湘黔地区下寒武统黑色岩系中镍－钼矿床
黄铁矿的成因

江永宏1,3, 李胜荣2,3
Jiang Yong-hong1,3, LI Sheng-rong2,3

1. 中国地质调查局发展研究中心, 北京 100037;
2. 中国地质大学地球科学与资源学院, 北京 100083;
3. 地质过程与矿产资源国家重点实验室, 北京 100083

1. The Development and Research Center of the China Geological Survey, Beijing 100037, China;
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
3. State Key Laboratory of Geological Processes and Mineral Resources, Beijing 100083, China

摘要: 本文研究了贵州遵义中南村和湖南张家界三岔岭－牛角金属矿床的黄铁矿，矿床成因为海水喷流沉积型。黄铁矿样品 S/Fe 比值的平均值为 2.0093～2.048，成分特征均属于铁亏型，说明其形成温度低。Co/Ni 变化范围为 0.077～4.5，均值为 2.197，据 Co/Ni 的比值可以判断本区的黄铁矿主要为热液成因，热液成因的硫化物来源为海水喷流体系内的热液。成分图示显示，黑色岩系中高 o(Co/Ni)/o(Fe)的黄铁矿和高 o(As+Se+Te)/o(S)的黄铁矿均大量出现，可能与海水喷流沉积的温差变化范围较大有关，而非正常沉积的产物。S/Se 比值为 950.8～1059.9，说明生成环境均一程度较高，而且海水温度较高。由中南村镍－钼矿床的 Se/Te 比值也能判断其为热液成因。关于黄铁矿的性质对本区镍－钼矿床的成因有重要意义。

关键词: 湘黔地区; 黑色岩系; 黄铁矿; 低镍; 介质流体; 混合沉积

中图分类号：P533.41; P618.63; P618.65; P578.2’92 文献标志码：A 文章编号：1671-2552(2010)02/03-0427-09

Abstract: The article makes emphatic research on the pyrite of the Ni–Mo poly–metal–element deposit in Zhongnancun of Zunyi in Guizhou and Sancha of Zhangjiajie in Hunan, the genesis of the ore deposit is hydrothermal exhalative sedimentary type. The average ratio of S/Fe of the pyrite sample is 2.0093～2.048, and the composition characteristic belongs to iron deficient type, indicating the forming temperature is low. The variant range of Co/Ni is 0.077～4.5, with the average as 2.197, so from the rate of Co/Ni we can judge the pyrite in this area is mainly hydrothermal genesis, and the mineralization resource is the thermal fluid of the hydrothermal exhalative sedimentary system. The composition diagram typomorphism indicates the pyrites of the high o(Co/Ni)/o(Fe) and o(As+Se+Te)/o(S) in the black rock series in this area occur in large amount, which is due to larger temperature variation range of the hydrothermal exhalative sedimentation, while not the product of the normal sedimentation. The S/Se rate is 950.8～1059.9, indicating the homogeneous extent of the productive environment is higher, and the temperature of the marine water is higher. From the Se/Te rate of Ni–Mo deposit in Zhongnancun (Se/Te=0.986), we also can conclude that the deposit is the genesis of thermal fluid. Research of the pyrite is of importance for the Ni–Mo deposits exploration in this area.

Key words: Hunan and Guizhou provinces; black–rock–series; pyrite; oxygen depletion; media fluid; combined sedimentation

投稿日期：2008-06-23; 修订日期：2009-12-22

基金项目: 国家自然科学基金项目(编号: 40073012), 国家重点基础研究发展计划项目(编号: G1998040800) 和中国地质调查局国土资源大调查项目(编号: 199910200264, 2000102023023, 200313000068-02)资助

作者简介: 江永宏(1973-), 男, 博士, 副研究员, 从事地质调查, 矿床成因矿物学与生命成因矿物学研究。E-mail: jackykat@sina.com
2 黄铁矿的产出特征

（1）矿物组合特征

在黑色岩系中，成岩成矿阶段不同，矿物组合也不同。黄铁矿主要出现在沉积期粗粒硫化物阶段，沉积期细粒硫化物阶段和成岩期的脉状硫化物方解石阶段。各阶段的矿物组合见表1。

粗粒硫化物阶段：包括黄铁矿、硫化铅矿、黄铜矿、砷黝铜矿、镜铁黄铁矿。

细粒硫化物阶段：包括黄铁矿、硫化铅矿、黄铜矿、砷黝铜矿、镜铁黄铁矿。

脉状硫化物方解石阶段：包括黄铜矿、硫化铅矿、黄铁矿、方解石，经磷灰石以微细短脉产出。

（2）标型信息

从表1可以看出，可依据自生矿物组合恢复黑色岩系沉积环境的酸碱度和氧化还原电位。在冰长石岩-硅质岩形成阶段，矿物组合主要为钾长石、钾长石、白云母、钾长石石，可判断此组合所对应的pH=7.0～7.8、Eh≥-0.3V;在粗粒硫化物阶段和细粒硫化物阶段，物理化学环境没有发生明显变化，pH=7.0～7.8、Eh=-0.3V;黄铁矿、硫化铅矿、黄铁矿出现，说明本阶段是成岩阶段，每球状黄铁矿形成于本阶段;黄铁矿-硅质岩形成阶段，矿物组合主要为重晶石、石膏、有机质，形成条件为 pH=7.0～7.8、Eh=0.0～0.1V;在成岩期，成岩期共生的矿物组合为黄铁矿、硫化铅矿等，pH>7.8、Eh=-0.3V;后生期特征矿物组合为石英、方解石和重晶石，对应的物化条件为

