Chinese).

      Yunnan Geological and Mineral Resource Bureau. 1990a. Dahongshan ancient volcanic iron copper deposit in Yunnan province[M]. Beijing: Geological Publishing House: 1−530 (in Chinese with English abstract).

      Yunnan Geological and Mineral Resource Bureau. 1990b. Regional geological records of Yunnan Province[M]. Beijing: Geological Publishing House: 1−530 (in Chinese with English abstract).

      Zhai Q G, Li C, Wang J, et al. 2009. Petrology, mineralogy and PTt path for the eclogite from central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 28(9): 1207−1220(in Chinese with English abstract).

      Zhang C, Zhang L F, Zhang G B, et al. 2009. Petrology and calculation of retrograde PT path of eclogites from Xitiesshan, North Qaidam, China[J]. Acta Petrologica Sinica, 25(9): 2247−2259(in Chinese with English abstract).

      Zhang J S, Wei C J, Zhou X W. 2006. Phase equilibria of glaucophane−and kyanite−bearing eclogites in the UHP belt of western Dabiesshan[J]. Acta Petrologica Sinica, 22(12): 2861−2874(in Chinese with English abstract) .

      Zhang Z M, Yang Y, Zhang J X. 1999. The compositional zoning and dynamic significance of garnet in the eclogite of the western part of the Altai Mountains[J]. Chinese Science Bulletin, 44(16): 1769−1773(in Chinese). doi: 10.1360/csb1999-44-16-1769

      Zhao X F. 2010. Paleoproterozoic crustal evolution and Fe−Cu metallogeny of the Western Yangtze Block, SW China[D]. Ph. D. Dissertation of the University of Hong Kong: 1−192.

      Zhao X F, Zhou M F. 2011. Fe−Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG(iron−oxide−copper−gold) metallogenic province[J]. Miner Deposita, 46: 731−747. doi: 10.1007/s00126-011-0342-y

      Zhou M F, Zhao X F, Chen W T, et al. 2014. Proterozoic Fe−Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth−Science Reviews, 139: 59−82. doi: 10.1016/j.earscirev.2014.08.013

      曹德斌. 1997. 南甘—西拉河地区大红山岩群的变质作用特征[J]. 云南地质, 6(2): 184−191.
      程素华, 游振东. 2018. 变质岩岩石学[M]. 北京: 地质出版社: 1−300.
      崔银亮, 秦德先, 高俊, 等. 2005. 云南金平龙脖河铜矿床与新平大红山铁铜矿床对比研究[J]. 中国工程科学, 7(增刊): 195−201.
      冯裕昌. 2015. 云南大红山铁铜矿床地质特征及成矿模式研究[D]. 昆明理工大学硕士学位论文: 1−56.
      耿元生, 杨崇辉, 王新社, 等. 2007. 扬子地台西缘结晶基底的时代[J]. 高校地质学报, 13(3): 429−441. doi: 10.3969/j.issn.1006-7493.2007.03.012
      黄亮, 田素梅, 张虎, 等. 2021. 滇西云龙漕涧地区高压片麻岩的发现及厘定[J]. 岩石矿物学杂志, 40(4): 747−756.
      昆明钢铁集团有限责任公司. 2014. 云南省新平县大红山铁矿铁铜矿生产勘探报告[R].
      李积山, 张军杰, 刘伟, 等. 2022. 豫南史庄一带金伯利岩中石榴子石矿物学特征及其形成条件的约束[J]. 地质通报, 41(5): 824−835. doi: 10.12097/j.issn.1671-2552.2022.05.008
      金廷福, 李佑国, 费光春, 等. 2017. 扬子地台西南缘大红山群红山组的锆石 U−Pb 年代学研究——对其原岩形成时代和变质时代的再限定[J]. 地质论评, 63(4): 894−910.
      金廷福, 罗伟, 李佑国, 等. 2021. 扬子西南缘大红山铁铜多金属矿床矿化方解石脉方解石Sm−Nd定年及意义[J]. 矿物学报, 41(3): 343−354.
      戚金栋. 2016. 滇中大红山地区大红山群变质火山岩岩石地球化学特征研究[D]. 昆明理工大学硕士学位论文: 1−80.
      钱锦和, 沈远仁. 1983. 云南大红山古火山铁铜矿床成因[N]. 地质专报: 矿床与矿产, 15: 12.
      王立本. 2001. 角闪石命名法—国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[J]. 岩石矿物学杂志, 20(1): 84−100.
      吴孔文. 2008. 云南大红山层状铜矿床地球化学及成矿机制研究[D]. 中国科学学院地球化学研究所硕士学位论文: 1−113.
      杨红, 刘福来, 杜利林, 等. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U−Pb定年及其地质意义[J]. 岩石学报, 28(9): 2994−3014.
      杨红, 刘福来, 刘平华, 等. 2013. 扬子地块西南缘大红山群石榴白云母−长石石英片岩的白云母40Ar−39Ar 定年及其地质意义[J]. 岩石学报, 29(6): 2161−2170.
      杨红, 刘平华, 华孟恩, 等. 2014. 扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义[J]. 岩石学报, 30(10): 3021−3033.
      杨现力, 张立飞, 赵志丹, 等. 2014. 青藏高原拉萨地块松多蓝闪石榴辉岩的变质演化: 相平衡及变质作用P−T轨迹[J]. 岩石学报, 30(5): 1505−1519.
      云南省地质调查局. 2013. 云南省成矿地质背景研究报告[M]. 北京: 地质出版社: 1−368.
      云南省地质矿产局. 1990a. 云南大红山古火山岩铁铜矿[M]. 北京: 地质出版社: 1−236.
      云南省地质矿产局. 1990b. 云南省区域地质志[M]. 北京: 地质出版社: 1−530.
      翟庆国, 李才, 王军. 2009. 藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹[J]. 地质通报, 28(9): 1207−1214. doi: 10.3969/j.issn.1671-2552.2009.09.008
      张聪, 张立飞, 张贵宾, 等. 2009. 柴北缘锡铁山一带榴辉岩的岩石学特征及其退变PT轨迹[J]. 岩石学报, 25(9): 2247−2259.
      张景森, 魏春景, 周喜文. 2006. 大别山西段含蓝闪石-蓝晶石榴辉岩的相平衡研究[J]. 岩石学报, 22(12): 2861−2874. doi: 10.3321/j.issn:1000-0569.2006.12.005
      张泽明, 杨勇, 张建新. 1999. 阿尔金西段榴辉岩中石榴子石的成分环带及其动力学意义[J]. 科学通报, 44(16): 1769−1773. doi: 10.3321/j.issn:0023-074X.1999.16.019
    图(5)  /  表(3)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-03
    • 修回日期:  2022-11-11
    • 刊出日期:  2024-10-14

    目录

      /

      返回文章
      返回