杭州湾北岸现代潮滩沉积物粒度特征及其对古海平面的指示意义

    战庆, 赵宝成, 陈昆钰, 史玉金, 王寒梅

    战庆, 赵宝成, 陈昆钰, 史玉金, 王寒梅. 2024: 杭州湾北岸现代潮滩沉积物粒度特征及其对古海平面的指示意义. 地质通报, 43(4): 516-526. DOI: 10.12097/gbc.2022.03.042
    引用本文: 战庆, 赵宝成, 陈昆钰, 史玉金, 王寒梅. 2024: 杭州湾北岸现代潮滩沉积物粒度特征及其对古海平面的指示意义. 地质通报, 43(4): 516-526. DOI: 10.12097/gbc.2022.03.042
    Zhan Q, Zhao B C, Chen K Y, Shi Y J, Wang H M. Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction. Geological Bulletin of China, 2024, 43(4): 516−526. DOI: 10.12097/gbc.2022.03.042
    Citation: Zhan Q, Zhao B C, Chen K Y, Shi Y J, Wang H M. Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction. Geological Bulletin of China, 2024, 43(4): 516−526. DOI: 10.12097/gbc.2022.03.042

    杭州湾北岸现代潮滩沉积物粒度特征及其对古海平面的指示意义

    基金项目: 国家自然科学基金项目《杭州湾北岸全新世早期(10-9 cal ka BP)高精度海平面重建及沉积环境响应》(批准号:41706098)、《基于微体化石识别全新世高海面阶段长江口外水团相互作用及调控机制》(批准号:42076081)
    详细信息
      作者简介:

      战庆(1983− ),男,博士,高级工程师,从事长江三角洲地质环境演化研究。E−mail:zhanqing5203893@163.com

    • 中图分类号: P53; P736.2

    Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction

    • 摘要:

      对杭州湾北岸3处现代潮滩沉积物进行高精度粒度分析,查找研究区潮滩不同微相的粒度特征和差异,提取基于粒度分析的潮滩微相识别敏感指标,并将其应用到该区域的全新世钻孔潮滩沉积物中,识别钻孔潮滩沉积微相,据此建立研究区全新世早期的海平面曲线。研究表明:杭州湾北岸现代高潮滩盐沼沉积物粘土含量明显高于高潮滩下部和中潮滩,而砂含量与之相反;高潮滩盐沼平均粒径等粒度参数明显小于中、高潮滩的粒度参数;盐沼沉积物粒度频率曲线峰态宽缓,明显区别于高潮滩下部和中潮滩。上述现代潮滩微相粒度敏感指标可成功应用到钻孔潮滩沉积微相划分中,并建立了该区域全新世早期海平面曲线。曲线显示,9700~8700 cal a BP期间海平面上升约11.6 m,海平面上升速率可达1.2 cm/a。现代潮滩不同位置沉积物粒度参数的规律性差异可作为潮滩微相识别的有效指标,为古潮滩沉积微相识别和古海平面重建提供参考依据。

      Abstract:

      In this paper we take detail analyses on the sediment grain size for three tidal flat sections to set up the diagnostic indexes for recognization of tidal flat facies along the north bank of the Hangzhou Bay. The study also examined the application of the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats in a Holocene sediment core HZK11. The results show that clay and sand components could be the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats. Salt marsh volume curves are different from the upper and lower tidal plat. The parameters (Mode, Median and Mode) are effective indexes to identify salt marsh upper and lower tidal flat sediments.Above diagnostic sediment components, grain size parameters and volume curves are applied successfully to identify the exact tidal plat facies in boreholes and can be used to reconstruct relative sea-level which demonstrates sea-level rise of around 1.2 cm/a from 9700 cal a BP to 8700 cal a BP.