<table>
<thead>
<tr>
<th>表1 黑色岩系型黄-铅矿床成岩成矿阶段与矿物组合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>冰长石岩-硅质岩形成阶段</td>
</tr>
<tr>
<td>沉 积 期</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>重晶石岩-硅质岩形成阶段</td>
</tr>
<tr>
<td>浆 岩 期</td>
</tr>
<tr>
<td>后 生 期</td>
</tr>
<tr>
<td>表 生 期</td>
</tr>
</tbody>
</table>
pH>7.8, Eh=0.1V; 表生期特征矿物组合为褐铁矿、孔雀石、蓝铜矿，对应的物化条件为 pH>7.8, Eh≈0.0~0.1V[10]。

(3) 结构构造特征

黄铁矿主要表现为粒状结晶结构，草莓状结晶结构，层状构造，块状构造。

3 黄铁矿的形态

按照所在课题组对贵州中南村矿床中3448粒黄铁矿的形态进行统计，其中莓球体出现率为24.35%，不规则聚形成品出现率73.34%，立方体出现率0.02%(表2)。黄铁矿也可以微米级别的小球体（大小约10μm）形态出现。

3.1 形态特征

(1) 粒状硫化物

在块状构造的矿化富集层中，块状黄铁矿矿石内的粗粒黄铁矿（0.1~1.5mm）集合体应为沉积期早期的重要矿石矿物，黄铁矿形态以不规则聚形晶为主，在扫描电镜下可见五角十二面体{210}与立方体{100}的聚形。{100}晶面上有规则的生长层，生长纹现象，有的有带环构造。

在条状构造的矿化富集层-钼矿石中，黄铁矿以莓球状（25~100μm）、细粒（50~100μm）、球体（100μm）出现。莓球状黄铁矿为研究区特色的矿物形态，主要出现于具有条状构造的矿-钼矿石中，分布于有辉锑矿包裹的有机质暗色层状间隙中，它们有的具有花球构造，有的又有莓球群落现象。更深入的研究发现，黄铁矿与含硫钼矿石有交代，充填微晶生物的现象[11]。

(2) 细粒硫化物

细粒状（5~10μm）或莓球状（10~100μm）黄铁矿在原生层中分布在上覆黑色炭质页岩层和上覆含炭硅质页岩内，有的呈现细晶黄铁矿集合体（ZN20），有的呈现浸染状或以薄膜状出现于页岩的介壳类化石体外。细粒状黄铁矿的形态以发育生长层的立方体{100}和立方体与五角十二面体{210}的聚形晶为特征。

(3) 肤状硫化物方解石

黄铁矿基质中产在成岩后期的微细裂隙内。由有机质生化作用在生烃排烃的环境下形成了微细裂隙，矿化液伴随应力释放而进入裂隙，由裂隙间含有机质、CO₂和PO₄³⁻的流体活化、迁移，并以微细短脉形式产出。黄铁矿以细粒状黄铁矿（0.1~0.3mm）为主。

3.2 标型信息

粗粒硫化物阶段由海水和热水中的 HS⁻与Fe³⁺结合，生成了FeS₂，FeS再与S作用便形成黄铁矿。五角十二面体{210}与立方体{100}的聚形主要是因为矿化液（黄铁矿形成的最佳温度条件）、温度变化梯度小（缓慢冷却），过饱和度大（硫逸度高）的条件下形成的[12]，而富黄铁矿硫化（ZN03）中的黄铁矿立方体形态不仅与氧化度有关，还反映了沉积期末期硫化物大量沉淀堆积。莓球状黄铁矿主要形成于海水中。

细粒硫化物阶段细粒状黄铁矿或莓球状黄铁矿主要形成于海水及其沉积物中，由粗粒硫化物阶段后剩余的 HS⁻与沉积物内的Fe³⁺或海水中的Fe²⁺结核。可以说，黄铁矿的2种形态（莓球状和自形晶）可以反映黄铁矿形成的2种截然不同的途径。莓球体是通过铁的单硫化物间接触形成的，而自形晶则是从溶液中直接沉淀而成的。

扫描电镜下细粒状黄铁矿形态为不规则聚形晶，其间可见莓球状核心（200μm）。莓球状黄铁矿是在细菌或生物参与下，通过有有机质球粒的交代或充填作用而形成的。细菌的新陈代谢也能形成黄铁矿，并有研究认为黄铁矿莓球状具有继承性的形态，为上述过程的直接产物，如自然界中就存在体内有各种型铁硫化物的胡椒细菌，含硫细菌群体的产状与尺寸类似于莓球体[15]。所以这种莓球状黄铁矿多被认为是热水和生物成因[12-15]的。

