Processing math: 100%

    准噶尔盆地西北缘断裂带构造变形机制基于物理实验模拟研究

    豆方鹏, 李江海, 彭谋

    豆方鹏, 李江海, 彭谋. 2024: 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究. 地质通报, 43(4): 527-535. DOI: 10.12097/gbc.2022.03.044
    引用本文: 豆方鹏, 李江海, 彭谋. 2024: 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究. 地质通报, 43(4): 527-535. DOI: 10.12097/gbc.2022.03.044
    Dou F P, Li J H, Peng M. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 2024, 43(4): 527−535. DOI: 10.12097/gbc.2022.03.044
    Citation: Dou F P, Li J H, Peng M. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 2024, 43(4): 527−535. DOI: 10.12097/gbc.2022.03.044

    准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究

    基金项目: 国家重点研发计划项目《重点含盐盆地钾盐成矿规律、勘查技术与增储示范》(编号:2023YFC2906500)
    详细信息
      作者简介:

      豆方鹏(1997− ),男,在读硕士生,从事地质学研究。E−mail:2001210125@stu.pku.edu.cn

      通讯作者:

      李江海(1965− ),男,教授,从事全球构造教学与研究。E−mail:jhli@pku.edu.cn

    • 中图分类号: P542.3; P554

    Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation

    • 摘要:

      准噶尔盆地西北缘发育以红车(红山嘴、车排子)、克白(克拉玛依、百口泉)和乌夏(乌尔河、夏子街)为代表的边缘断裂系统,是影响石炭纪—三叠纪地层发育特征和控制油气聚集的关键因素。准噶尔盆地西北缘断裂带属性及形成机制是地球科学界广泛讨论的问题,并一直存在争议。基于区域地质背景和前人研究成果,采用物理砂箱实验模拟准噶尔盆地西北缘断裂带构造变形机制。实验结果表明,乌夏、克白断裂带主要由一条西倾的主断裂控制,两侧断裂不对称分布,为不对称状花状断裂。红车断裂带主要由2条主断裂控制,呈雁列状分布,整体表现为近似对称的花状构造。通过物理模拟正演,认为准噶尔盆地西北缘早石炭世—晚三叠世演化过程可分为2个阶段,即残余洋盆俯冲阶段和右旋走滑阶段。准噶尔盆地西北缘构造石炭纪—三叠纪地层圈闭发育,可能是逆冲断裂和褶皱形成的断鼻、断块和排列背斜,这些伴生构造圈闭是准噶尔盆地西北缘油气成藏的关键因素。

      Abstract:

      The development of marginal fault systems, exemplified by Hongche (Hongshanzui, Chepai), Kebai (Karamay, Baikouquan), and Wuxia (Wuerhe, Xiazijie) in the northwest margin of Junggar Basin, is a pivotal factor influencing the developmental characteristics of Carboniferous-Triassic strata and governing hydrocarbon accumulation. The nature and formation mechanism of the fault zone in the northwest margin of Junggar Basin have been extensively discussed within the earth science community. Building upon regional geological context and previous research findings, a physical sandbox experiment was conducted to simulate the tectonic deformation mechanism within the fault zone at northwestern Junggar Basin. The experimental outcomes reveal that the Wuxia and Kebai fault zones are primarily controlled by a west-dipping main fault with a symmetrically distributed subsidiary faults on both sides. Conversely, the Hongche fault zone is predominantly governed by two main faults exhibiting an en echelon distribution pattern with an approximately symmetrical flower-like structure. Through forward physical simulation, it can be inferred that Early Carboniferous to Late Triassic evolution at the northwest margin of Junggar Basin can be divided into two stages: residual ocean basin subduction stage followed by right-lateral strike-slip stage. The development of Carboniferous-Triassic stratigraphic traps in this region may be attributed to thrust faults and folds forming fault noses, fault blocks, and aligned anticlines. These associated structural traps serve as key factors for hydrocarbon accumulation at the northwest margin of Junggar Basin.

