• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义

刘金梁, 陈永清, 尚志

刘金梁, 陈永清, 尚志. 2024: 腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义. 地质通报, 43(5): 839-858. DOI: 10.12097/gbc.2022.07.047
引用本文: 刘金梁, 陈永清, 尚志. 2024: 腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义. 地质通报, 43(5): 839-858. DOI: 10.12097/gbc.2022.07.047
Liu J L, Chen Y Q, Shang Z. Geochronology and mineralization significance of the Late Cretaceous Xiaolonghe granite in the Tengchong Block. Geological Bulletin of China, 2024, 43(5): 839−858. DOI: 10.12097/gbc.2022.07.047
Citation: Liu J L, Chen Y Q, Shang Z. Geochronology and mineralization significance of the Late Cretaceous Xiaolonghe granite in the Tengchong Block. Geological Bulletin of China, 2024, 43(5): 839−858. DOI: 10.12097/gbc.2022.07.047

腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义

基金项目: 云南省重点研发计划项目《云南省西部重点矿产成矿规律与分布预测研究》(编号:202303AA080006),国家自然科学基金项目《成矿系统自组织临界性与矿床定位预测》(批准号:41972312)、《深部致矿异常信息提取与高精度数字找矿模型建立》(批准号:41672329)、《超大型矿床成矿复杂性特征与成矿动力学机制探索》(批准号:41272365),国家重点研发计划课题《“三联式”数字找矿模型与深部定量成矿预测》(编号:2016YFC0600509)
详细信息
    作者简介:

    刘金梁(1999− ),男,硕士,助教,从事军事地质研究。E−mail: 1689949328@qq.com

    通讯作者:

    陈永清(1960− ),男,博士,教授,从事矿产资源定量勘查与评价研究。E−mail: yqchen@cugb.edu.cn

  • 中图分类号: P534.53; P588.12+1; P597+.3

Geochronology and mineralization significance of the Late Cretaceous Xiaolonghe granite in the Tengchong Block

  • 摘要:

    为厘定腾冲地块晚白垩世构造岩浆活动和花岗岩成矿意义,对小龙河花岗岩开展全岩地球化学、年龄和锶−钕−铅同位素研究。小龙河花岗岩由细粒淡色二长花岗岩和似斑状黑云母二长花岗岩组成,锆石U−Pb年龄数据指示它们的岩浆结晶年龄分别为67.0±1.0 Ma和68.5±1.6 Ma,辉钼矿Re−Os模式年龄分别为67.15±0.99 Ma和69.02±1.22 Ma,同为晚白垩世构造岩浆活动产物。锶−钕−铅同位素与主量和微量元素特征表明,细粒淡色二长花岗岩为S型花岗岩((87Sr/86Sr)i=0.757 ~ 0.763); εNd(t)=−8.89 ~ −8.99)),岩浆起源于中元古代(TDM2=1.59 ~ 1.60 Ga)上地壳富粘土硬砂岩部分熔融,其与小龙河锡−钨多金属矿床形成密切相关;似斑状黑云母二长花岗岩为I型花岗岩((87Sr/86Sr)i=0.711, εNd(t)=−8.72 ~ −9.16),岩浆起源于中元古代(TDM2=1.58 ~ 1.62 Ga)下地壳富粘土硬砂岩重熔。腾冲地块晚白垩世小龙河花岗岩及其锡−钨矿化是中特提斯班公-怒江洋闭合后腾冲地块与保山地块碰撞−后碰撞阶段引发的岩浆活动与热液作用的产物。

    Abstract:

    In order to determine the Late Cretaceous tectonomagmatic activities and the significance of granite mineralization in the Tengchong Block, this study applied the comprehensive methods of geochronology, Sr−Nd−Pb isotopic and whole−rock geochemical analyses to probe Xiaolonghe granites. The results show that the Xiaolonghe pluton is composed of fine−grained leuco−monzogranite and porphyritic−like biotite monzogranite. Zircon U−Pb chronological data indicate that their magmatic crystallization ages are 67.0±1.0 Ma and 68.5±1.6 Ma respectively, and the Re−Os model ages of molybdenite are 67.15±0.99 Ma and 69.02±1.22 Ma respectively, both of which are the products of the Late Cretaceous tectonomagmatic activities. The characteristics of Sr−Nd−Pb isotopes and major and trace elements show that the fine−grained leuco−monzogranite is S−type granite ((87Sr/86Sr)i=0.757 ~ 0.763, εNd(t)=−8.89 ~ −8.99), and the magma originated from the partial melting of clay−rich hard sandstone in the upper crust of Mesoproterozoic(TDM2=1.59 ~ 1.60 Ga), which is closely−related to the formation of Xiaolonghe tin−tungsten polymetallic deposit. The porphyritic−like biotite monzogranite is I−type granite ((87Sr/86Sr)i=0.711, εNd(t)=−8.72 ~ −9.16), and the magma originated from the remelting of clay−rich hard sandstone in the lower crust of Mesoproterozoic(TDM2=1.58 ~ 1.62 Ga). The Late Cretaceous Xiaolonghe granites and its tin−tungsten mineralization in the Tengchong Block are the products of magmatic activity and hydrothermal process caused by the collision or post−collision between the Tengchong Block and the Baoshan Block after the closure of the Meso−Tethys Bangong−Nujiang ocean.