表2 贵州中南村矿-钼矿床中黄铁矿的形态

<table>
<thead>
<tr>
<th>样号</th>
<th>ZN02</th>
<th>ZN03</th>
<th>ZN04-1</th>
<th>ZN04-2</th>
<th>出现率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>产状</td>
<td>黑色</td>
<td>黑色</td>
<td>黑色</td>
<td>黑色</td>
<td>0.02</td>
</tr>
<tr>
<td>立方体</td>
<td>62粒</td>
<td>20粒</td>
<td>0粒</td>
<td>0粒</td>
<td>73.34</td>
</tr>
<tr>
<td>不规则聚形晶</td>
<td>385粒</td>
<td>710粒</td>
<td>1006粒</td>
<td>501粒</td>
<td>24.35</td>
</tr>
<tr>
<td>莓球体</td>
<td>285粒</td>
<td>77粒</td>
<td>197粒</td>
<td>305粒</td>
<td>97.71</td>
</tr>
<tr>
<td>合计</td>
<td>632粒</td>
<td>807粒</td>
<td>1203粒</td>
<td>806粒</td>
<td>97.71</td>
</tr>
</tbody>
</table>

Table 2 Shape of the pyrite crystals from the Zhongnancun Ni–Mo deposit in Guizhou Province
本文研究的黄铁矿晶球体一般被认为具有在胶体溶液中生成的特点,根据观察和研究,其生成体周围的物质主要为粘土矿物(伊利石、绿泥石等)、细粒硫化物(黄铁矿、硫精矿、辉锑矿)和有机质。根据粘土矿物的弱水化膨胀性、流变性,与有机分子结合而可能具有的亲水-亲油的双重特性,笔者认为,在富硅-泥质岩系的沉积体系内,有机质-粘土矿物复合的背景为金属元素矿物化提供了生物化学场,并且海进时期海水的间歇加入,不同时期受限滞流海水和水域内热卤水的介入为黄铁矿的形成提供了物质来源。

4 黄铁矿的成分

(1) 成分特征

课题组通过对电子探针分析,对黄铁矿的化学成分进行测试研究(表3~表6),从表中可见:①与黄铁矿理论成分Fe 46.55%,S 53.45%,S/Fe=2 比较,贵州遵义中南村黑色岩系中黄铁矿Fe,S 的分析值均偏高,说明较多的杂质混入。S/Fe=1.929~2.103,其中 S/Fe>2 的比例为 78.95%。②本研究区的中南村锰-钼矿床的 Se/Te 均值为 0.986,说明矿床为热水喷流成因。③黄铁矿微量元素与成因的关系,多年来一直是众多学者热衷研究的课题。讨论最多的是

Co,Ni 含量和 Co/Ni 比值。柯特诺(Corteno, 1941,1942)认为,沉积成因的矿床 Co<Ni,Co 含量小于 100×10^6,Co/Ni<1;热液矿床 Co>Ni,Co 含量为 400×10^6~2400×10^6。本区 Co 含量变化范围为 0.41%~1.12%,Ni 变化范围为 0.00~0.63%,Co/Ni 变化范围为 0.077~4.5,均值为 2.197。④Pt 的变化范围为 0.02%~0.49%,Pd 为 0.02%~0.02%,Rh 为 0.02%~0.04%,富含 PGE。⑤成分图解标准,已有研究者在综合对比东金矿床与本文所研究的矿床黄铁矿类同象成分图解3 个端元组分分别为 (10000×ω(Co+Ni))/ω(Fe), 10000×ω(As+Se+Te)/ω(S), 100×(n(S)/n(Fe)-1.8)) 的基础上,得出以下认识:遵义中南村黑色岩系中黄铁矿的样品投点分散在 100×(n(S)/n(Fe)-1.8)<0.4 的几乎整个区域,显示在黑色岩系中高 ω(Co+Ni)/ω(Fe)的黄铁矿和高 ω(As+Se+Te)/ω(S)的黄铁矿均大量出现。

(2) 标型信息

S/Fe 比值:与胶东地区 36 个金矿黄铁矿的成分研究得出的统计规律相同的是,S/Fe 比值与温度的关系比较密切,在同一矿区该比值就有很大变化,低温或沉积成因的 S/Fe 比值较大,高温常是硫亏损,但这也是统计规律。黄铁矿的 S/Fe 比值较大反映本矿床属低温热液型或沉积成因类型。