    • 图  1   北疆地区数字高程模型(a, 显示了主要断裂和构造单元)、西北缘断裂体系简化构造图(b)、A-A’剖面地层结构图(c,据王鹤华等, 2015修改)和B-B’剖面地层结构图(d,据Tang et al.,2021修改)

      Figure  1.   The digital elevation model of northern Xinjiang showing the major faults and structural units (a), the simplified structure diagram of the fault system in the northwest margin (b), the stratigraphic structure diagram of A-A 'section (c), and the stratigraphic structure diagram of B-B' section (d)

      图  2   实验模型示意图

      a—模拟弧形压扭性走滑;b—模拟直线压扭性走滑

      Figure  2.   Schematic diagrams of experimental model

      图  3   实验结果俯视图

      a—弧形压扭性走滑;b—直线压扭性走滑

      Figure  3.   Top view of experimental results

      图  4   弧形压扭性边界物理模拟结果(A-A’、B-B’、C-C’、D-D’)和直线压扭性边界物理模拟结果(E-E’、F-F’、G-G’)(字母的含义说明见正文,剖面位置见图3

      Figure  4.   Physical simulation results of arc compression-torsion boundary(A-A’,B-B’,C-C’,D-D’) and physical simulation results of straight-line compression-torsion boundary(E-E’,F-F’,G-G’)

      图  5   准噶尔地区早石炭世—晚石炭世(约310 Ma)和早二叠世—晚三叠世(约250 Ma)构造演化简图

      Figure  5.   Tectonic evolution diagram of Early Carboniferous to Late Carboniferous(~310 Ma) and Early Permian-Late Triassic(~250 Ma) in Junggar area

      表  1   本研究使用的物理参数和地质原型与实验模型之间的比例因子

      Table  1   The physical parameters and scale factors between geological prototypes and experimental models used in this study

      参数 地质原型 实验模型 比例因子
      长度(l)/m 4.5×104m 5×101m lM/lN=104
      石英砂密度(ρ) 2.4×103kg/m3 1.35×103kg/m3 ρM/ρN=0.65
      重力加速度(g) 9.81m/s2 9.81m/s2 gM/gN=1.0
      摩擦系数(μ) 0.73 0.58 μM/μN=0.65
      旋转角度(θ) 70° 40° θM/θN=0.65
      时间尺度(T) 50 Myr 9 min TM/TN=3.5×1013
        注:实验模型密度数据据王鹤华等, 2015;旋转角度数据据Wang et al.,2007;Yi et al.,2015
      下载: 导出CSV
    • Ablimiti I, Zha M, Ding X J, et al. 2020. Identification of a Permian foreland basin in the western Junggar Basin(NW China) and its impact on hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 187: 920−4105.

      Carroll A R, Liang Y, Graham S A, et al. 1990. Junggar basin, northwest China: Trapped Late Paleozoic ocean[J]. Tectonophysics, 181(1/4): 1−14. doi: 10.1016/0040-1951(90)90004-R

      Deng B, Jiang L, Zhao G, et al. 2017. Insights into the velocity−dependent geometry and internal strain in accretionary wedges from analogue models[J]. Geological Magazine, 155(5): 1089−1104.

      Ding X J, Gao C H, Zha M, et al. 2017. Depositional environment and factors controlling β−carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 833−842.

      Ding X J, Qu J H, Ablimit I, et al. 2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag[J]. Journal of Petroleum Science and Engineering, 179: 696−706. doi: 10.1016/j.petrol.2019.05.004

      Hoshino K. 1972. Mechanical properties of Japanese Tertiary sedimentary rocks under high confining pressures[R]. Geological Survey of Japan.

      Konstantinovskaya E, Malavieille J. 2011. Thrust wedges with decollement levels and syntectonic erosion: A view from analog models[J]. Tectonophysics, 502(3/4): 336−350.

      Liang Y Y, Zhang Y Y, Chen S, et al. 2020. Controls of a strike−slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 198: 104229. doi: 10.1016/j.jseaes.2020.104229

      Meng J, Guo Z, Fang S. 2009. A new insight into the thrust structures at the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 16(3): 171−180.

      Oncken A O. 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 25(10): 1691−1711. doi: 10.1016/S0191-8141(03)00005-1

      Souloumiac P, Maillot B, Leroy Y M. 2012. Bias due to side wall friction in sand box experiments[J]. Journal of Structural Geology, 35(2): 90−101.

