Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction
-
摘要:
对杭州湾北岸3处现代潮滩沉积物进行高精度粒度分析,查找研究区潮滩不同微相的粒度特征和差异,提取基于粒度分析的潮滩微相识别敏感指标,并将其应用到该区域的全新世钻孔潮滩沉积物中,识别钻孔潮滩沉积微相,据此建立研究区全新世早期的海平面曲线。研究表明:杭州湾北岸现代高潮滩盐沼沉积物粘土含量明显高于高潮滩下部和中潮滩,而砂含量与之相反;高潮滩盐沼平均粒径等粒度参数明显小于中、高潮滩的粒度参数;盐沼沉积物粒度频率曲线峰态宽缓,明显区别于高潮滩下部和中潮滩。上述现代潮滩微相粒度敏感指标可成功应用到钻孔潮滩沉积微相划分中,并建立了该区域全新世早期海平面曲线。曲线显示,9700~8700 cal a BP期间海平面上升约11.6 m,海平面上升速率可达1.2 cm/a。现代潮滩不同位置沉积物粒度参数的规律性差异可作为潮滩微相识别的有效指标,为古潮滩沉积微相识别和古海平面重建提供参考依据。
Abstract:In this paper we take detail analyses on the sediment grain size for three tidal flat sections to set up the diagnostic indexes for recognization of tidal flat facies along the north bank of the Hangzhou Bay. The study also examined the application of the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats in a Holocene sediment core HZK11. The results show that clay and sand components could be the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats. Salt marsh volume curves are different from the upper and lower tidal plat. The parameters (Mode, Median and Mode) are effective indexes to identify salt marsh upper and lower tidal flat sediments.Above diagnostic sediment components, grain size parameters and volume curves are applied successfully to identify the exact tidal plat facies in boreholes and can be used to reconstruct relative sea-level which demonstrates sea-level rise of around 1.2 cm/a from 9700 cal a BP to 8700 cal a BP.
-
Keywords:
- grain size analysis /
- diagnostic indexes /
- tidal flat facies /
- sea-level /
- Hangzhou Bay
-
-
表 1 LC01 ~ LC03潮滩沉积物粒度参数
Table 1 Grain size distribution of tidal−flat sediments in LC01 ~ LC03
沉积相 剖面 粘土/% 粉砂/% 砂/% 平均粒径/µm 中值粒径/µm 众数/µm 极值 均值 极值 均值 极值 均值 极值 均值 极值 均值 极值 均值 盐沼 LC01 9.9~42.1 30.8 49.4~83.9 64.2 1.6~8.9 5.0 12.6~33.4 18.3 5.1~32.1 10.7 5.9~38.0 15.4 LC02 27.1~35.3 30.9 57.2~65.7 61.1 6.9~10.4 8.0 19.4~25.9 22 6.6~10.5 8.5 7.1~28.7 14.4 LC03 31.7~37.9 34.8 60.2~66.5 63.4 1.8~1.9 1.9 11.7~14.3 13 6.2~8.5 7.4 10.3~12.4 11.3 高潮滩 LC01 8.3~12.1 10.3 44.8~78.1 66.3 10.1~47 23.4 33.1~67.9 47.1 24.6~59 37.1 28.7~105.9 48.7 LC02 11.3~23.7 18.2 74.1~82.5 77.7 2.2~6.8 4.1 19.6~31.3 24.4 14.4~29.9 21.2 31.5~41.7 34.8 LC03 3~22.8 14.1 7.5~82.8 55.8 2.4~89.5 30.2 18.4~141 57.4 13.1~151 55.3 23.8~168.9 67.3 中潮滩 LC01 9.1~11.2 10 38.9~67.5 51.8 21.3~51.1 38.2 42~62.4 54 39.8~64.3 53.2 50.2~87.9 69.4 LC02 7.4 7.4 78.2 78.2 14.4 14.2 42 42 41.2 41.2 45.8 45.8 LC03 6.5~10.9 9.2 40.3~68.4 50.1 20.7~53.2 40.6 41~68.6 56.1 37.1~66.4 54.9 45.8~80.1 66.3 表 2 HZK11孔沉积物粒度参数
Table 2 Grain size distribution of sediments in HZK11