表 3 黄铁矿镜-钼矿床黄铁矿分子探针分析结果

<table>
<thead>
<tr>
<th>编号</th>
<th>SC04-1</th>
<th>SC04-2</th>
<th>SC05-1</th>
<th>SC05-2</th>
<th>SC05-3</th>
<th>SC20-1</th>
<th>SC20-2</th>
<th>SC20-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>45.34</td>
<td>44.15</td>
<td>44.22</td>
<td>45.62</td>
<td>45.22</td>
<td>46.57</td>
<td>45.73</td>
<td>44.74</td>
</tr>
<tr>
<td>C</td>
<td>0.43</td>
<td>0.78</td>
<td>0.41</td>
<td>0.62</td>
<td>0.55</td>
<td>0.81</td>
<td>1.12</td>
<td>0.53</td>
</tr>
<tr>
<td>Cu</td>
<td>0.10</td>
<td>0.33</td>
<td>0.20</td>
<td>0.40</td>
<td>0.63</td>
<td>0.39</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Mn</td>
<td>0.61</td>
<td>0.21</td>
<td>0.63</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.26</td>
<td>0.07</td>
<td>0.24</td>
<td>0.24</td>
<td>0.47</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td>0.06</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0.12</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.12</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.91</td>
<td>0.05</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td>99.17</td>
<td>99.24</td>
<td>98.09</td>
<td>100.95</td>
<td>100.17</td>
<td>100.53</td>
<td>100.49</td>
<td>98.67</td>
</tr>
</tbody>
</table>

注:中国地质大学(北京)电子探针室(2003)测试,仪器编号为 EPMA-1600 电子探针仪,试验条件为 15kV,7nA 电流,束斑大小为 1μm;元素含量为%
表4 湖南张家界三岔口-钼矿床黄铁矿晶体化学成分
Table 4 Chemical composition of the pyrite crystal from the Ni–Mo deposit at Sancha in Zhangjiajie City of Hunan Province

<table>
<thead>
<tr>
<th>编号</th>
<th>矿物晶体化学式</th>
<th>S/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC04-1</td>
<td>Fe_{0.96}Co_{0.04}Cr_{0.03}Ni_{0.02}S_{2}</td>
<td>2.0429</td>
</tr>
<tr>
<td>SC04-2</td>
<td>Fe_{0.96}Co_{0.04}Zn_{0.02}Ni_{0.00}V_{0.00}Cu_{0.00}S_{2}</td>
<td>2.0429</td>
</tr>
<tr>
<td>SC05-1</td>
<td>Fe_{0.96}Co_{0.04}Ni_{0.00}Ag^{+}S_{2}</td>
<td>2.04918</td>
</tr>
<tr>
<td>SC05-2</td>
<td>Fe_{0.96}Co_{0.04}Cu_{0.00}Zn_{0.00}S_{2}</td>
<td>2.0336</td>
</tr>
<tr>
<td>SC05-3</td>
<td>Fe_{0.96}Ni_{0.00}Cu_{0.00}Mn_{0.00}S_{2}</td>
<td>2.0429</td>
</tr>
<tr>
<td>SC20-1</td>
<td>Fe_{0.02}Co_{0.00}Ni_{0.00}S_{1.00}Sb_{0.02}Te_{0.00}</td>
<td>1.941</td>
</tr>
<tr>
<td>SC20-2</td>
<td>Fe_{0.02}Co_{0.00}Ni_{0.00}S_{1.00}Sb_{0.02}Te_{0.00}</td>
<td>2.031</td>
</tr>
<tr>
<td>SC20-3</td>
<td>Fe_{0.02}Co_{0.00}Cu_{0.00}Ni_{0.00}S_{2}</td>
<td>2.055</td>
</tr>
</tbody>
</table>

表6 黄铁矿硫同位素标样与部分微量元素比值相关性分析
Table 6 Correlation between the S isotope typomorphism and some trace elements in pyrite