  • 图  1   腾冲地块大地构造格架(a)和区域地质简图(b) (据陈永清等,2013Chen et al., 2022修改)

    Figure  1.   Geotectonic framework(a) and regional geological sketch map(b) of the Tengchong Block

      Plate Ⅰ

    a.细粒淡色二长花岗岩;b.细粒淡色二长花岗岩显微照片;c、f.浸染状钼矿化二长花岗岩;d.似斑状黑云母二长花岗岩;e.似斑状黑云母二长花岗岩显微照片。Qtz—石英;Kfs—钾长石;Pl—斜长石;MoS2—辉钼矿

    图  2   小龙河花岗岩A/CNK−A/NK(a,据Gregg et al.,1980修改)和SiO2−K2O(b,据Maniar et al.,1989修改)图解(A/CNK= Al2O3/(CaO + K2O + Na2O);A/NK= Al2O3/(K2O + Na2O))

    Figure  2.   A/CNK−A/NK(a) and SiO2−K2O(b) diagrams of the Xiaolonghe granites

    图  3   腾冲小龙河花岗岩稀土元素球粒陨石标准化图(a,据Boynton et al.,1984修改)和微量元素原始地幔标准化蛛网图(b,据McDonough et al.,1995修改)

    Figure  3.   Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns (b) of the Xiaolonghe granitoids

    图  4   腾冲小龙河花岗岩锆石典型阴极发光(CL)显微照片

    Figure  4.   CL images of the zircon grains from the Xiaolonghe granitoids

    图  5   小龙河花岗岩锆石U−Pb一致曲线

    Figure  5.   U−Pb concordia plots of zircon grains from the Xiaolonghe granitoids

    图  6   小龙河花岗岩Zr/Hf−Nb/Ta(a,据Shang et al., 2022修改)和206Pb/204Pb−207Pb/204Pb(b,据Chen et al., 2022修改)图解

    Figure  6.   Zr/Hf−Nb/Ta(a) and 206Pb/204Pb−207Pb/204Pb(b) diagrams of the Xiaolonghe granites

    图  7   小龙河花岗岩Rb/Sr−Rb/Ba(a,据杨启军等,2009修改)、C/MF−A/MF(b,据Alther et al.,2000修改)、(87Sr/86Sr)i−εNd(t) (c,据Chen et al., 2022修改)和SiO2−Fe2O3/FeO(d,据崔晓琳等,2022修改)图解

    A—变质泥质岩;B—变质硬砂岩;C—变质英云闪长岩;A/MF—Al2O3/(MgO + FeO*);C/MF—CaO/(MgO + FeO*)

    Figure  7.   Rb/Sr−Rb/Ba(a), C/MF−A/MF(b), (87Sr/86Sr)i−εNd(t) (c) and SiO2−Fe2O3/FeO(d) diagrams of the Xiaolonghe granites

    图  8   小龙河花岗岩(Y+Nb)−Rb (a,据Cao et al., 2016;禹丽,2016修改)和Hf−Rb−Ta (b,据Harris et al., 1986修改)图解

    Figure  8.   (Y+Nb)−Rb(a) and Hf−Rb−Ta(b) diagrams of the Xiaolonghe granites

    图  9   腾冲地块晚白垩世小龙河岩体岩浆作用和锡−钨矿床形成构造演化模式图(据Chen et al., 2022修改)

    Figure  9.   Tectonic evolution model of the Late Cretaceous Xiaolonghe pluton magmatism and formation of the tin-tungsten deposits in the Tengchong Block