    • 图  1   研究区、剖面、钻孔位置及验潮站数据(黄海高程)

      Figure  1.   Location of the study area, core HZK11, tidal flat LC01~LC03, and tidal gauge

      图  2   LC01~LC03潮滩沉积物粒度参数分布特征

      Figure  2.   Distribution of sediment composition and grain size parameters of LC01~LC03

      图  3   杭州湾北岸现代潮滩沉积物粒度分布曲线

      Figure  3.   Differential grain size curves of the modern tidal−flat sediments on the north bank of Hangzhou Bay

      图  4   HZK11孔AMS 14C测年、岩性、粒度和沉积环境

      Figure  4.   Comprehensive profile of core HZK11 including calibrated AMS 14C age, lithology, grain size and interpretation of sedimentary environment

      图  5   HZK11孔潮滩沉积物粒度频率曲线

      Figure  5.   Differential volume curves of grain size of tidal−flat sediments from core HZK11

      图  6   杭州湾北岸潮滩沉积微相划分及粒度特征指标差异

      Figure  6.   Schematic profile of the north bank of Hangzhou Bay including clay and sand content, mean,median and mode, and volume curves of grain size

      图  7   HZK11孔全新世早期相对海平面曲线

      Figure  7.   Reconstructed relative sea-level curve during the early Holocene with data of core HZK11

      表  1   LC01 ~ LC03潮滩沉积物粒度参数

      Table  1   Grain size distribution of tidal−flat sediments in LC01 ~ LC03

      沉积相剖面粘土/%粉砂/%砂/%平均粒径/µm中值粒径/µm众数/µm
      极值均值极值均值极值均值极值均值极值均值极值均值
      盐沼LC019.9~42.130.849.4~83.964.21.6~8.95.012.6~33.418.35.1~32.110.75.9~38.015.4
      LC0227.1~35.330.957.2~65.761.16.9~10.48.019.4~25.9226.6~10.58.57.1~28.714.4
      LC0331.7~37.934.860.2~66.563.41.8~1.91.911.7~14.3136.2~8.57.410.3~12.411.3
      高潮滩LC018.3~12.110.344.8~78.166.310.1~4723.433.1~67.947.124.6~5937.128.7~105.948.7
      LC0211.3~23.718.274.1~82.577.72.2~6.84.119.6~31.324.414.4~29.921.231.5~41.734.8
      LC033~22.814.17.5~82.855.82.4~89.530.218.4~14157.413.1~15155.323.8~168.967.3
      中潮滩LC019.1~11.21038.9~67.551.821.3~51.138.242~62.45439.8~64.353.250.2~87.969.4
      LC027.47.478.278.214.414.2424241.241.245.845.8
      LC036.5~10.99.240.3~68.450.120.7~53.240.641~68.656.137.1~66.454.945.8~80.166.3
      下载: 导出CSV

      表  2   HZK11孔沉积物粒度参数

      Table  2   Grain size distribution of sediments in HZK11

      分层粘土/%粉砂/%砂/%平均粒径/µm中值粒径/µm众数/µm
      极值均值极值均值极值均值极值均值极值均值极值均值
      层Ⅰ17.3~30.523.767.2~74.771.91.6~9.24.412.8~26.818.97.8~17.112.39.4~28.721.9
      层Ⅱ11.6~25.518.766.3~72.768.85.8~22.112.520.7~51.232.912.3~35.521.326.1~45.836.8
      层Ⅲ21~47.227.749.1~76.5690~6.33.210.5~19.515.14.4~13.49.34.9~21.713.7
      层Ⅳ14.3~17.415.976.5~81.178.74.4~7.25.420.8~24.922.914.9~19.217.721.7~26.123.9
      层Ⅴ19.1~35.328.256.9~78.767.22~10.64.612~23.316.46.7~12.796.5~21.712.2
      层Ⅵ15.9~18.217.374.9~77.176.45~7.96.422.3~26.224.516~20.218.226.1~31.529.5
      层Ⅶ22.4~38.72956.3~72.5670.8~5.7413.2~22.516.75.6~14.7105.9~26.116.8
      下载: 导出CSV