<table>
<thead>
<tr>
<th>编号</th>
<th>样号</th>
<th>岩性特征</th>
<th>δ^{34}S/‰</th>
<th>δ^{34}S 平均/‰</th>
<th>S/Fe 平均</th>
<th>S/Se 平均</th>
<th>Se/Te 平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>贵州</td>
<td>1</td>
<td>ZN02xm</td>
<td>富黄铁矿</td>
<td>7.8</td>
<td>9.6</td>
<td>2.0445(5)</td>
<td>694.6(3)</td>
</tr>
<tr>
<td>2</td>
<td>ZN02hf</td>
<td>富黄铁矿</td>
<td>8.4</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ZN02cm</td>
<td>富黄铁矿</td>
<td>9.7</td>
<td>13.9</td>
<td>2.048(7)</td>
<td>1059.9(6)</td>
<td>0.291(4)</td>
</tr>
<tr>
<td>湖南</td>
<td>4</td>
<td>ZN03xm</td>
<td>富黄铁矿</td>
<td>3.8</td>
<td>6.1</td>
<td>2.023(8)</td>
<td>950.8(7)</td>
</tr>
<tr>
<td>5</td>
<td>ZN03xf</td>
<td>富黄铁矿</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ZN04BSSm</td>
<td>富硫铁矿</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZN04BSSm</td>
<td>富硫铁矿</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山东</td>
<td>11</td>
<td>M4-187</td>
<td>石英脉</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M4-126</td>
<td>石英脉</td>
<td>9.23</td>
<td>2.02(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M5-6</td>
<td>石英脉</td>
<td>9-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湖南</td>
<td>14</td>
<td>DP4A1(No.1)</td>
<td>黄铁矿绿泥</td>
<td>-16-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DP4A1(No.2)</td>
<td>黄铁矿绿泥</td>
<td>-23-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TES3A(No.3)</td>
<td>黄铁矿绿泥</td>
<td>-24-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TES3A(No.4)</td>
<td>黄铁矿绿泥</td>
<td>-23-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注:编号1-7的样品产地为贵州遵义南村铜锌矿床、层位为下寒武统中段沉积、铁含量为黑色石英岩、测试者为中国地质科学院岩矿资源研究所卢瑞;编号8-10的样品产地为湖南张家界三岔口铜锌矿床、层位为下寒武统中段沉积、铁含量为黑色石英岩、测试者为中国地质科学院岩矿资源研究所卢瑞;编号11-13的样品产地为山东栖霞石灰岩、铁含量主要为黑云母;编号14-18的样品产地为黄铁矿绿泥、测试者为中国地质科学院岩矿资源研究所卢瑞等。研究表明，黄铁矿的活化能随生成温度的增大而增大，并且随生成温度的增高而富铁硫。由上可见，湖南、贵州样品的S/Fe平均值为2.0093~2.048，大多数比山东栖霞的平均值2.02要高，反映其形成的温度环境要低于石英脉，黑色岩系中的牛蹄塘组为微弱变质的热水喷流沉积的产物。本区黄铁矿的活化能随生成温度的增大而增大，并且随生成温度的增高而富铁硫。由上可见，湖南、贵州样品的S/Fe平均值为2.0093~2.048，大多数比山东栖霞的平均值2.02要高，反映其形成的温度环境要低于石英脉，黑色岩系中的牛蹄塘组为微弱变质的热水喷流沉积的产物。
| 点号 | S | Fe | Co | Ni | Cu | Zn | As | Se | Te | Au | Ag | Pt | Pd | Rh | Ba | Sr | U | Th | V |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ZN03G1 | 52.69 | 45.9 | 0.13 | 0.44 | 0.1 | 0.21 | 0.41 | 0.04 | 0.08 |
| ZN03G2 | 53.01 | 44.26 | 0.27 | 0.31 | 0.9 | 0.04 | 0.35 | 0.3 | 0.56 |
| ZN02G1 | 53.01 | 46.12 | 0.17 | 0.32 | 0.03 | 0.02 | 0.08 | 0.04 |
| ZN02G2 | 56.66 | 45.33 | 0.21 | 0.07 | 0.01 | 0.17 | 0.46 | 0.03 | 0.05 | 0.03 |
| ZN02G3 | 52.88 | 46.16 | 0.07 | 0.19 | 0.04 | 0.12 | 0.15 | 0.14 | 0.22 |
| ZN04G1 | 52.01 | 44.01 | 0.55 | 0.28 | 1.45 | 0.1 | 0.02 | 0.2 | 0.56 | 0.25 | 0.03 | 0.01 |
| ZN04G2 | 51.55 | 46.54 | 0.19 | 0.11 | 0.75 | 0.21 | 0.13 | 0.49 | 0.02 |
| ZN04G3 | 52.97 | 45.78 | 0.14 | 0.19 | 0.06 | 0.26 | 0.3 | 0.23 | 0.09 |
| ZN04G4 | 52.12 | 45.93 | 0.71 | 0.13 | 0.5 | 0.07 | 0.14 | 0.14 | 0.1 |
| ZN011 | 52.82 | 45.51 | 0.33 | 0.19 | 0.14 | 0.06 | 0.64 | 0.15 | 0.05 | 0.01 | 0.02 | 0.09 |
| ZN012 | 52.82 | 45.51 | 0.34 | 1.09 | 0.08 | 0.12 | 0.02 | 0.01 | 0.02 | 0.1 | 0.05 |
| ZN0613 | 53.38 | 46.29 | 0.03 | 0.06 | 0.15 | 0.01 | 0.07 |
| ZN0614 | 52.23 | 46.87 | 0.13 | 0.2 | 0.22 | 0.05 | 0.05 | 0.1 | 0.01 | 0.14 |
| ZN0311 | 54.05 | 45.4 | 0.13 | 0.29 | 0.09 | 0.05 | 0.03 | 0.16 |
| ZN0312 | 53.35 | 45.44 | 0.53 | 0.18 | 0.02 | 0.07 | 0.01 | 0.14 | 0.08 | 0.03 | 0.16 |
| ZN1511 | 53.35 | 46.04 | 0.28 | 0.33 | 0.04 | 0.9 |
| ZN1512 | 53.73 | 44.66 | 0.57 | 0.03 | 0.04 | 0.9 | 0.04 | 0.03 |
| ZN1513 | 52.77 | 45.55 | 0.11 | 0.88 | 0.05 | 0.08 | 0.05 | 0.09 | 0.25 | 0.12 | 0.04 | 0.03 |
| ZN1514 | 53.51 | 45.03 | 0.51 | 0.23 | 0.4 | 0.15 | 0.11 | 0.03 | 0.03 |
| ZN201 | 53.54 | 45.34 | 0.26 | 0.38 | 0.12 | 0.21 | 0.07 | 0.08 |
| ZN3C1 | 53.56 | 44.58 | 0.04 | 0.06 | 0.3 | 0.99 | 0.49 |
| ZN2C1 | 53.05 | 46.66 | 0.1 | 0.12 | 0.04 | 0.02 |
| ZN2C2 | 53.91 | 45.48 | 0.14 | 0.06 | 0.32 | 0.02 | 0.02 | 0.05 |
| ZN4C1 | 52.58 | 45.88 | 0.18 | 0.16 | 0.06 | 0.25 | 0.12 | 0.77 |
| ZN4C2 | 52.13 | 44.85 | 0.72 | 0.17 | 0.69 | 0.11 | 0.1 | 0.15 |
| ZN4C3 | 52.79 | 45.43 | 0.14 | 0.13 | 0.16 | 0.02 | 0.15 | 0.02 | 0.04 | 0.12 |
| ZN4C4 | 53.11 | 44.37 | 0.95 | 0.19 | 0.04 | 0.15 | 0.91 | 0.16 | 0.01 | 0.13 |
| ZN9B1 | 52.26 | 44.62 | 0.59 | 0.38 | 0.24 | 1.07 | 0.13 | 0.36 | 0.13 | 0.03 | 0.02 | 0.02 |
| ZN9B2 | 52.48 | 43.91 | 0.67 | 0.16 | 0.39 | 0.16 | 0.44 | 0.38 | 0.52 | 0.4 | 0.01 | 0.17 |
| ZN9B3 | 53.09 | 44.7 | 0.63 | 0.26 | 0.5 | 0.27 | 0.12 | 0.12 | 0.25 | 0.06 |
| ZN10B1 | 52.25 | 43.66 | 0.52 | 0.52 | 0.23 | 0.69 | 0.29 | 0.55 | 0.79 | 0.36 | 0.13 |
| ZN10B2 | 52.82 | 45.25 | 0.11 | 0.39 | 0.16 | 0.06 | 0.55 | 0.09 | 0.21 | 0.01 | 0.27 | 0.09 |
| ZN10B3 | 51.8 | 46.11 | 1.02 | 0.18 | 0.01 | 0.54 | 0.3 | 0.01 | 0.02 |
| ZN11B1 | 53.33 | 45.3 | 0.24 | 0.73 | 0.31 | 0.01 | 0.09 |
| ZN8B | 52.29 | 44.86 | 0.56 | 0.29 | 0.11 | 0.34 | 0.08 | 0.36 | 0.86 | 0.11 | 0.04 | 0.1 |
| ZN8B2 | 52.86 | 44.75 | 0.29 | 0.03 | 0.24 | 1.15 | 0.14 | 0.37 | 0.06 | 0.1 |
| ZN3B1 | 53.4 | 45.86 | 0.17 | 0.03 | 0.05 | 0.36 | 0.01 | 0.03 | 0.08 |
| ZN3B2 | 53.56 | 44.36 | 0.03 | 0.23 | 0.72 | 0.59 | 0.03 | 0.08 | 0.32 | 0.02 | 0.07 |