    表  1   腾冲花岗岩全岩地球化学数据

    Table  1   Whole-rock geochemical dating of Tengchong granites

    样品编号 TG6−01 TG6−02 TG6−03 TG6−04 TG6−05 TG6−06 TA6−01 TA6−02 TA6−03 TA6−04 TA6−05 TA6−06
    SiO2 75.75 76.01 76.25 75.90 76.03 76.61 76.46 76.39 76.06 75.93 76.83 77.18
    TiO2 0.06 0.05 0.06 0.05 0.05 0.06 0.12 0.13 0.16 0.14 0.13 0.10
    Al2O3 12.69 12.76 12.49 12.57 12.76 12.39 11.83 12.28 11.95 12.03 11.82 11.71
    Fe2O3 0.431 0.076 0.132 0.201 0.200 0.202 0.430 0.261 0.791 0.507 0.111 0.503
    FeO 0.74 0.91 0.95 1.33 0.61 0.83 1.13 0.71 1.18 1.26 1.55 0.87
    MnO 0.05 0.05 0.06 0.05 0.03 0.04 0.04 0.01 0.07 0.06 0.05 0.04
    MgO 0.22 0.09 0.13 0.09 0.09 0.12 0.10 0.13 0.13 0.15 0.15 0.10
    CaO 0.72 0.73 0.72 0.71 0.72 0.68 1.11 0.90 0.96 1.14 0.72 0.82
    Na2O 3.66 3.73 3.73 3.97 3.76 3.54 2.78 2.82 2.90 2.91 2.92 2.92
    K2O 5.08 5.10 4.84 4.52 5.14 5.06 5.48 5.64 5.10 5.18 5.20 5.35
    P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.02
    烧失量 0.47 0.35 0.43 0.41 0.45 0.29 0.35 0.57 0.55 0.52 0.30 0.26
    总计 99.9 99.9 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.8 99.8 99.9
    K2O/Na2O 1.387 1.366 1.297 1.139 1.365 1.428 1.970 2.002 1.759 1.783 1.780 1.830
    K2O+Na2O 8.741 8.829 8.573 8.498 8.897 8.607 8.255 8.454 8.005 8.087 8.124 8.267
    CaO/Na2O 0.198 0.194 0.193 0.180 0.192 0.191 0.399 0.321 0.331 0.391 0.245 0.279
    Al2O3/TiO2 219.848 246.741 225.665 256.268 246.897 215.518 99.209 97.674 73.509 85.158 91.405 121.355
    FeO*/MgO 5.143 10.584 8.062 17.413 8.456 8.637 14.972 7.134 14.721 11.651 11.050 12.973
    A/CNK
    0.989 0.983 0.984 0.987 0.977 0.988 0.945 0.992 0.992 0.966 1.007 0.970
    A/NK 1.102 1.095 1.097 1.099 1.087 1.096 1.127 1.144 1.160 1.158 1.133 1.106
    A/MF 6.020 8.500 7.170 5.690 9.850 7.550 5.110 7.620 4.040 4.460 4.710 5.640
    C/MF 0.620 0.880 0.750 0.590 1.010 0.750 0.870 1.020 0.590 0.770 0.520 0.710
    SI 2.160 0.940 1.370 0.860 0.950 1.200 1.030 1.390 1.280 1.480 1.510 1.050
    AR 3.400 3.480 3.600 3.980 3.520 3.370 2.510 2.490 2.630 2.580 2.750 2.750
    R1 2541 2533 2610 2563 2521 2646 2797 2762 2806 2785 2834 2827
    R2 339 334 331 329 334 323 358 347 346 367 318 323
    Au 0.437 0.349 0.387 0.456 0.363 0.415 0.804 1.132 0.575 1.348 6.643 0.440
    Ag 26.600 19.200 16.300 31.200 23.700 24.100 27.000 21.900 64.100 31.200 36.800 25.400
    As 2.474 1.587 2.178 4.345 1.292 2.769 2.474 1.686 2.769 2.671 2.178 3.951
    B 7.957 5.305 5.203 4.896 3.468 4.998 4.182 3.570 3.774 4.692 5.713 4.998
    Ba 25.080 13.024 29.304 20.240 31.856 22.088 94.688 76.032 103.928 82.544 106.216 86.768
    Bi 0.524 0.623 0.281 0.271 0.607 0.965 1.467 8.063 1.883 9.062 29.172 1.107
    Co 1.253 0.974 1.100 0.858 1.035 0.954 1.504 0.921 1.464 1.866 1.850 1.861
    Cr 21.200 14.200 11.900 11.600 12.800 10.900 9.300 8.900 11.000 5.800 10.400 10.600
    Cs 6.065 5.932 6.797 5.552 6.658 7.203 9.480 6.771 6.424 7.904 9.195 8.151
    Cu 3.107 3.169 3.468 2.994 3.457 2.734 5.534 1.875 24.060 6.877 8.247 10.203
    F 3409.218 3557.944 3875.144 3557.944 3557.944 3713.158 6750.947 4596.903 5225.147 6750.947 3875.144 4220.623
    Hf 4.485 4.121 4.070 4.239 3.878 3.530 5.090 4.668 5.130 4.573 5.792 4.937
    Li 17.140 18.420 27.370 19.260 20.510 31.430 49.670 31.860 34.630 48.880 44.220 29.810
    Mo 14.620 7.566 1.074 0.994 20.600 1.435 6.953 0.660 7.050 5.307 30.100 15.330
    Nb 89.343 93.690 91.980 96.840 99.000 91.620 63.234 54.711 53.181 59.382 65.205 71.856
    Ni 13.987 8.543 8.247 7.013 8.147 7.324 4.050 2.580 4.188 4.979 4.738 5.873
    Pb 47.330 50.690 51.560 58.280 51.230 51.950 35.690 36.340 44.610 44.290 45.980 44.080