分层 粘土/% 粉砂/% 砂/% 平均粒径/µm 中值粒径/µm 众数/µm 极值 均值 极值 均值 极值 均值 极值 均值 极值 均值 极值 均值 层Ⅰ 17.3~30.5 23.7 67.2~74.7 71.9 1.6~9.2 4.4 12.8~26.8 18.9 7.8~17.1 12.3 9.4~28.7 21.9 层Ⅱ 11.6~25.5 18.7 66.3~72.7 68.8 5.8~22.1 12.5 20.7~51.2 32.9 12.3~35.5 21.3 26.1~45.8 36.8 层Ⅲ 21~47.2 27.7 49.1~76.5 69 0~6.3 3.2 10.5~19.5 15.1 4.4~13.4 9.3 4.9~21.7 13.7 层Ⅳ 14.3~17.4 15.9 76.5~81.1 78.7 4.4~7.2 5.4 20.8~24.9 22.9 14.9~19.2 17.7 21.7~26.1 23.9 层Ⅴ 19.1~35.3 28.2 56.9~78.7 67.2 2~10.6 4.6 12~23.3 16.4 6.7~12.7 9 6.5~21.7 12.2 层Ⅵ 15.9~18.2 17.3 74.9~77.1 76.4 5~7.9 6.4 22.3~26.2 24.5 16~20.2 18.2 26.1~31.5 29.5 层Ⅶ 22.4~38.7 29 56.3~72.5 67 0.8~5.7 4 13.2~22.5 16.7 5.6~14.7 10 5.9~26.1 16.8 表 3 HZK11孔沉积物对古海平面的指示意义和古海平面位置
Table 3 Relative sea-level reconstructed using sea-level indicatoes of core HZK11
实验室编号 标高H/m 测年材料 沉积环境 测试年龄 校正年龄 (2σ) 指示意义 古海平面(SL) a BP 误差 cal a BP 可信度 指示位置 标高/m 标高/m 误差 β-345615 −22.93 植物碎屑 高潮滩下部 8080 40 8760~9020 0.99 MNHW-MHW 1.07±0.6 −24.0 0.60 β-345617 −24.86 植物碎屑 高潮滩下部 8180 40 9010~9160 0.72 MNHW-MHW 1.07±0.6 −25.93 0.60 β-345618 −25.76 植物碎屑 高潮滩下部 8250 40 9030~9290 1 MNHW-MHW 1.07±0.6 −26.83 0.60 β-345619 −26.41 植物碎屑 高潮滩下部 8320 40 9190~9430 0.88 MNHW-MHW 1.07±0.6 −27.48 0.60 β-345620 −28.21 植物碎屑 盐沼 8240 60 9010~9320 0.96 MHW-MSHW 2.12±0.45 −30.33 0.45 β-345621 −28.74 植物碎屑 盐沼 8430 40 9300~9490 1 MHW-MSHW 2.12±0.45 −30.86 0.45 β-345622 −29.36 植物碎屑 盐沼 8330 40 9200~9430 0.92 MHW-MSHW 2.12±0.45 −31.48 0.45 β-345623 −32.33 植物碎屑 高潮滩下部 8670 40 9530~9680 1 MNHW-MHW 1.07±0.6 −33.40 0.60 β-345624 −33.47 植物碎屑 盐沼 8640 40 9520~9670 0.99 MHW-MSHW 2.12±0.45 −35.59 0.45 注:MHW—平均高潮位;MNHW—平均小潮高潮位;MSHW—平均大潮高潮位 -
Bard E, Hamelin B, Arnold M, et al. 1996. Deglacial sea−level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 382: 241−244. doi: 10.1038/382241a0
Bird M I, Fifield L K, Teh T S, et al. 2007. An inflection in the rate of early mid−Holocene eustatic sea−level rise: A new sea−level curve from Singapore[J]. Estuarine Coastal & Shelf Science, 71(3/4): 523−536.
Bird M I, Fifield L K, Teh T S, et al. 2009. An inflection in the rate of early mid−Holocene eustatic sea−level rise: a new sea−level curve from Singapore[J]. Estuarine, Coastal and Shelf Science, 71: 523–536.
Bird M, Austin W E N, Wurster C M, et al. 2010. Punctuated eustatic sea−level rise in the early mid−Holocene[J]. Geology, 38: 803−806.
Chappell J, Polach H. 1991. Post−glacial sea−level rise from a coral record at Huon Peninsula, Papua New Guinea[J]. Nature, 349: 147−149. doi: 10.1038/349147a0
Chen Z, Stanley D J. 1998. Rising sea level on eastern China’s Yangtze Delta[J]. Journal of Coastal Research, 14: 360−366.