      表  3   HZK11孔沉积物对古海平面的指示意义和古海平面位置

      Table  3   Relative sea-level reconstructed using sea-level indicatoes of core HZK11

      实验室编号 标高H/m 测年材料 沉积环境 测试年龄 校正年龄 (2σ) 指示意义 古海平面(SL)
      a BP 误差 cal a BP 可信度 指示位置 标高/m 标高/m 误差
      β-345615 −22.93 植物碎屑 高潮滩下部 8080 40 8760~9020 0.99 MNHW-MHW 1.07±0.6 −24.0 0.60
      β-345617 −24.86 植物碎屑 高潮滩下部 8180 40 9010~9160 0.72 MNHW-MHW 1.07±0.6 −25.93 0.60
      β-345618 −25.76 植物碎屑 高潮滩下部 8250 40 9030~9290 1 MNHW-MHW 1.07±0.6 −26.83 0.60
      β-345619 −26.41 植物碎屑 高潮滩下部 8320 40 9190~9430 0.88 MNHW-MHW 1.07±0.6 −27.48 0.60
      β-345620 −28.21 植物碎屑 盐沼 8240 60 9010~9320 0.96 MHW-MSHW 2.12±0.45 −30.33 0.45
      β-345621 −28.74 植物碎屑 盐沼 8430 40 9300~9490 1 MHW-MSHW 2.12±0.45 −30.86 0.45
      β-345622 −29.36 植物碎屑 盐沼 8330 40 9200~9430 0.92 MHW-MSHW 2.12±0.45 −31.48 0.45
      β-345623 −32.33 植物碎屑 高潮滩下部 8670 40 9530~9680 1 MNHW-MHW 1.07±0.6 −33.40 0.60
      β-345624 −33.47 植物碎屑 盐沼 8640 40 9520~9670 0.99 MHW-MSHW 2.12±0.45 −35.59 0.45
        注:MHW—平均高潮位;MNHW—平均小潮高潮位;MSHW—平均大潮高潮位
      下载: 导出CSV
    • Bard E, Hamelin B, Arnold M, et al. 1996. Deglacial sea−level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 382: 241−244. doi: 10.1038/382241a0

      Bird M I, Fifield L K, Teh T S, et al. 2007. An inflection in the rate of early mid−Holocene eustatic sea−level rise: A new sea−level curve from Singapore[J]. Estuarine Coastal & Shelf Science, 71(3/4): 523−536.

      Bird M I, Fifield L K, Teh T S, et al. 2009. An inflection in the rate of early mid−Holocene eustatic sea−level rise: a new sea−level curve from Singapore[J]. Estuarine, Coastal and Shelf Science, 71: 523–536.

      Bird M, Austin W E N, Wurster C M, et al. 2010. Punctuated eustatic sea−level rise in the early mid−Holocene[J]. Geology, 38: 803−806.

      Chappell J, Polach H. 1991. Post−glacial sea−level rise from a coral record at Huon Peninsula, Papua New Guinea[J]. Nature, 349: 147−149. doi: 10.1038/349147a0

      Chen Z, Stanley D J. 1998. Rising sea level on eastern China’s Yangtze Delta[J]. Journal of Coastal Research, 14: 360−366.

      Fairbanks R G. 1989. A 17000−year glacio−eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep−ocean circulation[J]. Nature, 342: 637−642. doi: 10.1038/342637a0

      Gehrels W R. 1999. Middle and Late Holocene sea−level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat[J]. Quaternary Research, 52: 350−359. doi: 10.1006/qres.1999.2076

      Hijma M P, Cohen K M. 2010. Timing and magnitude of the sea−level jump preluding the 8200 yr event[J]. Geology, 38(3): 275−278. doi: 10.1130/G30439.1

      Liu J P, Milliman J D, Gao S. 2004. Holocene development of the Yeoow River’s sub−aqueous delta, North Yellow Sea[J]. Marine Geology, 209: 45−67. doi: 10.1016/j.margeo.2004.06.009