    Rb 448.700 432.200 447.500 430.000 397.400 446.600 357.100 309.900 303.900 261.400 365.600 324.300
    Sb 0.137 0.117 0.149 0.154 0.167 0.136 0.118 0.068 0.126 0.157 0.138 0.122
    Sn 9.233 7.582 6.816 8.052 6.014 5.903 6.392 6.171 7.683 6.752 6.410 6.078
    Sr 9.900 8.700 9.100 8.800 9.200 10.900 27.100 28.400 31.100 24.800 30.000 25.800
    Ta 10.370 10.930 10.010 14.800 11.960 11.740 6.251 5.400 5.341 6.003 6.513 6.596
    Th 48.270 56.640 58.360 55.420 60.500 60.820 80.130 74.760 78.440 83.110 77.140 68.080
    U 24.700 29.520 23.050 21.330 28.090 27.010 18.120 13.520 17.570 23.860 20.480 21.320
    V 2.500 2.983 2.500 3.254 2.500 2.500 6.960 5.604 7.322 6.056 4.339 7.141
    W 6.242 6.500 5.466 6.053 6.953 7.744 44.501 15.659 17.177 18.821 82.462 23.444
    Zn 13.850 14.322 14.721 16.632 14.816 14.763 14.837 14.921 26.744 29.894 32.508 15.929
    Zr 88.600 85.500 89.500 88.800 76.800 78.100 110.300 114.100 125.200 99.400 128.800 104.800
    Y 134.244 135.277 134.753 131.329 135.259 116.640 149.475 93.841 100.779 131.892 70.274 105.586
    La 29.8 29.1 32.7 28.0 27.6 26.4 77.3 73.5 88.7 84.7 75.3 61.4
    Ce 72.6 74.6 77.3 74.8 70.1 69.5 156.5 144.5 175.8 170.7 151.0 123.6
    Pr 9.55 9.79 10.64 9.99 9.56 8.92 18.88 16.91 20.46 19.89 17.50 14.85
    Nd 36.8 37.1 39.3 37.3 36.5 33.4 64.7 55.9 67.1 66.3 56.3 50.3
    Sm 11.5 11.7 12.1 11.8 11.6 10.4 14.2 11.3 13.5 14.0 10.7 11.4
    Eu 0.11 0.11 0.11 0.08 0.09 0.08 0.37 0.35 0.43 0.42 0.39 0.38
    Gd 12.05 12.21 12.10 12.08 12.02 10.47 13.50 10.10 12.07 13.04 9.31 11.18
    Tb 2.67 2.71 2.65 2.73 2.70 2.33 2.68 1.92 2.25 2.56 1.74 2.30
    Dy 17.67 17.49 17.46 17.99 17.72 15.38 17.12 11.78 13.87 16.01 10.30 14.50
    Ho 3.66 3.69 3.66 3.76 3.65 3.19 3.53 2.43 2.79 3.29 2.14 3.01
    Er 11.99 12.09 11.96 12.28 12.03 10.39 11.62 7.89 8.96 10.75 6.86 9.59
    Tm 2.17 2.23 2.15 2.19 2.18 1.88 2.11 1.38 1.54 1.90 1.17 1.66
    Yb 15.22 15.23 14.86 15.40 15.28 13.42 14.99 9.54 10.59 13.53 7.97 11.34
    Lu 2.37 2.37 2.33 2.42 2.38 2.11 2.44 1.51 1.67 2.13 1.22 1.78
    ΣREE 228.12 230.51 239.36 230.78 223.40 207.84 399.96 349.06 419.67 419.27 351.91 317.35
    δEu 0.03 0.03 0.03 0.02 0.02 0.02 0.08 0.10 0.10 0.09 0.12 0.10
    (La/Yb)N 1.32 1.29 1.49 1.23 1.22 1.33 3.48 5.20 5.65 4.22 6.37 3.65
    (Gd/Yb)N 0.64 0.65 0.66 0.63 0.64 0.63 0.73 0.85 0.92 0.78 0.94 0.80
    TZr/℃
    735.680 732.536 736.749 735.897 723.661 726.845 750.588 757.971 765.636 743.801 770.136 749.751
    LREE/HREE 2.365 2.388 2.563 2.352 2.287 2.512 4.883 6.501 6.809 5.635 7.644 4.734
    CIPW 标准矿物/%
    石英 33.14 33.18 34.36 33.74 33.01 35.02 37.09 36.49 37.27 36.68 38.06 37.9
    钙长石 3.22 3.03 3.05 3.12 2.79 2.97 3.64 4.24 4.53 4.5 3.44 3.07
    钠长石 31.17 31.74 31.79 33.84 32.03 30.14 23.64 24.01 24.72 24.77 24.87 24.82
    正长石 30.2 30.28 28.81 26.91 30.54 30.06 32.53 33.57 30.38 30.85 30.92 31.73
    刚玉 0 0 0 0 0 0 0 0 0 0 0.13 0
    透辉石 0.28 0.45 0.41 0.33 0.64 0.3 1.51 0.13 0.08 0.87 0 0.75
    紫苏辉石 1.06 0.53 0.74 0.93 0.33 0.69 0.28 0.64 1.34 0.85 1.22 0.6
    硅灰石 0 0 0 0 0 0 0 0 0 0 0 0
    锥辉石 0 0 0 0 0 0 0 0 0 0 0 0
    硅酸钠 0 0 0 0 0 0 0 0 0 0 0 0
    钛铁矿 0.11 0.1 0.11 0.09 0.1 0.11 0.23 0.24 0.31 0.27 0.25 0.18
    磁铁矿 0.8 0.66 0.72 1.01 0.55 0.69 1.03 0.65 1.3 1.15 1.06 0.91
    磷灰石 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.04 0.06 0.05 0.05 0.04
    合计 100 99.99 100.01 99.99 100.01 100 100.01 100 99.99 99.99 100 100
    ANOR 9.635 9.096 9.573 10.390 8.371 8.992 10.064 11.214 12.976 12.730 10.012 8.822
    Q' 33.910 33.778 35.058 34.566 33.557 35.666 38.277 37.117 38.462 37.893 39.120 38.864
      注:主量元素含量为%,除Au为10−9外,其他微量和稀土元素含量单位为10−6
    下载: 导出CSV