Fairbanks R G. 1989. A 17000−year glacio−eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep−ocean circulation[J]. Nature, 342: 637−642. doi: 10.1038/342637a0
Gehrels W R. 1999. Middle and Late Holocene sea−level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat[J]. Quaternary Research, 52: 350−359. doi: 10.1006/qres.1999.2076
Hijma M P, Cohen K M. 2010. Timing and magnitude of the sea−level jump preluding the 8200 yr event[J]. Geology, 38(3): 275−278. doi: 10.1130/G30439.1
Liu J P, Milliman J D, Gao S. 2004. Holocene development of the Yeoow River’s sub−aqueous delta, North Yellow Sea[J]. Marine Geology, 209: 45−67. doi: 10.1016/j.margeo.2004.06.009
Saito Y. 1998. Sea levels of the last glacial in the East China Sea continental shel[J]. Quaternary Research, 37: 235−242. doi: 10.4116/jaqua.37.235
Shennan I. 1986. Flandrian sea−level changes in the Fenland II: Tendencies of sea−level movement, altitudinal changes, and local and regional factors[J]. Journal of Quaternary Science, 1: 155−179. doi: 10.1002/jqs.3390010205
Tamura T, Saito Y, Sieng S, et al. 2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland[J]. Quaternary Science Reviews, 28(3/4): 327−344. doi: 10.1016/j.quascirev.2008.10.010
Törnqvist T E. 2004. Deciphering Holocene sea−level history on the U. S. Gulf Coast: A high−resolution record from the Mississippi Delta[J]. Geological Society of America, 116: 1026−1039. doi: 10.1130/B2525478.1
Wang Z H, Saito Y, Zhan Q, et al. 2018. Three - Di- mensional Evolution of the Yangtze River Mouth, China during the Holocene: Impacts of Sea Level, Climate and Human Activity[J]. Earth−Science Reviews, 185: 938−955.
Wang Z, Zhan Q, Long H, et al. 2013. Early to mid−Holocene rapid sea−level rise and coastal response on the southern Yangtze delta plain, Chinae[J]. Journal of Quaternary Scienc, 28(7): 659−672. doi: 10.1002/jqs.2662
Wang Z, Zhuang C, Saito Y, et al. 2012. Early mid−Holocene sea−level change and coastal environmental response of the southern Yangtze delta plain, China: implications for the rise of Neolithic culture[J]. Quaternary Science Review, 35: 51−62. doi: 10.1016/j.quascirev.2012.01.005
Yang S, Milliman J, Li P, et al. 2011. 50000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 75(1): 14−20.
Yu S Y, Berglund B E, Sandgren P. 2007. Evidence for a rapid sea−level rise 7600 yr ago[J]. Geology, 35: 891−894.
Zhan Q, Wang Z H, Xie Y, et al. 2012. Assessing C/N and Δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China[J]. The Holocene, 22(6): 697−704. doi: 10.1177/0959683611423685
Zong Y. 2004. Mid−Holocene sea−level highstand along the Southeast Coast of Chinal[J]. Quaternary Internationa, 117: 55−67.
高晓琴, 王张华, 李琳, 等. 2012. 长江口现代潮滩表层沉积物磁性特征和铁硫化物在潮滩微相的分布[J]. 古地理学报, 14(5): 673−684. 国家海洋局. 2012. 2011年中国海平面公报[R]. 北京: 国家海洋局. 李琳, 王张华, 吴绪旭, 等. 2013. 长江口北支潮滩不同沉积微相有机地球化学元素分布[J]. 古地理学报, 15(1): 95–104. 水利部长江水利委员会. 2021. 长江泥沙公报[M]. 武汉: 长江出版社. 汪品先, 章纪军, 赵泉鸿, 等. 1988. 东海底质中的有孔虫和介形虫[M]. 北京: 海洋出版社. 战庆, 王张华. 2014. 利用盐沼泥炭重建长江三角洲北部全新世中期海平面[J]. 古地理学报, 16(4): 548−556. 赵亚楠, 王张华, 吴绪旭, 等. 2015. 长江口现代潮滩沉积物粒度特征及其在沉积相识别中的应用[J]. 古地理学报, 17(3): 405−416.