平均 52.9663 45.3210 0.05 0.2123 0.1389 0.2605 0.2061 0.0879 0.0913 0.1329 0.2721 0.0913 0.0011 0.0024 0.0739 0.0153 0.0192 0.0037 0.0488

注：空格表示低于检测极限值，计算时以 0 计；测试者为中国地质大学(北京)电子探针室李树岩(2000)，测试仪器型号为 JXA-733，工作电压为 15kV，工作电流为 10mA，束斑大小为 1μm；单位为 wt%
铁矿的成分特征属于铁亏损型，说明其形成温度低。据对云南墨江铁矿的研究，近镜铁体和近金体铁黄
铁矿的S/Fe比值均显著增高，大于2.100[5]，说明其为低温环境下的产物。

Co/Ni比值：通常Co/Ni>1指示矿质来源于岩浆或火山热液，而Co/Ni<1说明矿质来源于沉积岩，根据Co/Ni的比值可以判断本区黄铁矿主要为热液成因，物质来源为热液喷流体系内的热液。与东南热液型金矿热液成分描述基岩标型不同的是，本区黑色岩系中H(Co+Ni)/H(Fe)的铁黄矿和高
(H As+Se+Te)/H(S)的铁黄矿均大量出现，可能与本区热液喷流沉积的温差变化范围有关，而非正常沉积的产物[4,14]。

S/Se比值：本区黄铁矿S/Se比值为950.8~1059.9，说明黄铁矿的生成环境均一程度较高，海水温度比高。

Se/Tc比值：IOIKO-3axaroda[9]认为Se/Tc值在6~10之间为岩浆成因，<6在热液成因。Se-Tc型的胶金铁矿，例如乳山金矿的黄铁矿
(Tc=0.005~16.04，变化较大，多数(55%)小于0.2，大于6者仅占27%，且分布于综合热液矿床
岩样中，说明Se/Tc值较高，深度越深，热液生成温度越高[16]。可见Se/Tc值作为热液生长条件(包括深度条件与温度条件)的判据是行之有效的。同样云南墨江金铁矿(Tc=3.08)和本研究区中的南村
 titanium黄铁矿(Tc=0.986)也能简单判断为热液成因，而非高温型的岩浆成因。