    表  2   腾冲花岗岩锆石SHRIMP U−Pb定年数据

    Table  2   SHRIMP zircon U-Pb dating of Tengchong granites

    样品编号 含量/10−6 Th/U 同位素比值 年龄/Ma
    U Th 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
    TG6,细粒淡色二长花岗岩,10个测点(不包括第4,10,12个测点)年龄加权平均值为67.0±1.0 Ma,MSWD=0.66
    TG6−1 1181 528 0.46 0.0516 5.1 0.07 5.7 0.0105 2.5 67.5 1.7
    TG6−2 958 543 0.59 0.0501 7.8 0.07 8.2 0.0104 2.6 67.0 1.7
    TG6−3 551 412 0.77 0.0385 38.5 0.06 38.6 0.0107 3.1 68.9 2.1
    TG6−4 160 212 1.37 0.0451 54.8 0.07 55.0 0.0115 4.1 73.7 3.0
    TG6−5 860 649 0.78 0.0397 12.3 0.06 12.6 0.0106 2.6 67.7 1.8
    TG6−6 3111 1172 0.39 0.0494 2.2 0.07 3.3 0.0107 2.4 68.6 1.7
    TG6−7 2682 1481 0.57 0.0460 2.1 0.07 3.3 0.0107 2.5 68.6 1.7
    TG6−8 2006 1066 0.55 0.0491 2.4 0.07 3.5 0.0107 2.5 68.8 1.7
    TG6−9 2003 1338 0.69 0.0466 4.5 0.07 5.1 0.0103 2.5 65.9 1.6
    TG6−10 285 235 0.85 0.0608 29.6 0.13 29.9 0.0151 3.7 96.4 3.6
    TG6−11 1224 677 0.57 0.0519 8.4 0.08 8.7 0.0106 2.5 67.9 1.7
    TG6−12 2895 1276 0.46 0.0513 6.6 0.07 7.1 0.0101 2.5 64.9 1.6
    TG6−13 1976 1182 0.62 0.0438 9.3 0.06 9.6 0.0103 2.5 65.8 1.6
    TA6,似斑状黑云母二长花岗岩,9个测点(不包括第3,10个测点)年龄加权平均值为68.5±1.6 Ma,MSWD=1.11
    TA6−1 358 268 0.78 0.0491 30.4 0.07 30.6 0.0108 4.1 68.9 2.8
    TA6−2 279 243 0.90 0.0348 39.4 0.05 39.6 0.0110 4.0 70.8 2.8
    TA6−3 138 134 1.00 0.0430 60.2 0.07 60.4 0.0119 5.1 76.3 3.9
    TA6−4 456 374 0.85 0.0454 12.9 0.07 13.4 0.0106 3.5 68.2 2.4
    TA6−5 281 233 0.86 0.0298 43.0 0.04 43.2 0.0107 3.9 68.9 2.6
    TA6−6 491 304 0.64 0.0422 16.8 0.06 17.2 0.0109 3.6 69.8 2.5
    TA6−7 377 315 0.86 0.0418 13.1 0.06 13.6 0.0104 3.6 66.8 2.4
    TA6−8 180 160 0.92 0.0399 68.9 0.06 69.1 0.0108 5.1 69.1 3.5
    TA6−9 384 261 0.70 0.0568 12.6 0.09 13.2 0.0110 3.6 70.6 2.5
    TA6−10 641 465 0.75 0.0391 5.9 0.05 6.8 0.0100 3.4 63.9 2.2
    TA6−11 415 280 0.70 0.0368 26.0 0.05 26.3 0.0105 3.6 67.2 2.4
      注:同位素比值中1σ为相对误差;年龄中1σ为绝对误差
    下载: 导出CSV

    表  3   腾冲辉钼矿Re−Os同位素分析数据

    Table  3   Re−Os isotope dating of Tengchong granites

    原样名样重/g(Re)/10−6(普Os)/10−9187Re/10−6187Os/10−9模式年龄/Ma
    测定值不确定度测定值不确定度测定值不确定度测定值不确定度测定值不确定度
    TA6−010.050721123120.02440.0248706.07.40.81220.009569.021.22
    TG6−010.302641023100.00520.0007642.86.00.71960.005867.150.99
    下载: 导出CSV

    表  4   腾冲花岗岩Sr−Nd同位素分析数据

    Table  4   Sr−Nd isotope dating of Tengchong granites

    样品编号 87Rb/86Sr)m 87Sr/86Sr)m εSrt 87Sr/86Sr)i 147Sm/144Nd)m 143Nd/144Nd)m εNd(t) 143Nd/144Nd)i tDM/Ma tDM2/Ma
    TG6−01 281.06 1.02501 744.57 0.75708 0.1939 0.512176 −8.99 0.512091 7343 1601
    TG6−02 299.76 1.04845 824.24 0.76270 0.1959 0.512182 −8.89 0.512096 8097 1593
    TA6−01 49.99 0.75984 93.25 0.71119 0.1373 0.512142 −9.16 0.512080 2004 1616
    TA6−04 37.09 0.74713 91.13 0.71104 0.1320 0.512162 −8.72 0.512103 1838 1580
    下载: 导出CSV

    表  5   腾冲花岗岩铅同位素分析数据

    Table  5   Pb isotope dating of Tengchong granites

    样品
    编号
    206Pb/204Pb ±2σ (206Pb/204Pb)i 207Pb/204Pb ±2σ (207Pb/204Pb)i 208Pb/204Pb ±2σ (208Pb/204Pb)i 表面年龄/Ma Φ μ Th/U
    TG6−1 19.116 0.002 18.7606 15.717 0.001 15.7002 39.491 0.005 39.2629 −201 0.553 9.63 3.82
    TG6−2 19.104 0.002 18.7073 15.725 0.002 15.7062 39.508 0.003 39.258 −181 0.554 9.64 3.83
    下载: 导出CSV

    表  6   腾冲花岗岩成矿元素丰度

    Table  6   Mineralization element abundance of Tengchong granites

    元素 滇藏造山系元素丰度 细粒淡色二长花岗岩 似斑状黑云母二长花岗岩
    元素丰度 富集倍数 元素丰度 富集倍数
    Au 0.430 0.401 0.932 1.823 4.241
    As 1.100 2.441 2.219 2.621 2.383
    F 450.000 3611.892 8.026 5236.619 11.637
    Mo 0.390 7.715 19.782 10.900 27.949
    Sn 1.800 7.267 4.037 6.581 3.656
    W 0.570 6.493 11.391 33.677 59.083
    Pb 19.000 51.840 2.728 41.832 2.202
    Nb 10.600 93.746 8.844 61.262 5.779
    Rb 115.000 433.733 3.772 320.367 2.786
    Ta 1.160 11.635 10.030 6.017 5.187
    U 2.270 25.617 11.285 19.145 8.434
      注:滇藏造山系元素丰度数据据迟清华等,2007
    下载: 导出CSV
  • Alberto E, Patino Douce, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107(2): 202−218. doi: 10.1007/BF00310707