      Saito Y. 1998. Sea levels of the last glacial in the East China Sea continental shel[J]. Quaternary Research, 37: 235−242. doi: 10.4116/jaqua.37.235

      Shennan I. 1986. Flandrian sea−level changes in the Fenland II: Tendencies of sea−level movement, altitudinal changes, and local and regional factors[J]. Journal of Quaternary Science, 1: 155−179. doi: 10.1002/jqs.3390010205

      Tamura T, Saito Y, Sieng S, et al. 2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland[J]. Quaternary Science Reviews, 28(3/4): 327−344. doi: 10.1016/j.quascirev.2008.10.010

      Törnqvist T E. 2004. Deciphering Holocene sea−level history on the U. S. Gulf Coast: A high−resolution record from the Mississippi Delta[J]. Geological Society of America, 116: 1026−1039. doi: 10.1130/B2525478.1

      Wang Z H, Saito Y, Zhan Q, et al. 2018. Three - Di- mensional Evolution of the Yangtze River Mouth, China during the Holocene: Impacts of Sea Level, Climate and Human Activity[J]. Earth−Science Reviews, 185: 938−955.

      Wang Z, Zhan Q, Long H, et al. 2013. Early to mid−Holocene rapid sea−level rise and coastal response on the southern Yangtze delta plain, Chinae[J]. Journal of Quaternary Scienc, 28(7): 659−672. doi: 10.1002/jqs.2662

      Wang Z, Zhuang C, Saito Y, et al. 2012. Early mid−Holocene sea−level change and coastal environmental response of the southern Yangtze delta plain, China: implications for the rise of Neolithic culture[J]. Quaternary Science Review, 35: 51−62. doi: 10.1016/j.quascirev.2012.01.005

      Yang S, Milliman J, Li P, et al. 2011. 50000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 75(1): 14−20.

      Yu S Y, Berglund B E, Sandgren P. 2007. Evidence for a rapid sea−level rise 7600 yr ago[J]. Geology, 35: 891−894.

      Zhan Q, Wang Z H, Xie Y, et al. 2012. Assessing C/N and Δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China[J]. The Holocene, 22(6): 697−704. doi: 10.1177/0959683611423685

      Zong Y. 2004. Mid−Holocene sea−level highstand along the Southeast Coast of Chinal[J]. Quaternary Internationa, 117: 55−67.

      高晓琴, 王张华, 李琳, 等. 2012. 长江口现代潮滩表层沉积物磁性特征和铁硫化物在潮滩微相的分布[J]. 古地理学报, 14(5): 673−684.
      国家海洋局. 2012. 2011年中国海平面公报[R]. 北京: 国家海洋局.
      李琳, 王张华, 吴绪旭, 等. 2013. 长江口北支潮滩不同沉积微相有机地球化学元素分布[J]. 古地理学报, 15(1): 95–104.
      水利部长江水利委员会. 2021. 长江泥沙公报[M]. 武汉: 长江出版社.
      汪品先, 章纪军, 赵泉鸿, 等. 1988. 东海底质中的有孔虫和介形虫[M]. 北京: 海洋出版社.
      战庆, 王张华. 2014. 利用盐沼泥炭重建长江三角洲北部全新世中期海平面[J]. 古地理学报, 16(4): 548−556.
      赵亚楠, 王张华, 吴绪旭, 等. 2015. 长江口现代潮滩沉积物粒度特征及其在沉积相识别中的应用[J]. 古地理学报, 17(3): 405−416.
    图(7)  /  表(3)
    计量
    • 文章访问数:  927
    • HTML全文浏览量:  462
    • PDF下载量:  429
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-22
    • 修回日期:  2022-06-22
    • 网络出版日期:  2024-05-06
    • 刊出日期:  2024-04-14

    目录

      /

      返回文章
      返回