Ni,Pt元素：在黑色岩系发育区，Cu,Ag,Au
和Pt金属元素在黄铁矿中的含量都很高，最高值分别可达0.95,0.99,0.56,0.49(wt%)[8]。这不仅从一个方面反映了硫化物矿物形成和富集的过程是亲铁性
元素亏损和亲铜性元素、铂族元素富集的过程，更从另一个方面反映了Co, Ni和PGE元素化
在某一幔源元素和壳源元素共同参与热液喷流地质作用的过程，说明研究区的矿床成因是热液喷流沉积成因，热液来源为热水与海水混合作用。

5 黄铁矿的晶胞参数

(1) 晶胞参数特征

肖启云[5]用X射线粉末衍射法测得贵州遵义中南村黑色岩系中黄铁矿的晶胞参数，结果见表7。其
晶胞参数变化范围为a=0.54170~0.54214nm, c=158.956~159.344(0.1nm), 平均为a=0.541975nm,
c=159.198(0.1nm)，而黄铁矿的晶胞参数的理想值为0.54176nm, c=159.0087(0.1nm)。

(2) 标型信息

研究表明，黄铁矿的微量元素及S/Fe值的变化会引起a的变化。一般认为Co,Ni,As,Se,Te
以类质同象替代的方式进入黄铁矿，可使a增大。原因为Fe-S,Co-S, Ni-S的键长是依次增大的，分别
为0.226nm, 0.234nm和0.24nm，且As替代S
也引起a增大，若1%的As替代S，a将引起黄铁矿
a增大[24]。由表7可见，贵州省中南村铁矿床黄
铁矿的a值(0.54198nm)显著大于山东省三山岛
(0.54146nm)、界河(0.54178nm)等热液交代型金矿
和.localized西热液充填型黄铁矿的a值(0.54167nm)。
表3，表5说明有较多的Co,Ni,As,Se,Te以类质
同象的方式进入黄铁矿，这与Se,Te和Ni的检出
率很高的电子探针分析结果一致，对湖南张家
江三岔铁-钼矿床黄铁矿(表3)的研究发现，该
区黄铁矿的Co,Ni含量同样较高，Co最高达
1.12%,Ni可达0.63%。

表7 贵州中南村铁-钼矿床中黄铁矿的晶胞参数[9]

<table>
<thead>
<tr>
<th>表7 Crystal cell parameter of the pyrite from the Zhongnanacun Ni-Mo deposit in Guizhou Province</th>
</tr>
</thead>
<tbody>
<tr>
<td>表样号</td>
</tr>
<tr>
<td>ZN02py</td>
</tr>
<tr>
<td>ZN02s</td>
</tr>
<tr>
<td>ZN02n</td>
</tr>
<tr>
<td>ZN02c</td>
</tr>
<tr>
<td>平均值</td>
</tr>
</tbody>
</table>

注：资料来源于参考文献[9]，仪器型号为D/MAX-RC, CuKa靶，50kV, 70mA, 连续扫描，
扫描速度4°/min, DS=1°, RS=0.15mm, 石墨单色器，闪烁(SN)探测器
<table>
<thead>
<tr>
<th>样号</th>
<th>取样地点</th>
<th>α 值有效级数</th>
<th>$\alpha_{\text{In-0.8-Om-0.16}}$</th>
<th>P(Non) %</th>
<th>形成温度/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-1</td>
<td>贵州遵义天鹅山</td>
<td>25</td>
<td>+107, +38, +62</td>
<td>100</td>
<td>115（100~135）</td>
</tr>
<tr>
<td>T20-5</td>
<td>贵州遵义天鹅山</td>
<td>25</td>
<td>+280, +105, +189</td>
<td>100</td>
<td>185（130~240）</td>
</tr>
<tr>
<td>GZPS-2</td>
<td>湖南张家界柑子坪</td>
<td>26</td>
<td>+224, +87, +128</td>
<td>100</td>
<td>153（126~210）</td>
</tr>
<tr>
<td>DS13</td>
<td>湖南张家界三岔</td>
<td>25</td>
<td>+217, +106, +159</td>
<td>100</td>
<td>170（135~205）</td>
</tr>
</tbody>
</table>

注：括号内的数据为形成温度的范围；α 为黄铁矿热电系数，测试者为中国地质大学（北京）邵新，1994

6 黄铁矿的 α 同位素

(1) α 同位素特征

课题组对研究区黄铁矿的 α 同位素进行测试，结果见表 6。测试在中国地质科学院矿产资源研究所同位素实验室进行，实验条件为：以 CuO 作氧化剂，利用质谱仪（仪器型号 MAT251EM），采用国家标准 VCDT（美国 Canyon Diablo Troilitie 标准，变

成 Vienna 标准，简称 VCDT），分析结果精密度为±0.2‰。从表 6 可见，贵州遵义中南村矿床中富黄铁矿石和富硫钼矿石中黄铁矿的 $\delta^{13}S$ 均值的变化范围是 6.1‰~1.8‰，其中富硫钼矿石中的 $\delta^{13}S$ 偏低，仅为 6.1‰。