    Alther R, Holl A, Hegner E, et al. 2000. High−potassium, calc−alkaline I−type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50: 51−73. doi: 10.1016/S0024-4937(99)00052-3

    Black L P, Kamo S L, Allen C M, et al. 2004. Improved 206Pb/238U microprobe geochronology by monitoring of a trace−element−related matrix effect; SHRIMP, ID−TIMS, ELA−ICP−MS and oxygen isotope documentation for aseries of zircon standards[J]. Chemical Geology, 205: 115−140. doi: 10.1016/j.chemgeo.2004.01.003

    Boynton W V. 1984. Geochemistry of the rare earth elements : Meteorite studies[J]. Rare Earth Element Geochemistry, 2(1): 63−114.

    Cao H W, Zhang S T, Lin J Z, et al. 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe−polymetallic deposit, Tengchong County, Western Yunnan (China): Regional tectonic implications[J]. Journal of Asian Earth Sciences, 81: 142−152. doi: 10.1016/j.jseaes.2013.11.002

    Cao H W, Zou H, Zhang Y H, et al. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China(Article)[J]. Ore Geology Reviews, 78: 196−212. doi: 10.1016/j.oregeorev.2016.04.002

    Chappell B W, White A J R. 1992. I−and S−type granites in the Lachlan Fold Belt[J]. Earth Environ. Sci. Tran. R. Soc. Edinburgh, 83: 1−26.

    Chen X C, Hu R Z, Bi X W. 2015. Petrogenesis of metaluminous A−type granitoids in the Tengchong−Lianghe tin belt of southwestern China: Evidences from zircon U−Pb ages and Hf−O isotopes, and whole−rock Sr−Nd isotopes[J]. Lithos, 212: 93−110.

    Chen X C, Hu R Z, Bi X W, et al. 2014. Cassiterite LA−MC−ICP−MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong−Lianghe tin district, NW Yunnan, China[J]. Mineralium Deposita, 49(7): 843−860.

    Chen Y Q, Li G J, Qin L X, et al. 2022. Geochronology and geochemistry of Cretaceous−Eocene granites, Tengchong Block (SW China): Petrogenesis and implications for Mesozoic−Cenozoic tectonic evolution of Eastern Tethys[J]. Geoscience Frontiers, 13(2): 101338. doi: 10.1016/j.gsf.2021.101338

    Christian France−Lanord, Patrick Le Fort. 1988. Crustal melting and granite genesis during the Himalayan collision orogenesis[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 79: 183−195.

    Deng J, Wang Q f, Li G j, et al. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 26(2): 419−437.

    Gao S, Liu X M, Yuan H L, et al. 2002. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation−Inductively Coupled Plasma−Mass Spectrometry[J]. Geostandards Newsletter− the Journal of Geostandards and Geoanalysis, 26(2): 181−196.

    Gardiner N J , Michael P, Searle a , et al. 2015. Neo−Tethyan magmatism and metallogeny in Myanmar − An Andean analogue. [J]. Journal of Asian Earth Sciences, 106: 197−215.

    Gregg W M. 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97−108. doi: 10.1016/0024-4937(80)90067-5

    Harris N B W, Pearce J A, Tindle A. G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geol. Soc. London, Spec. Publ., 19: 67−81.

    Hou Z Q, Duan L F, Lu Y J, et al. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan−Tibetan Orogen[J]. Economic Geology, 110(6): 1541−1575.

    Hou Z Q, Zaw K, Pan G T, et al. 2007. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 31: 48−87.

    Hugh R, Rollison. 2000. 杨学明等译. 岩石地球化学[M]. 合肥: 中国科学技术大学出版社.

    Kapp P, DeCelles P G, Gehrels G E, et al. 2007. Geological records of the Lhasa−Qiangtang and Indo−Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 119: 917−933. doi: 10.1130/B26033.1

    Kapp P, Yin A, Manning C E, et al. 2003. Tectonic evolution of the early Mesozoic blueschist−bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 22(4): 17(1−22).

    Liu Y S, Gao S, Yuan H L, et al. 2004. U−Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust[J]. Chemical Geology, 211(1/2): 87−109.

    Ludwig K R. 2012. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley, Berkeley Geochronology Center: 1−70.

    Maniar P D, Picooli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643.

    Mao J W, Xiong B K, Liu J, et al. 2017. Molybdenite Re/Os dating, zircon U−Pb age and geochemistry of granitoids in the Yangchuling porphyry W−Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting[J].Lithos, 286: 35−52.

    McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120: 223−253.

    Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1−33.

    Najman Y, Appel E, Boudagher−Fadel, et al. 2010. Timing of India−Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J].Journal of Geophysical Research: Solid Earth, 115(12): 1−18.

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    Qi X X, Zhu L H, Grimmer J C, et al. 2015. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U−Pb, Lu−Hf isotopic and geochemical data: Cretaceous −Cenozoic granitoids in the Tengchong block, Yunnan, China[J]. Journal of Asian Earth Sciences, 110: 170−188.