      Tang W B, Zhang W W, Pe−Piper G, et al. 2021. Permian to early Triassic tectono−sedimentary evolution of the Mahu sag, Junggar Basin, western China: sedimentological implications of the transition from rifting to tectonic inversion[J]. Marine and Petroleum Geology, 123: 104730. doi: 10.1016/j.marpetgeo.2020.104730

      Tao K Y, Cao J, Wang Y, et al. 2016. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems[J]. Organic Geochemistry, 100: 62−79. doi: 10.1016/j.orggeochem.2016.08.004

      Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth Planet, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037

      Weijermars R, Schmeling H. 1986. Scaling of Newtonian and non−Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth & Planetary Interiors, 43(4): 316−330.

      Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

      Xu Q Q, Ji J Q, Zhao L, et al. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth−Science Reviews, 126: 178−205. doi: 10.1016/j.earscirev.2013.08.005

      Yh A, Gza B. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean−ScienceDirect[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

      Yi Z, Huang B C, Xiao W J, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27(2): 862−877. doi: 10.1016/j.gr.2013.11.006

      Zhao S, Li S, Xin L, et al. 2014. Intracontinental orogenic transition: Insights from structures of the eastern Junggar Basin between the Altay and Tianshan orogens[J]. Journal of Asian Earth Sciences, 88(6): 137−1484.

      Zhou Y C, Chen Q H, Wu K Y, et al. 2019. The basin and range systems and their evolution of the northwestern margin of Junggar Basin, China: Implications for the hydrocarbon accumulation[J]. Energy Exploration & Exploitation, 37(5): 1577−1598.

      陈石, 郭召杰, 漆家福, 等. 2016. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油与天然气地质, 37(3): 322−331. doi: 10.11743/ogg20160304
      邓洪菱, 张长厚, 李海龙, 等. 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285−296. doi: 10.3321/j.issn:1002-008X.2009.03.007
      管树巍, 李本亮;侯连华, 等. 2008. 准噶尔盆地西北缘下盘掩伏构造油气勘探新领域[J]. 石油勘探与开发, 35(1): 17−22. doi: 10.3321/j.issn:1000-0747.2008.01.004
      韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长—后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077−1086. doi: 10.3321/j.issn:1000-0569.2006.05.003
      况军, 张越迁, 侯连华. 2008. 准噶尔盆地西北缘克百掩伏带勘探领域分析[J]. 新疆石油地质, 29(4): 431−434.
      杨庚, 王晓波, 李本亮, 等. 2011. 准噶尔盆地西北缘斜向挤压构造与走滑断裂[J]. 地质科学, 46(3): 696−708. doi: 10.3969/j.issn.0563-5020.2011.03.007
      谭开俊, 张帆, 吴晓智, 等. 2008. 准噶尔盆地西北缘盆山耦合与油气成藏[J]. 天然气工业, 28(5): 10−13. doi: 10.3787/j.issn.1000-0976.2008.05.003
      王鹤华, 吴孔友, 裴仰文, 等. 2015. 扎伊尔山冲断-走滑构造演化特征与物理模拟[J]. 地质力学学报, 21(1): 56−65. doi: 10.3969/j.issn.1006-6616.2015.01.007
      蔚远江, 何登发, 雷振宇, 等. 2004. 准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应[J]. 地质学报, 78(5): 612−625. doi: 10.3321/j.issn:0001-5717.2004.05.005
      张元元, 曾宇轲, 唐文斌. 2021. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 6(3): 333−343. doi: 10.3969/j.issn.2096-1693.2021.03.027
      孙自明, 洪太元, 张涛. 2008. 新疆北部哈拉阿拉特山走滑-冲断复合构造特征与油气勘探方向[J]. 地质科学, 43(2): 309−320. doi: 10.3321/j.issn:0563-5020.2008.02.007
      张越迁, 张年富. 2006. 准噶尔大型叠合盆地油气富集规律[J]. 中国石油勘探, 11(1): 59−64. doi: 10.3969/j.issn.1672-7703.2006.01.009
      张越迁, 汪新, 刘继山, 等. 2011. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 32(5): 447−450.
      支东明, 唐勇, 郑孟林, 等. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质, 39(1): 1−1. doi: 10.7657/XJPG20180101
    图(5)  /  表(1)
    计量
    • 文章访问数:  878
    • HTML全文浏览量:  583
    • PDF下载量:  1141
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-22
    • 修回日期:  2022-07-24
    • 网络出版日期:  2024-05-06
    • 刊出日期:  2024-04-14

    目录

      /

      返回文章
      返回