(2) 标型信息

早寒武世早期到中期海水中硫酸盐的 $\delta^{13}S_{\text{CDT}}$ 值为+22‰~+35‰[18-21]，有些研究者认为，湖南张家界、贵州遵义镍钼矿石中的黄铁矿 $\delta^{13}S_{\text{CDT}}$ 值总体介于-26‰~+22‰之间（表 6），可能是由于已死生物群等细菌对硫酸盐的还原作用，在镍钼矿床黄铁矿结晶的形成过程中 $\delta^{13}S$ 的极端变化（-26‰~+22‰）可能是在成矿过程中生物和水热活动的作用而导致的[19-21]。

7 黄铁矿的热电性

(1) 热电性特征

研究者对研究区黄铁矿的热电性进行了测试分析结果见表 8。在进行热电性测试的基础上，发现研究区 P 型黄铁矿的出现率为 100‰[9]，高于浅成低温类型的云南墨江金厂金矿床（85.5%）中 P 型黄铁矿的出现率，但与山东三山岛金矿（100%）一致。

(2) 标型信息

一般认为，P 型黄铁矿的出现率能够反映矿床规模、剥蚀深度、热液温度等信息[9]，如 P 型黄铁矿对应低温形成的黄铁矿，金矿床规模越大，P 型出现率越高，金矿体上部 P 型出现率高。本区以 As,Se 离子为特色的空穴导电的 P 型导型主要与黄铁矿的成分有关。从表 8 可见，根据戈尔巴乔夫（1964）的温度标尺研究，可判别其形成温度约为低温（温度范围为 100~240°C，集中于 115~185°C）之间，平均为 156°C，说明与热水-海水的混合沉积有关，而一般热水的温度变化区间为 90~350°C[22]。

8 结论

通过对湘黔下寒武统黑色岩系中黄铁矿的地质产状、矿物组合、形态、结构、成分、α 同位素、热电性等特征的研究可获得黄铁矿生成的以下信息。

(1) 镀球状黄铁矿多被认为是热水和生物成因的沉积期有机质被分解，还原成富含 HS 的腐泥质干酪根的有机质背景，五角十二面体（210）与立方体（100）的聚形主要是温度适中（黄铁矿形成的最佳温度条件）、温度变化梯度小（缓慢冷却）、过饱和度大（硫化度高）的条件下形成的，镀球被认为与有机质背景或浮游生物的类型有关。根据 Co/ Ni 的比值可判断研究区黄铁矿主要为热液成因，矿化物质来源为热水喷流体系内的热液；$\delta^{13}S$ 的极端变化可能是在成矿过程中生物和水热活动的作用而导致的，黄铁矿的 In$\delta^{13}S$ 均值与 S/Fe 有近乎于同长的同步变化关系，反映热液生成的介质组分条件应该是黄铁矿 α 同位素分馏的主导性因素，P 型黄铁矿的形成温度为低温，温度范围为 100~240°C，集中于 115~185°C，平均为 156°C，说明与热水-海水的混合沉积有关。Ni,Mo 和 PGE 矿化的过程是一个幔源元素和壳源元素共同参与热水喷流作用的过
程，因而幔源元素和壳源元素呈现同步反消长的数量关系。

(2)为热水喷流沉积矿床，与黄铁矿有关的生成介质为热水喷流的金属元素矿化流体，海进时期海水的间歇加入、不同时期受海流滞流海水的介为黄铁矿的形成提供了介质流体。

(3)汞球状黄铁矿是在细菌或生物参与后，通过对有机质球粒的交代或充填作用而形成的。当然，细菌的新陈代谢也能形成黄铁矿，如自然界中就存在体内有各种型式铁硫化物的链状细菌，链状细菌群体的产状与尺寸类似于汞球体，海进-海退地区汞球状黄铁矿大量出现，伴随黑色岩系的矿化，所以这种汞球体黄铁矿多被认为是热水和生物成因的。

笔认为较高温度的热水是黄铁矿矿化物质供给的主要来源，热水中的细菌群落在生长期可能进行着形成黄铁矿的新陈代谢，而与海水的接触导致了迅速降温和快速结晶现象的出现，在有机质-粘土矿物复合构成的胶体溶液中形成了黄铁矿微球。

研究区黄铁矿含量高不仅与海生缺氧的底流水还原环境有关(细菌，pH为8～9，酸度的碱性)，还与可能的间歇式海水加入和热水喷流直接相关。热水喷流环境中细粒状黄铁矿或汞球状黄铁矿主要形成于海水沉积物中，由粗粒硫化矿物阶段后剩余的 HS−与沉积物内的Fe如Fe(OH)3或海水中游离的Fe2+结合形成，出现的黄铁矿的立方体晶形与还原HS−和H2S优势场或腐泥型干酪根所构成的有机质背景有关。因此黄铁矿的结晶过程不仅是结晶热力学条件不断变化的过程，更是物理、化学、生物因素与地质因素耦合、互动的过程。

致谢：在本文的写作中得到中国地质大学(北京)地球科学与资源学院孙岱生教授的帮助，对此表示深深的感谢！

参考文献