    Shang Z, Chen Y Q, Guo X G. 2022. Felsic igneous rocks in the Hua'aobaote Pb−Zn−Ag polymetallic orefield, Southern Great Xing'an Range: Genesis, metallogenetic and tectonic significance[J]. Acta Geologica Sinica −English Edition, 96(1): 221−239.

    Stein H J, Markey R J, Morgan J W, et al. 1997. Highly precise and accurate Re−Os ages for molybdenite from the east Qinling molybdenum ore belt, Shaanxi Province, China.[J]. Economic Geology, 92: 827−835.

    Stein H J, Markey R J, Scherstén, Anders. 2000. Re−Os dating of low−level highly radiogenic (LLHR) Sulfides: The Harnas Gold deposit, Southwest Sweden, Records continental−scale tectonic events[J]. Economic Geology, 95(8): 1657−1671.

    Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3

    Wang C M, Deng J, Carranza E J M, et al. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting[J]. Gondwana Research, 26(2): 576−593.

    Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295−304.

    Xie J C, Zhu D C, Dong G C, et al. 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation[J]. Gondwana Research, 39(1): 217−229.

    Xu Y G, Yang Q J, Lan J B, et al. 2012. Temporal−spatial distribution and tectonic implications of the batholiths in the Gaoligong−Tengliang−Yingjiang area, western Yunnan: Constraints from zircon U−Pb ages and Hf isotopes.[J]. Journal of Asian Earth Sciences, 53: 151−175.

    Xu Z Q, Wang Q, Cai Z H. 2015. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid−crustal detachments and strike−slip shear zones[J]. Tectonophysics, 665: 127−148.

    Yuan S D, Williams−Jones A E, Mao J W, et al. 2018. The origin of the zhangjialong Tungsten Deposit, South China: Implications for W−Sn mineralization in large granite batholiths.[J]. Economic Geology & the Bulletin of the Society of Economic Geologists, 113(5): 1193−1208.

    Yuan S D, Williams−Jones A E, Romer R L, et al. 2019. Protolith−related thermal controls on the decoupling of Sn and W in Sn−W metallogenic provinces: Insights from the Nanling region, China(Article)[J]. Economic Geology, 114(5): 1005−1012. doi: 10.5382/econgeo.4669

    Zhao S W, Lai S C, Qin J F, et al. 2016. Tectono−magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau: constraints from granitic gneisses and granitoid intrusions[J]. Gondwana Research, 35(1): 238−256.

    Zhao S W, Lai S C, Qin J F, et al. 2017. Geochemical and geochronological characteristics of Late Cretaceous to Early Paleocene granitoids in the Tengchong Block, Southwestern China: Implications for crustal anatexis and thickness variations along the eastern Neo−Tethys subduction zone[J]. Tectonophysics, 694: 87−100.

    Zhu D C, Mo X X, Wang L Q, et al. 2009. Petrogenesis of highly fractionated Ⅰ−type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U−Pb geochronology, geochemistry and Sr−Nd−Hf isotopes[J]. Science In China Series D:Earth Sciences, 52(9): 1223−1239.

    Zhu R Z, Lai S C, Qin J F, et al. 2017. Late Early−Cretaceous quartz diorite−granodiorite−monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications[J]. Lithos, 288: 311−325.

    陈慧军, 张寿庭, 曹华文, 等. 2015. 滇西古永地区花岗岩中黑云母成分特征及其成岩成矿意义[J]. 矿物学报, 35(2): 267−275.
    陈吉琛. 1984. 滇西不同类型花岗岩及其与锡矿的关系[J]. 云南地质, (1): 19−35.
    陈吉琛, 林文信, 陈良忠. 1991. 腾冲—梁河地区含锡花岗岩序列-单元研究[J]. 云南地质, (3): 241−289.
    陈吉琛. 1991. 滇西花岗岩类Pb、Sr同位素组成特征及其基底时代和性质[J]. 地质科学, (2): 174−183.
    陈永清, 卢映祥, 赵红娟, 等. 2013. 滇西腾冲地块小场钼矿化花岗岩的锆石SHRIMP U−Pb定年、地球化学及其构造意义[J]. 地学前缘, 20(5): 1−14.
    迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 14−15.
    崔晓琳, 张琦玮, 吴华英, 等. 2022. 腾冲地块晚白垩世—古近纪富锡花岗岩成因: 岩浆源区及分异演化条件[J]. 岩石学报, 38(1): 253−266.
    董方浏, 侯增谦, 高永丰, 等. 2005. 滇西腾冲大硐厂铜−铅−锌矿床的辉钼矿Re−Os同位素定年[J]. 矿床地质, (6): 663−668.
    董美玲. 1994. 滇西腾冲-保山地块岩浆作用研究及其构造意义[D]. 中国地质大学(北京)博士学位论文, 2016.
    杜安道, 何红蓼, 殷宁万, 等. 1994. 辉钼矿的铼−锇同位素地质年龄测定方法研究[J]. 地质学报, (4): 339−347.
    黄静宁, 陈永清, Zhai X M, 等. 2011. 滇西保山地块双脉地晚始新世过铝质花岗岩: 锆石SHRIMP U−Pb定年、地球化学和成因[J]. 中国科学: 地球科学, 41(4): 452467.
    季建清, 钟大赉, 陈昌勇. 2000. 滇西南那邦变质基性岩地球化学与俯冲板片裂离[J]. 岩石学报, 16(3): 433−442. doi: 10.3321/j.issn:1000-0569.2000.03.017
    李峰, 段嘉瑞. 1999. 滇西地区板块−地体构造[J]. 昆明理工大学学报, 24(1): 35−41, 60.
    李光洁, 陈永清, 尚志. 2022. 云南清水河早古生代过铝质花岗岩的发现及其对保山地块岩石圈地幔拆沉的限定[J]. 地质通报, 41(4): 590−610.
    李昊, 张云龙, 赵梓涵. 2016. 云南腾冲县小龙河锡矿床成因及找矿前景[J]. 云南地质, 35(2): 198−203.
    刘慧民. 2018. 云南三台山超基性岩与盈江超基性岩形成构造环境对比与含矿性研究[D]. 中国地质大学(北京)硕士学位论文.
    刘英俊, 曹励明, 等. 1984. 元素地球化学[M]. 北京: 科学出版社.
    刘振声, 王洁民. 1994. 青藏高原南部花岗岩地质地球化学[M]. 成都: 四川科学技术出版社.
    罗君烈. 1991. 滇西特提斯的演化及主要金属矿床成矿作用[J]. 云南地质, (1): 1−10.
    马楠, 邓军, 王庆飞, 等. 2013. 云南腾冲大松坡锡矿成矿年代学研究: 锆石LA−ICP−MSU−Pb年龄和锡石LA−MC−ICP−MS U−Pb年龄证据[J]. 岩石学报, 29(4): 1223−1235.
    毛景文. 1988. 云南腾冲地区火成岩系列和锡多金属矿床成矿系列的初步研究[J]. 地质学报, (4): 342−352.
    莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造−岩浆事件的约束[J]. 地学前缘, 13(6): 43−51.
    桑浩, 夏庆霖, 赵京, 等. 2015. 滇西来利山与小龙河云英岩型锡矿成矿流体氧逸度特征对比[J]. 地质找矿论丛, 30(3): 321−330.
    施琳, 陈吉琛, 吴上龙. 1989. 滇西锡矿带成矿规律[M]. 北京: 地质出版社.
    孙转荣. 2020. 腾冲地块中—新生代花岗岩演化及其锡成矿意义[D]. 中国地质大学(北京)博士学位论文.
    王广强, 刘中华, 高小林, 等. 2014. 滇西腾冲麻栗坝钼−铜−铅−锌矿床锆石LA−ICP−MS−U−Pb和辉钼矿Re−Os年龄及其地质意义[J]. 地质学报, 88(11): 2097−2107.
    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745−765.
    徐容, 邓军, 程韩宇, 等. 2018. 华南板块西缘和腾冲−保山地块晚白垩世岩浆活动及Sn成矿作用对比: 年代学、地球化学和动力学背景[J]. 岩石学报, 34(5): 1271−1284.
    徐文坦, 张雪辉, 张斌斌, 等. 2022. 赣东北地区福泉山岩体高分异S型花岗岩成因: 来自锆石U−Pb年龄、Hf同位素及地球化学的证据[J]. 地质通报, 41(4): 577−589.
    杨启军, 徐义刚, 黄小龙, 等. 2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J]. 岩石学报, 22(4): 817−834.
    杨启军, 徐义刚, 黄小龙, 等. 2009. 西腾冲—梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报, 25(5): 1092−1104.
    禹丽. 2016. 三江腾冲-保山地块中生代岩浆岩成因及构造意义[D]. 中国地质大学(北京)博士学位论文.
    云南地矿局. 1991. 云南省区域地质志[M]. 北京: 地质出版社.
    云南省地质矿产局编. 1990. 中华人民共和国地质矿产部地质专报1区域地质第21号云南省区域地质志[M]. 北京: 地质出版社.
    张士鲁. 1986. 云南腾冲锡矿带地质背景及锡矿类型[J]. 矿床地质, (3): 19−26.
    张为鹂. 1988. 钾长石−钠长石−钙长石−石英−水系列相图及分异指数等在滇西花岗岩及其锡矿化研究中的应用[J]. 云南地质, (1): 28−44.
    张玙, 金灿海, 范文玉, 等. 2013. 腾冲地区与锡矿床有关的花岗岩地球化学特征及类型判别[J]. 地质学报, 87(12): 1853−1863.
    赵少伟. 2017. 腾冲地块晚白垩世—早始新世花岗岩类成因机制及大陆动力学意义[D]. 西北大学博士学位论文.
    钟大赉等. 1998. 滇川西部古特提斯造山带[M]. 北京: 科学出版社.
    周路路, 舒广强, 王继春, 等. 2022. 内蒙古中部朱日和地区中奥陶世洋壳俯冲作用: 来自奥长花岗岩年龄及地球化学的制约[J]. 地质通报, 41(4): 545−558.
    朱弟成, 莫宣学, 赵志丹, 等. 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点[J]. 地学前缘, 16(2): 1−20.
    朱韧之. 2017. 腾冲地块早白垩世花岗岩类成因机制及深部动力学意义[D]. 西北大学博士学位论文.
    邹光富, 毛英, 林仕良, 等. 2013. 西粱河勐养花岗岩的锆石U−Pb年龄、地球化学特征及其地质意义[J]. 矿物岩石, 33(1): 87−99.
图(10)  /  表(6)
计量
  • 文章访问数:  2761
  • HTML全文浏览量:  1879
  • PDF下载量:  710
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 修回日期:  2024-04-07
  • 网络出版日期:  2024-05-30
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回